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Demonstrating quantum 
contextuality of indistinguishable 
particles by a single family of 
noncontextuality inequalities
Hong-Yi Su1, Jing-Ling Chen1,2 & Yeong-Cherng Liang3

Quantum theory has the intriguing feature that is inconsistent with noncontextual hidden variable 
models, for which the outcome of a measurement does not depend on which other compatible 
measurements are being performed concurrently. While various proofs of such contextual behavior 
of quantum systems have been established, relatively little is known concerning the possibility to 
demonstrate this intriguing feature for indistinguishable particles. Here, we show in a simple and 
systematic manner that with projective measurements alone, it is possible to demonstrate quantum 
contextuality for such systems of arbitrary Hilbert space dimensions, including those corresponding 
to a qubit. Our demonstration is applicable to a single fermion as well as multiple fermions, and thus 
also a composite boson formed from an even number of fermions. In addition, our approach gives 
a clear demonstration of the intimate connection between complementarity and contextuality, two 
seemingly unrelated aspects of quantum theory.

A fundamental feature of quantum theory is that measurement outcomes generally cannot be predicted 
with certainty even with precise knowledge of the measurement procedure as well as the state of the 
system. Is this randomness unavoidable or could there be some higher-level theory that “completes”1 
quantum theory and restores determinism by supplementing the latter with additional hidden variables 
(HV)? Bohmian mechanics2,3 is one such example. Could there be others? In the 1960 s, Bell4 and inde-
pendently Kochen & Specker5 showed that quantum theory is incompatible with the assumption under-
lying the so-called (measurement-outcome-) noncontextual (NC) HV theory6,7. Loosely, such theories 
assume that the measurement outcome is independent of the measurement contexts. For instance, if A 
and B are compatible measurements, likewise for A and C, such a theory demands that the measurement 
outcome of A is independent of whether A is measured together with B or with C.

The aforementioned incompatibility is now commonly referred to as quantum contextuality (QC). 
This nonclassical feature of quantum theory, in particular a strong form of it known as Bell-nonlocality8,9, 
has triggered a lot of discussions about some of the very fundamental concepts in physics that we have 
taken for granted (see, eg., Refs. 6,10–20 and references therein). On the more pragmatic side, it is 
worth noting that Bell-nonlocality is known as an indispensable resource in device-independent quan-
tum information processing9,21, whereas QC itself has recently been argued to be the resource22 that 
enables quantum computing23.

Traditional proofs of contextuality, such as the one given by Kochen and Specker5, though elegant and 
rigorous, are not without their drawbacks. Firstly, such proofs rely heavily on the structure of Hilbert 
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space and thus lack a clear operational meaning—an essential feature required for any meaningful exper-
imental test against another operational theory. Secondly, they are only applicable to projective meas-
urements, thus rendering a proof of contextuality impossible in any two-dimensional Hilbert space. In 
recent years, the first drawback has been overcome to some extent by an approach pioneered by Klyachko 
et al.24 based on noncontextuality inequalities—constraints on measurement statistics necessarily satis-
fied by any measurement-outcome NCHV theory (see also Refs. 7,25–27 for other operationally-inspired 
works in this regard). The approach of Klyachko et al. was further developed, e.g., in Refs. 20,28–32 and 
led to a series of experiments verifying quantum contextuality33–37 (for loopholes that could still apply to 
such operationally-based tests, see, e.g., Refs. 38–41).

Concerning the inapplicability of traditional proofs of contextuality in a two-dimensional Hilbert 
space, some possible workarounds42,43 have been proposed using generalized (unsharp) measurements 
described by positive-operator-valued measure (POVM)23. These works, however, assumed deterministic 
outcomes even for POVM, an assumption that is debatable, as remarked in Refs. 7,18,20 (see also Ref. 
44 for other criticism). In turn, by considering also only POVM, Spekkens provided7 alternative proof of 
measurement-outcome contextuality, as well as other operationally-motivated notions of quantum con-
textuality for two-dimensional quantum systems. In this work, as a consequence of our demonstration 
of quantum contextuality for indistinguishable particles via noncontextuality inequalities, we provide 
a different workaround to the aforementioned problem—a demonstration of qubit contextuality using 
projective measurements and the physical constraints that stem from the (anti-)commutation relations of 
indistinguishable particles. Note that the contextuality of systems of indistinguishable particles was also 
studied earlier in Ref. 45 by considering all degrees of freedom associated with such systems (see also 
Ref. 30). Here, we show that for the demonstration of their contextual behavior, it suffices to consider 
their discretized momentum (or position) degree of freedom.

