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The study of protein molecular surfaces enables to better understand and predict protein interactions. Different 
methods have been developed in computer vision to compare surfaces that can be applied to protein molecular 
surfaces. The present work proposes a method using the Wave Kernel Signature: Protein LOcal Surficial Similarity 
Screening (PLO3S). The descriptor of the PLO3S method is a local surface shape descriptor projected on a unit 
sphere mapped onto a 2D plane and called Surface Wave Interpolated Maps (SWIM). PLO3S allows to rapidly 
compare protein surface shapes through local comparisons to filter large protein surfaces datasets in protein 
structures virtual screening protocols.
1. Introduction

Proteins are central in most biological processes. Proteins can be de-

scribed through their sequence, structure, surface and/or function(s). 
The protein surface is an abstract, geometric representation of the pro-

tein potential interactions, structure, fold, and sequence [35,18,12]. 
Proteins sharing a related function display similar surfaces that can be 
independent of their sequence and/or structure similarity [44,18,27]. 
Different methods based on protein surface comparison have been de-

veloped for protein-protein interactions prediction [45,39,12], protein 
structural alignment [29] or protein shapes classification [18,15,43,28,

9,14,27,32].

Surface comparison methods can be classified into different cate-

gories depending on their shape descriptor computed from the sur-

face. (1) The methods based on spectral geometry establish a rela-

tionship between the surface shape and the spectra of the Laplace-

Beltrami operator. A spectrum of the Laplace-Beltrami operator is a 
fingerprint composed of the eigenvalues obtained using the differen-

tial Laplace-Beltrami operator [37,50,2]. (2) The methods based on 
histograms summarize local or global geometrical or topological fea-

tures of the surface [20,51,41,40,55]. (3) Projection-based methods use 
the projection(s) of the protein topography in the 2D space [34,8]. (4) 
Zernike-based methods use the moments of 2D or 3D Zernike polyno-

mials [23,6,54,30]. They have been widely used on protein surfaces 
and display high performances in retrieval [23,21,6,17]. (5) The last 
category comprises methods based on geometric learning using convo-

lutional neural networks [31,55,12].

* Corresponding authors.

Surface shapes can be described globally or locally. A global surface 
shape descriptor describes the surface shape of the whole object [20,

42,36] which allows direct comparisons of the whole surface shape of 
different objects whereas a local surface shape descriptor is defined over 
a surface patch and allows comparisons with other surface patches.

To our knowledge, no spectra-based method has yet been specif-

ically designed for global protein surface comparison. In the present 
work, we describe Protein LOcal Surficial Similarity Screening (PLO3S), 
a fast, global protein surface shapes comparison method based on a lo-

cal spectral descriptor, Surface Wave Interpolated Maps (SWIM). SWIM 
is a wave kernel signature (WKS) [2] conformally projected on a 2D 
plane. In PLO3S, the values of SWIM are processed using a dense point-

to-point comparison. PLO3S is designed to blindly screen large protein 
surfaces datasets in order to discard protein surfaces that do not share 
high local surficial similarity to the query. This allows for (1) further 
protein surface shapes screening with finer local surface shape com-

parison methods that cannot handle large datasets, and (2) reducing 
the number of false positive potential binding sites in a drug discovery 
pipeline.

2. Materials and methods

2.1. PLO3S

Protein LOcal Surficial Similarity Screening (PLO3S) is a screening 
method for finding surficial similarities of proteins, independently of 
the sequence of the proteins. PLO3S is described in two steps: (1) the 
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Fig. 1. Diagram for the generation of a SWIM. The Solvent Excluded Surface is computed using EDTSurf [53] (a-b). In a second step, the Wave Kernel Signature 
(WKS) [2] is calculated for each point of the surface (c). The surface is then projected on a unit sphere [1] (d). The sphere is mapped onto the 2D plane [9] (e). The 
points of the map are interpolated (f) to form the final descriptor called SWIM (g).
computation of the Surface Wave Interpolated Maps (SWIM) descriptor, 
and (2) the computation of the surface shape similarity.

2.1.1. Computation of the SWIM descriptor

The Solvent Excluded Surface (SES) of the all atoms protein structure 
(Fig. 1a) retrieved from the PDB [3] is computed using EDTSurf [53]

(Fig. 1b). The Wave Kernel Signature (WKS) is then computed on the 
resulting 3D mesh 𝑀 [2] (Fig. 1c). For each point of the surface of 
the 3D mesh, a vector of size 𝑁 , representing the WKS descriptor is 
computed. This descriptor, based on the eigenvalues of the Laplace-

Beltrami operator, has the property of invariance to isometry and is 
robust to perturbations [2].

On a second step, the 3D mesh is projected on a unit sphere 𝑆 us-

ing the ITK algorithm [13] based on the method described by Angenent 
et al. [1] (Fig. 1d). The frame of the unit sphere is defined using a ref-

erence point on its surface called the pole. The pole of the unit sphere 
is selected arbitrarily, and the triangles of the mesh are projected while 
preserving their angles. This transformation is conformal and bijective. 
It is to note that, even if the distances and surface areas are not pre-

served in the projection, they are only modified by a scaling factor.

Then, the unit sphere is transformed onto the 2D plane using the two 
spherical coordinates of the angles (𝜃, 𝜙) [8,9] (Fig. 1e). A map of size 
(𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛)∕𝛿, (𝜙𝑚𝑎𝑥 − 𝜙𝑚𝑖𝑛)∕𝛿 is created. 𝜃𝑚𝑎𝑥 and 𝜃𝑚𝑖𝑛 are the max-

imum and minimum values of 𝜃 and 𝜙𝑚𝑎𝑥 and 𝜙𝑚𝑖𝑛 are the maximum 
and minimum values of 𝜙. 𝛿 is the step for dividing the sphere in areas, 
where each area is represented by a point on the map in the discrete 
plan. The value associated to each point on the map is the WKS de-

scriptor represented by a vector (Fig. 2). These maps are called Surface 
Wave Interpolated Maps (SWIM).

The final step is the interpolation of each point of the map (Fig. 1f). 
2

The map is encoded as an image and the projection on the 2D plane 
is not filling each pixel with a value. This can create an imbalance if a 
map has large areas with no value, or if the neighborhood of a point 
of the map is considered for comparison. Therefore, for each pixel with 
no value, the three points on the map defining the triangle with the 
smallest area containing the pixel are used to interpolate the value of 
this pixel.

The main issue with this representation is the deformation in the 
neighborhood of the poles while passing from the unit sphere to the 
2D plane. To handle this issue, we use a multiview approach where 
the pole axis is rotated by an angle 𝛼 in the planes perpendicular to 
each of the three Cartesian axes of the unit sphere (Fig. 3). Then, a 
SWIM is created as mentioned above (Fig. 1g). We used a multiview 
approach to generate a set of seven SWIMs by using seven projections 
with a 2𝜋

3 rotation (Fig. 3). This approach offers an optimal balance 
between minimizing the impact of the initial arbitrary pole selection 
and maintaining the computational efficiency of the method. As the 
SWIMs are compared locally (see section 2.1.2 below), the multiview 
approach helps us avoid the arbitrary choice of the pole of the unit 
sphere at the second step of the workflow. This set of seven SWIMs is 
the final descriptor used for comparing protein surfaces.

2.1.2. Computation of the surface shape similarity

A dense, exhaustive (i.e. point by point) comparison is performed 
between the generated sets of SWIMs.

Two shapes 𝑇 and 𝑉 are compared by searching the best matches 
of the vectors of their respective SWIM 𝐶𝑇 and 𝐶𝑉 . To compare the 
two vectors 𝐻𝑘𝑇

and 𝐻𝑘𝑉
at points 𝑘𝑇 and 𝑘𝑉 from the maps 𝐶𝑇 and 

𝐶𝑉 , respectively, the Earth Mover’s Distance (EMD) [38] is used. EMD 
is a metric that measures the distance between two probability distri-

butions, taking into account the proximity of the bins in a histogram. 

The sequence of WKS eigenvalues can be represented as a histogram in 
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Fig. 2. WKS on the surface of one conformation of ubiquitin (5xbo_A_1) (top) and its corresponding SWIM (bottom) for the 1st (a), 50th (b) and 100th (c) value of 
the WKS.

Fig. 3. Illustration of the multiview approach with a representation of one of the three rotations of the pole axis achieved in the planes perpendicular to the Cartesian 
axis of the Unit sphere (left panel). The corresponding SWIMs for the 50th value of the WKS with a rotation of 2𝜋

3
around a pole of the unit sphere of Ubiquitin 

(5xbo_A_1) are shown in the right panel.
descending order. Given this property, EMD is an appropriate distance 
measure for comparing protein surfaces using the WKS descriptor.