The rest of this paper is organized as follows: we first consider a fermionic wavepacket of two momenta 
and present a noncontextuality inequality to manifest its QC. Then we generalize the situation to a wave-
packet involving an arbitrary number of momentum modes. For a planewave with a definite momentum, 
we apply the noncontextuality inequality to its complementary degree of freedom to demonstrate its 
QC. The generalization to the case of more than one fermion is demonstrated, before discussing the 
fermion-fermion case, which proves the contextual behavior also of a composite boson. We will discuss 
the close relation between quantum complementarity and QC towards the end of this article.

Results
Preliminaries associated with fermions. Let us begin by reminding that it is convenient to use the 
Fock basis representation to describe the (anti)symmetric states of indistinguishable particles. In general, 
a fermionic one-particle state in a finite volume can be expressed as46

∑ψ = Ω ,
( )( )

=

†g a
1j

M

k k
1

j j

where ( )g k j
’s are complex coefficient satisfying Ω∑ = , ,( )g 1j k

2

j
 denotes the vacuum state, †ak j
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adjoint ak j
) is the creation (annihilation) operator for momentum mode k j satisfying the equal-time 
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and δ is the Kronecker delta function. Define the number operator = ∑ =
ˆ †N a aj

M
k k1 j j

, then it is obvious 
that ψ ψ =N̂ 1, indicating that Eq. (1) represents a one-particle state, as claimed.

If the volume is infinite, one must make the substitutions δ δ→ ( − ′)
′

k kk kj j
 and ∫∑ → kdj . However, 

it is expedient to consider first the finite case and then set the volume arbitrarily large to effectively 
approximate the continuous case. In fact, most physically continuous quantities are discrete in experi-
ments, since the laboratory itself is to be understood as a finite box. As another example, the continuous 
energy band in solid-state physics is formed by combining a large number of atoms which possess a 
discrete set of energy levels.

Without loss of generality, consider that only M fermionic modes have non-zero occupancy with 
momenta k j in increasing order, i.e.,

< < < . ( )k k k 3M1 2

To reveal the quantum contextuality of a single fermion, we shall—motivated by the Pauli exclusion 
principle = =†a a 0k k

2 2
j j

—construct Pauli observable σ from the creation (annihilation) operators for 
each mode. To this end, we employ the Jordan-Wigner transformation47 in the “reciprocal” space:
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where 1 is the identity operator and we define ≡†a a 0k k0 0
 for consistency. One can now readily verify that
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where ( )σ σ σ σ→ = , ,k k
x
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j j j j
 is the vector of Pauli matrices defined through Eqs. (4–6), and 

( )θ φ θ φ θ= , ,n̂ sin cos sin sin cosj j j j j j  is a unit vector in 3 . Note that the first product term in 
Eq. (8) results from the exponentials in Eqs. (4) and (5).

As a fermionic realization of the Pauli operator, here σ ˆ
k
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j

j shares familiar properties: it takes eigenval-
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It is worth noting that there is no direct relation between the M-qubit state ψH  and the number of 
particles in ψF , since the number of constituent Hilbert spaces that we need to define ψH  is equal to 
the number of distinct momentum modes M, rather than the number of particles (excitations) N. 
Obviously M is lower bounded by N for fermions, but they are, otherwise, independent quantities.

Contextuality of a fermion in two momentum modes. Let us now demonstrate the contextual 
behavior with the fermionic state (1), cf. Eq. (9), focusing first on the case where the momentum takes 
only two distinct values k1 and k2 (i.e., M =  2). Consider now the CHSH Bell inequality48, which can also 
be seen as a noncontextuality inequality,

( ) = ( , ) + ( , ′) + ( ′, ) − ( ′, ′)
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2 12
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where E(ki, kj) is the expectation value corresponding to the joint measurement of the observables labe-
led, respectively, by ki and kj, cf. Eq. (8); likewise, we use the symbol ′kj as a label for an observable 
associated with the momentum mode kj but for the primed unit vector ′ .n̂ j  (The symbol ′kj is not to be 
confused with ′k j , which refers to a momentum mode different from kj.) Note that the upper bound 
dictated by NCHV can be easily verified by considering deterministic measurement outcome for each of 
these measurements.

From Eq. (8), it can be shown that the commutators σ σ
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the left-hand-side of Eq. (12) becomes
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giving the maximal quantum value of the CHSH expression for given ψF . Thus, except when =( )g 0k j
 

for some kj, the single fermion state defined in Eq. (1) is always incompatible with noncontextuality for 
M =  2.