Since the WKS is represented as a 1D array, the EMD equation can 
be simplified as the sum of the absolute differences between the cumu-

lative values of the WKS.

Given two WKS, two vectors with weights equal to one, 𝑋 =
3

{𝑥1, ...𝑥𝑛} and 𝑌 = {𝑦1, ...𝑦𝑛}, ∀ 𝑖, 𝑗 ∈ [1..𝑛] 𝑑𝑖𝑗 = |𝑥𝑖 − 𝑦𝑗 | the 𝐿1 dis-
tance is defined and a function 𝑓𝑖𝑗 such as it minimizes the following 
equation:

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝑓𝑖𝑗𝑑𝑖𝑗 , (1)

with the constraints 𝑓𝑖𝑗 > 0, 
∑𝑛

𝑗=1 𝑓𝑖𝑗 ≤ 1, 
∑𝑛

𝑖=1 𝑓𝑖𝑗 ≤ 1 and∑ ∑
𝑛

𝑖=1
𝑛

𝑗=1 𝑓𝑖𝑗 = 𝑛.
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The WKS is represented as a 1D vector with no weight, which means 
that the EMD equation can be simplified as the sum of the absolute 
differences between the cumulative values of the WKS. Given 𝐷𝑋(𝑖) =∑𝑖

𝑘=1 𝑥𝑘 and 𝐷𝑌 (𝑗) =
∑𝑗

𝑘=1 𝑦𝑘, then the EMD 𝐿 between two WKS 𝑋
and 𝑌 is defined as:

𝐿(𝑋,𝑌 ) =
𝑛∑

𝑙=1
|𝐷𝑋 (𝑙) −𝐷𝑌 (𝑙)|. (2)

The surface shape dissimilarity score for the shapes 𝑇 and 𝑉 is the 
sum of the best distance of each point 𝐿. If 𝐶𝑇 is composed of 𝑁𝑇 points 
and 𝐶𝑉 of 𝑁𝑉 points, then the score 𝑆(𝑇 , 𝑉 ) of dissimilarity between 
𝑇 and 𝑉 is:

𝑆(𝑇 ,𝑉 ) = min

(
𝑁𝑇∑
𝑘𝑇 =1

min
𝑘𝑉

𝐿(𝑋𝑘𝑇
, 𝑌𝑘𝑉

) ,

𝑁𝑉∑
𝑘𝑉 =1

min
𝑘𝑇

𝐿(𝑋𝑘𝑇
, 𝑌𝑘𝑉

)
.

(3)

The surface shape dissimilarity score is normalized between 0 (iden-

tity) and 255 (maximum dissimilarity of the shapes).

2.1.3. GPGPU optimization

The computation of the shape similarity is performed in parallel us-

ing the General Purpose GPU (GPGPU) sum reduction technique [10,7]

where the data is divided into fixed sizes that can be accommodated by 
the internal memory of the GPU, thereby enabling parallel processing 
of the computations.

2.2. Spectral geometry based shape comparison methods

Heat Kernel Signature [50] is derived from the Heat Kernel which 
represents the diffusion of heat on an object as a function of time. The 
HKS is based on the spectrum of the Laplace-Beltrami operator. HKS is 
a local descriptor with the property of isometric invariance and is stable 
against perturbations [50].

Wave Kernel Signature [2] is based on the spectrum of the Laplace-

Beltrami operator. It describes the energy of quantum particles on the 
surface of the shape based on the wave equation which is a solution 
of the Schrödinger’s equation. A signature is created with the solution 
of the wave equation. WKS is a local descriptor with the property of 
isometry and scale invariance. Contrary to HKS, in WKS, time is not 
taken into consideration. It is replaced by the energy of the particle. For 
the WKS, the energy is related to the size of the geometry; a large energy 
represents a local geometric feature while a small energy represents a 
global geometric feature.

2.3. Protein structure comparison methods

In Combinatorial Extension (CE) [49], the protein is represented 
as a set of fragments of eight amino-acids. A fragment is aligned to an-

other fragment composed of at least eight amino acids and forms an

Aligned Fragment Pair (AFP). Using constraints on the maximum dis-

tance between AFPs, the AFPs are assembled to form a longer path. 
Then, an optimization is performed using the Z-score and dynamic pro-

gramming [33].

In TM-Align [57], protein structures are aligned independently of 
their sequence length using TM-score [56]. In a first step, an alignment 
based on dynamic programming is proposed. It is decomposed into a 
residue-to-residue alignment and a secondary structure alignment. In a 
second step, the TM-score evaluates the matrix score of the alignment. 
The proteins are aligned again to increase the score, and this step is 
repeated until stability is found.

In DeepAlign [52], protein structures are aligned according to spa-
4

tial proximity, evolutionary links and hydrogen bond similarity. The 
Computational and Structural Biotechnology Journal 26 (2024) 1–10

score is a combination of a value for amino-acids substitution [19], con-

formation substitution formed by the angles of the pseudo-bonds of the 
𝐶𝛼 atoms [58], the TM-score to estimate spatial proximity, and hydro-

gen bonds similarity.

2.4. Benchmarking dataset

The benchmarking dataset is a subset of the Protein Shape Retrieval 
Contest track dataset of SHREC19 [24] based on the protein level of 
the SCOPe classification [11]. For each of the 14 protein shape classes 
in the subset, only one RMN structure was retained to include side-

chain conformational flexibility. All the RMN structures included in our 
benchmarking dataset present a similar number of conformations to ob-

tain a balanced dataset. Therefore, each protein shape class contains 
from 20 to 30 conformations from a single PDB structure, for a total of 
403 protein conformations. A preliminary study (unpublished results) 
highlighted that non-globular proteins were less adapted to a spherical 
projection such as the one used during the computation of the SWIM 
descriptor. We thus decided to include only globular proteins in the 
benchmarking dataset for this study. In the following, the IDs used are 
in the format: PDBID_A_X, where “PDBID” being the unique id of the 
PDB composed of four letters alphanumeric characters, “A” being the 
protein chain considered and “X” being the conformation number ac-

cording to the PDB file. For each structure of the dataset, the Solvent 
Excluded Surface (SES) is computed using EDTSurf [53] with default 
parameters. EDTSurf output triangular meshes are stored as .ply file, 
converted to .off and .pcd formats, required by the different shape 
comparison methods.

2.5. Performance evaluation metrics

The performance of the PLO3S method to identify proteins present-

ing similar surfaces is evaluated. Within a protein class 𝐶 of size |𝐶|, 
the predictions realized using the PLO3S can then be classified into 4 
cases: true positive (TP) for proteins presenting similar surfaces and 
correctly predicted as so by the PLO3S method; false negative (FN) for 
proteins presenting similar surfaces but not correctly predicted as so by 
the PLO3S method; false positives (FP) for proteins that are not surfi-

cial homologs to the query but not correctly predicted as similar by the 
PLO3S method; and true negative (TN) for proteins that are not surfi-

cial homologs to the query and are correctly predicted as not similar 
by the PLO3S method. The performance in retrieval of each method is 
evaluated using Precision-Recall and Negative Predicted Value (NPV) 
curves. The Precision-Recall curve plots the recall 𝑅 as a function of 
the precision 𝑃 . Precision 𝑃 , or Positive Predicted Value, is the ratio of 
targets from class 𝐶 (TP) retrieved within all objects attributed to class 
𝐶 (TP + FN). The recall 𝑅, also called Sensitivity, represents the ratio 
of retrieved targets from class 𝐶 (TP) compared to |𝐶| (TP + FP), the 
size of class 𝐶 . Precision-recall curves are computed using the Princeton 
Shape Benchmark tools [48]. NPV evaluates the percentage of objects 
rightfully classified as negative (TN) within all negatives (TN + FN).

2.6. Runtime

All calculations were performed on a 64-bit Linux Ubuntu desk-

top computer with an Intel Xeon 2.30 GHz CPU, 32 GB of RAM and 
a Quadro K4200 4 GB GPU.