Three remarks are now in order. Firstly, since σ ˆ
k
n
2
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 and †ak1
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2 generally cannot be factorized into a product form such as ( ) ( ), ,† †u a a v a ak k k k1 1 2 2

. Secondly, for 
the case of two distinct momenta modes k1  and k2  (i.e., M =  2), the fermionic property implies that a 
general state of the fermion described by Eq. (1) only has support in a two-dimensional Hilbert space. 
In standard quantum information terminology, such a fermion therefore defines a qubit23 through its 
momentum degree-of-freedom. Thus, the QC identified above applies essentially to all pure states of a 
single qubit. (This does not contradict the known result that qubit contextuality cannot be established 
using projective measurements. We will come back to this subtle point towards the end of the article.)

Thirdly, let us note that the mapping established in Eq. (10) also implies an analogous correspondence 
between any mixed state describing a single fermion with M =  2 and some mixed state in ⊗2 2  . Since 
all two-qubit mixed states are incompatible with noncontextuality28, any mixed state ρ ψ ψ= ∑ pi i

i i  
describing such fermionic system—with ψ i  being mutually orthogonal states of the form of Eq. (1)—are 
also incompatible with noncontextuality. For instance, using Eq. (10) and a Peres-Mermin-square49,50-type 
construction, one can see that any fermionic mixed state with M =  2 violates the noncontextuality ine-
quality28
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with = = ( , , )ˆ ˆn n 0 0 11 2 , ′ = ′ = ( , , )ˆ ˆn n 1 0 01 2 , ′ = ′ = ( , , )′ ′ˆ ˆn n 0 1 01 2 .

Contextuality of a fermion in an arbitrary number of momentum modes. Let us now consider 
the case of M distinct momentum modes. In analogy with the previous case, such a fermion therefore 
defines a qudit (with d =  M) via its momentum degree-of-freedom. As with the M =  2 case, the corre-
spondence of Eq. (10) allows us to map any pure fermionic state ψF  with M ≥  2 to a pure state ψH  in 
⊗M2 . This, in turn, suggests that we can reveal the QC of ψ  via existing multipartite Bell inequalities. 

To this end, we consider the Hardy inequality51,52:
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where μ μ μ( ) P k k kM M1 2 1 2  denotes the joint conditional probability of observing outcomes 
μ μ μ M1 2  given measurements labeled by 

k k k M1 2 . When M =  2, inequality (17) reduces to the CHSH 
inequality (12), up to permutations of (k1,k2), and of (μj, 1 −  μj).

Using inequality (17), it was shown that all pure entangled states violate Bell inequalities53. Recall 
from Eq. (1) that in the Fock basis representation, ψ  takes the form of a generalized W state54, which 
is typically a multipartite entangled state. As a result, we can see from the correspondence given in Eq. 
(10) that the fermionic state (1) generically violates inequality (17), showing QC for an arbitrary M ≥  2. 
Hence, QC is a ubiquitous feature demonstrated with states like (1) or any others with coherently dis-
tributed fermionic modes in Fock spaces. An important point to note now is that although we made use 
of the nonlocal nature with all pure entangled states shown in Ref. 53, this result by itself does not 
demonstrate the contextuality with all pure quantum states—the correspondence that we have provided 
in Eq. (10) is still needed to establish the missing link.

Obviously, the form of Eq. (1) implies a mixture of different momenta. It thus seems like the demon-
stration of QC with such a fermionic state requires non-vanishing momentum uncertainty in the phys-
ical system. We now make use of the complementarity principle to argue that this is not the case. Let 
us consider the noncontextuality inequalities (12) and (17), but applied to the complementary degree of 
freedom, namely, via the substitution of k →  x,

( ) → ( ) ≤ , ( ) → ( ) ≤ , ( )I k I x I k I x2 and 0 18Har Har

with x being the position. According to Heisenberg’s uncertainty relation, for a state with definite 
momentum, the number of position modes ′M  involved in Eq. (18) must go to infinity, which is, how-
ever, ill-defined in mathematical rigor. Instead, let us assume that ′M  is arbitrarily large but not infinite. 
In this way, we can once again demonstrate QC even if the fermion has a well-defined momentum. Now, 
let

∫ ∑ψ≡ → = .
( )=

′


x e x k

L
e x1 d 1

19
ik x

j
m

M
ik x

m
1

j j m

The state of a fixed momentum is a superposition of all planewaves with the same kj, and can be 
effectively approximated by fermionic state having discrete position modes. This is the essential idea of 
the quantum complementarity principle: one cannot learn the precise values of two mutually conjugate 
observables. By applying Eq. (18), the QC of a fermion with a definite momentum can also be effectively 
detected via judicious choices of measurements. In this regard, it can be seen that the quantum comple-
mentarity principle plays a very interesting role in identifying QC: If it failed, the quantum violation of 
the pair of inequalities could both be zero, and henceforth no QC could be detected via our approach.