3. Results

The evaluation of the performance of PLO3S in enrichment has been 
performed on a protein shapes dataset derived from the Protein Shape 
Retrieval Contest of the SHREC 2019 community benchmark [24]. The 
performance of PLO3S is compared with spectral, geometry-based shape 
comparison methods and protein structure comparison methods. For all 

the shape comparison methods, blind all-to-all dense comparisons have 
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Fig. 4. Illustration of the 50th value of the WKS on the SESs (upper panel) and their corresponding SWIMs (lower panel) for (a) ubiquitin 5xbo_A_1, (b) thioredoxin 
1trv_A_1 and (c) Macrophage Inflammatory Protein 1hun_A_1.
been performed on the whole dataset. Dense comparison is performed 
when all-to-all descriptor points are compared during the computation 
of the surface shape similarity. The 𝐿1 distance is used for the HKS and 
WKS spectrum-based methods, as described in [2,50]. The metrics used 
for the protein structures comparison methods are those proposed by 
the authors, which are RMSD, TM-score and DeepScore, respectively, 
for CE, TM-Align and DeepAlign.

3.1. Illustration of PLO3S performance with selected examples

Three proteins were selected from the SHREC19 dataset, herein used 
as the benchmarking dataset, to illustrate the PLO3S method function-

ing and outputs. The selection includes two proteins presenting similar 
SWIMs, ubiquitin and thioredoxin, and one protein presenting a dissim-

ilar SWIM compared to the two former proteins, Macrophage Inflamma-

tory Protein (MIP, Fig. 4). Ubiquitin and thioredoxin display a globally 
spherical shape whereas MIP is more elongated. The SWIMs of MIP are 
less dense, as illustrated by the large blue area representing values of 
the WKS close to 0. The red area is located at the bottom of the SWIM 
(close to the pole) and then distorted due to the mapping of the unit 
sphere to the 2D plane. In the SWIM descriptor, the most singular val-

ues are the most qualitatively discriminative values for the eigenvalues 
of the WKS. In this example, the red area contains the most qualitatively 
discriminative values.

The dissimilarity scores between different conformations of ubiq-

uitin, thioredoxin and MIP are presented in Fig. 5. The ubiquitin and 
thioredoxin SWIMs are very similar, as evidenced by dissimilarity scores 
ranging from 0 to 40. On the contrary, the dissimilarity scores of MIP, 
compared to ubiquitin or thioredoxin, vary from 30 to 255.

Within the MIP class, the dissimilarity scores are separated into two 
groups of respectively 10 and 20 conformations. Dissimilarity scores 
within these two groups range from 0 to 50 and are similar to intra-class 
5

scores of ubiquitin and thioredoxin (see the lower right corner of Fig. 5, 
Fig. 5. Matrix of dissimilarity scores of PLO3S on three selected examples: ubiq-

uitin, thioredoxin and Macrophage Inflammatory Protein (MIP).

which exhibit two red squares corresponding to the two MIP groups). 
The scores between these two groups are significantly different, rang-

ing from 60 to 255. The scores of the third and seventh conformations 
(1hun_A_3, 1hun_A_7) are even more distinct with scores varying from 
120 to 255.

The first ten MIP conformations display a more cylinder-like shape 
(Fig. 6a and 6b) than the last twenty conformations (Fig. 6c).

Similar to intra-class scores, the first ten MIP conformations have a 
significantly high dissimilarity score with all ubiquitin and thioredoxin 
SWIMs, varying from 60 to 255, and the scores of the third and seventh 

MIP conformations (1hun_A_3, 1hun_A_7) ranging from 120 to 255.
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Fig. 6. Illustration of the 50th value of the WKS on the SES (upper panel) and their corresponding SWIMs (lower panel) for three structures of the Macrophage 
Inflammatory Protein (MIP): (a) 1hun_A_1, (b) 1hun_A_3 and (c) 1b50_B_1.
Table 1

Average computation time (ACT) for one 
descriptor and comparison for CE, TM-

Align, DeepAlgin, PLO3S, HKS and WKS 
in seconds.

Descriptor Comparison

CE na 0.8 s

TM-Align na < 0.1 s

DeepAlign na 0.1 s

PLO3S 23 min 35 s 0.7 s

HKS 1 min 10 s 4 min 1 s

WKS 9 min 36 s 3 min 11 s

3.2. Evaluation of PLO3S in enrichment

The overall results for PLO3S are shown in Fig. 7. Precision de-

creases steadily from 0.9 to 0.2 for the PLO3S method (Fig. 7a) as the 
recall increases from 0.05 to 1. The recall increases up to 0.9 when con-

sidering the first 62% of the results, and then increases steadily up to 
1. This indicates a compromise between downsizing the dataset and re-

moving a maximum of true negatives. Negative Predictive Value (NPV) 
ranges from 0.93 to 0.99 with a peak at 37% of the dataset size (Fig. 7c). 
This peak corroborates the recall value stabilizing at 62% of the dataset 
size as the NPV is determined by the negatives while the recall is based 
on the positives.

The computation time of the descriptor SWIM and of the comparison 
of two SWIM descriptors are shown in Table 1. On average, 23 minutes 
and 35 seconds are necessary to generate a SWIM. The average compu-

tational time associated with the comparison of two SWIM descriptors 
6

is 0.7 seconds.
3.3. Comparative evaluation of the performance of PLO3S in enrichment 
with spectral geometry based shape comparison methods

We compared our PLO3S method with two other spectral geome-

try based methods for shape comparison, WKS and HKS, which have 
already shown good performance in 3D shapes comparison [26,25].

The PLO3S method is the top performer for the precision-recall met-

ric (Fig. 7a). The precision for WKS and PLO3S is about 0.9 for a 0.05
recall, while the precision of HKS is 0.37. The precision of WKS and HKS 
methods is lower than 0.05 for a recall of 1 while the PLO3S precision 
is superior, around 0.2. Both HKS and WKS descriptors are computed 
and compared on 3D surfaces. However, PLO3S descriptor, called Sur-

face Wave Interpolated Maps (SWIM), is based on a 2D space. Despite 
having one less dimensional space, SWIM shows superior performance 
to the HKS and WKS descriptors.

The PLO3S method has the highest recall compared to HKS and WKS 
for all sizes of the positives set (Fig. 7b). The recall curve of PLO3S in-

creases rapidly at the beginning and stabilizes around 62% of the dataset 
size, while the recall of HKS and WKS increases steadily.

The PLO3S method outperforms both HKS and WKS methods for 
Negative Predictive Value (NPV) (Fig. 7c). NPV ranges from 1 to 0.9, 
as the size of the true negatives set is approximately 13 times larger 
than the size of the true positives set. The NPV for PLO3S ranges from 
0.93 to 0.99 and its maximum is at 37% of the dataset size. On average, 
HKS and WKS show stable NPV, around 0.93 for WKS and 0.92 for HKS 
which is globally inferior to PLO3S.

We determined the average descriptor computation time and com-

parison time in Table 1 for the three methods. The descriptor computa-

tion time includes the processing time from the input mesh to the final 
descriptor. PLO3S has the slowest descriptor computation time with 23
minutes and 35 seconds, while the fastest descriptor computation time 

is 1 minute and 34 seconds (HKS). On the contrary, the fastest com-
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Fig. 7. a Precision-Recall curves for PLO3S, HKS, WKS, CE, TM-Align and DeepAlign. b Recall values for different thresholds for positives. c Negative Predictive 
Values for different thresholds for negatives.
parison time is 0.7 seconds for PLO3S, while the slowest is HKS with 4
minutes and 1 second on average.

3.4. Comparative evaluation of the performance of PLO3S in enrichment 
with protein structure comparison methods

The three standard protein structures comparison methods, CE, TM-

Align and DeepAlign outperformed the PLO3S method in all three 
measures, precision-recall, recall and negative predictive value (Fig. 7). 
While the precision of PLO3S is about 0.9 for low recall and 0.2 for high 
recall, DeepAlign and TM-Align have higher overall precision, ranging 
from 0.89 to 1 for different associated recall.

The PLO3S recall stabilizes around 0.9 for a dataset size of 62%. The 
recall of protein structure comparison methods is 1 after the first 20%
of the results.

The PLO3S NPV is inferior to the protein structure comparison meth-

ods, with its highest NPV of 0.99 at 37% of the dataset size. The NPV 
of the protein structure comparison methods equals 1 for a 2% to 75%
dataset size and reaches 0.93 for 100% of the dataset.

The protein structures comparison methods do not require the com-

putation of a descriptor because the comparison and scoring parts are 
directly based on the structure (Table 1). The comparison time is 0.8
second, 0.7 second, 0.1 second and inferior to 0.1 second for CE, PLO3S, 
DeepAlign and TM-Align, respectively. The comparison time of PLO3S 
is thus similar to the comparison times of the protein structure compar-
7

ison methods.
4. Discussion

4.1. Illustration of PLO3S method with selected examples

In order to illustrate the PLO3S method functioning and outputs, 
three proteins, ubiquitin, thioredoxin and MIP, were selected and fur-

ther analyzed. The SWIMs of ubiquitin and thioredoxin display similar 
patterns, which is corroborated by low values of their corresponding 
dissimilarity scores. Conversely, the high values in dissimilarity scores 
obtained by comparing the SWIMs of MIP and ubiquitin and thiore-

doxin illustrate their difference in shape since MIPs display an elongated 
shape.