Analogous to the qubit case M =  2, an alternative proof for the contexuality of a single fermion occupy-
ing M ≥  2 momentum modes is also possible by resorting to a generalized construction of Peres-Mermin 
square55. The advantage of such an alternative proof is that the resulting proof can be applied to an 
arbitrary mixed fermionic state with any M ≥  2.

Generalization to a scenario of multiple fermions. The above results can be generalized to the case 
of more than one fermion with no difficulty. In general, an N-fermion state (with M ≥  N) is expressed as

∑ ( )ψ = × Ω ,
( )< < < ∈ ,

, , , 





† † †g a a a
20

N
j j j M

k k k k k k
[1 ]N

j j jN
j j jN

1 2
1 2 1 2

which, in the Fock basis representation, takes the form of a (generalized) Dicke state56. Thus, unless 
( ), , ,g k k kj j jN1 2

. is non-vanishing for only one term in the sum, the correspondence established in 
Eq. (10) again maps ψN  to an M-qubit entangled state which allows for a proof of QC in a similar 
manner. The case of = N 2  with ≥ 1 being a positive integer is of particular interest, since an even 
number of fermions constitute a composite boson. As a result, we are also able to identify the QC for 
such bosons. Hence, all species of indistinguishable particles can be incompatible with noncontextuality by 
the violation of a family of noncontextuality inequalities. (Strictly, for the case where the 2  fermions are 
delocalized into = M 2  modes, we again need to invoke the complementarity between position and 
momentum as well as the finite approximation of infinitely many position modes.)
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Discussion
To summarize, we have demonstrated the QC of a system of indistinguishable particles consisting of 
fermions, in particular a single fermion, through its quantum violations of a family of noncontextuality 
inequalities. The fermionic commutation relations play an essential role in our reasoning, so as the quan-
tum complementarity principle. Together, they guarantee the violation of noncontextuality inequalities 
applied to at least one of the complementary degrees of freedom (such as position and momentum) of 
the system, thereby demonstrating QC of fermionic systems in general. Obviously, a straightforward 
application of our result to composite bosons formed from, say, two fermions also demonstrate the QC 
of this other kind of indistinguishable particles. The possibility to extend our argument to a single ele-
mentary boson remains as an open problem.

Let us now come back to the apparent inconsistency between our result, which demonstrates the QC 
of a single fermion occupying an arbitrary number of momentum modes (including two), and the 
well-known fact that in a two-dimensional Hilbert space, it is impossible to demonstrate QC by consid-
ering only (rank-1) projective measurements. This no-go theorem stems from the fact that in a 
two-dimensional Hilbert space, the “context” of a projective measurement is fully determined by speci-
fying any of its POVM elements. In our proof, although the physical state of the single particle (in the 
case of two momenta modes) is a qubit, the observables that we consider are “mathematically” well 
defined even for the vacuum Ω  and the two-mode state Ω† †a ak k1 2

. Hence, our proof in some sense does 
make use of the mathematical structure of a higher-dimensional Hilbert space and does not contradict 
the well-known no-go result. Note that unlike in quantum mechanics, here any superposition like 
( )+ Ω† † †a a ak k k1 2 3

 is forbidden, due to the fermion-boson superselection rule. In other words, it is pos-
sible to prove that qubit is incompatible with noncontextuality by using projective measurements when 
supplemented with additional physical assumptions (e.g., the anti-commutation relations of fermions 
considered in this paper).

Given that we made use of complementarity in our proofs of contextuality, one may ask if comple-
mentarity is indeed a necessary ingredient (either implicitly or explicitly) for the proof of contextuality. 
In other words, does contextuality imply complementarity? The answer is affirmative. To see this, let 
A, B, and C be three observables such that [A,B] =  0 and [B,C] =  0. If QC arises from the measure-
ment statistics of these three observables, then the commutator [A,C] must be non-vanishing, which 
is exactly a manifestation of quantum complementarity (see also Ref. 57). In fact, even if the QC is 
revealed by genuine POVM, a similar argument would show that QC must imply measurements that 
are not-jointly-measurable. Our proof thus gives a clear illustration of this close connection between 
complementarity and contextuality. A natural line of research that stems from this observation is thus 
to establish this connection at a more quantitative level (e.g., in a more general framework): does the 
extent of complementarity also determine completely the extent that a system can be incompatible with 
noncontextuality and vice versa (see, e.g., the work that tries to answer this using the exclusivity prin-
ciple58)? Answers to all these questions would certainly lead to a better understanding of these peculiar 
features offered by quantum theory.

Methods
Proof of Equation (10). We need to compare the matrix elements

σ σ σΩ ( ) ( ) ( ) × ( ) ( ) ( ) Ω ( )ν ν ν μ μ μ
  

ˆ ˆ ˆ † † †a a a a a a 21M
n n

M
n

M2 1 1 2 1 2
M M M2 1 1 2 1 2
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ν ν ν σ σ σ μ μ μ⊗ ⊗ ⊗ . ( )  
ˆ ˆ ˆˆ ˆ ˆ 22M

n n
M
n

M1 2 1 2 1 2
M1 2

For the convenience to evaluate (21), we have some useful relations

− , = , ( )
† †{ }a a a2 1 0 23aj j j


 − , 

 = , ≠ ′, ( )′
† †a a a j j2 1 0 for 23bj j j

+ , = , ≠ ′. ( )
φ φ−

′
† †{ }e a e a a j j0 for 23c

i
j

i
j jj j

Given these, one can readily verify

σ σ σ σ σ σ σ σ σ σ= , ( )− −   

† †a a 24aj j M j j j j M1 2 1 1 2 1

σ σ σ σ σ σ σ σ σ σ= , ( )− −   a a 24bj j j M j j j M1 2 1 1 2 1
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where σ σ≡
ˆ

j j
nj with n̂ j omitted without confusion, and ( )σ σ θ φ≡ ,j j j j  with θ θ= −j j.

In this way, the operator between Ω  and Ω  in (21) can be manipulated into a standard form

σ σ σ(− ) ( ) ( ) ( ) ( ) × ( ) ( ) , ( )η ν μ ν μ ν μ
�� � �† † †a a a a a a1 [ ][ ] [ ] 25M M M1 1 1 2 2 2

M M1 1 2 2

where ( )σ σ θ φ= ,
 j j j j , θ θ= (− )ξ 1j jj , indicating that θj could change its sign, depending on the times 

of swapping aj and ( > ′)′a j jj . The (− 1)η sign depends on various aspects: (i) the number of times aj and 
( < ′)′a j jj  are swapped, and (ii) the times of swapping aj and ( > ′)′

†a j jj , before reaching the above 
standard form. Each swap in (i) and (ii) contributes a minus sign. Explicitly, we have

∑ ∑
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= ( + ) ,
( )

− −

=

−

= +
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27j
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The next step is to evaluate quantities in the square bracket in the standard form. It is found that

( )
( )

( )

( ) ( )

( ) ( )

∏σ

θ

θ

( ) =



 ( − )






× ( ) + ( )

+ ( ) − ( ) . ( )

ν μ

φ ν μ φ ν μ

ν μ ν μ

=

−

−




† †

† † †

† † †

a a a a

e a a a e a a a

a a a a a a

1 2
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2 cos 28
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j j j j
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1
j j

j j j j j j

j j j j

The quantity in the first bracket must be 1, due to Ω Ω =†a a 0m m . Note that a single aj or †aj  does 
not survive between Ω  and Ω , and that only †a aj j  will contribute. As a result, we have

( )σ θ μ ν

θ μ ν

θ μ ν

θ μ ν

( ) = − = , = ,

= = , = ,

= = , = ,

= = , = . ( )

ν μ

φ

φ

−
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e

e

cos for 0 0

sin for 0 1

sin for 1 0

cos for 1 1 29

j j j j j j

j
i

j j

j
i

j j

j j j

j j

j

j

Hence, a product of such terms, together with signs determined by η and ξj, constitutes (21). On the 
other hand, (22) can be calculated explicitly, since it is factorizable. Then a direct comparison shows that 
(21) and (22) are the same. This ends the proof.

Note that the above proof is for full correlations like Eqs. (21) and (22). For partial correlations where 
the number of Pauli operators is less than M (e.g., ν ν ν σ σ σ μ μ μ⊗ ⊗ ⊗ ⊗ )−

−
  

ˆ ˆ ˆˆ ˆ ˆ
M

n n
M
n

M1 2 1 2 1 1 2
M1 2 1 , 

the proof of correspondence is quite similar.
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