An elongated shape, not easily projectable into a unit sphere, may 
be prone to more noise brought by the projection. This is emphasized 
by the differences between the scores of the group of 10 conformations 
of MIP (that present more elongated shapes) and the scores of the other 
20 conformations of MIP (Fig. 6a and Fig. 6b) compared to the sec-

ond group of 20 MIP conformations (Fig. 6c). All these conformations 
were gathered under the same MIP protein label by the SCOPe classifi-

cation, but when investigating further we noticed that these two groups 
of conformations belong to similar yet distinct proteins. The 10 first 
MIP conformations are from the Macrophage Inflammatory Protein 1 
alpha (MIP-1alpha), and the 20 last MIP conformations are from the 
Macrophage Inflammatory Protein 1 beta (MIP-1beta). The conforma-

tions available in the dataset for these two proteins present different 

shapes and thus different surface topologies. Even if MIP-1alpha and 
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MIP-1beta display 68% sequence identity, PLO3S allowed to highlight 
their surficial dissimilarity.

All the dissimilarity scores of the first group of 10 MIP conforma-

tions are high compared to all other scores, indicating the noise sensi-

tivity of an elongated shape projected onto a unit sphere. In particular, 
the third and seventh conformations of MIP (1hun_A_3 and 1hun_A_7) 
show significantly higher scores than the other conformations of the 10 
MIP conformations. Because the scores for the third and seventh MIP 
conformations are higher in all respects than the others, they indicate 
outliers probably caused by the elongated shape not fitting well on the 
unit sphere.

As mentioned in the section 2, we noticed this point in a preliminary 
study with non-globular proteins and we decided to exclude them from 
the benchmarking dataset for this first study. However, the outcomes 
obtained with the MIP protein showed that as the PLO3S is based on the 
use of the local SWIM descriptor, the sharpest features of the proteins 
can still be recognized with high performances.

Finally, these results show that the impact of the side-chain flexibil-

ity of the surface residues on the SWIM dissimilarity scores is limited: 
the intra-class dissimilarity scores resulting from the side-chain flexi-

bility remain low, while large conformational motions (the MIP case) 
greatly increase the dissimilarity scores.

4.2. Evaluation of PLO3S in enrichment

In order to evaluate the PLO3S performance in shape retrieval, we 
used a benchmarking dataset with 403 protein conformations for 14
protein shape classes. The performance of the PLOS3S method was 
measured using Precision-Recall and negative predicted value curves. 
Around a threshold of 62% of the dataset size, the recall of the PLO3S 
method reaches a value of 92%. The highest value for NPV is around 
38% which means that further analysis of the last 38% of the dataset 
is not relevant. Thus, the dataset size can be reduced by 38% (while 
discarding less than 10% of the real positive objects, i.e. proteins that 
are indeed surficial homologs to the query). This allows to dramatically 
reduce the effort required to screen a large dataset in a hierarchical 
protocol.

The performance of PLO3S in terms of recall and NPV indicates that 
our method meets its main objective: selecting most of the positive ob-

jects, i.e. proteins that are indeed surficial homologs to the query, while 
discarding a large number of negative objects, i.e. proteins that are not 
surficial homologs to the query, with high confidence. This allows to 
safely decrease the size of very large datasets in a context of protein 
surface shapes screening.

The average computational time required to compute the SWIMs, 
the PLO3S descriptors, accounts for most of the time of the method. 
This preprocessing step is performed only once for a given object and 
the resulting SWIMs can be stored for later comparisons/screens in a 
SWIM database describing protein surface shapes. Here, the critical as-

pect for a large database screening is the computational time required 
to compute the shape dissimilarity between two protein shapes, which 
is satisfactory (0.7 seconds in average).

4.3. Comparative evaluation of the performance of PLO3S in enrichment

Spectral geometry through the spectra of the Laplace-Beltrami oper-

ator is a common approach in the field of computer vision to compare 
surfaces [36,50,2,47,8,4,5]. Through spectral geometry, the geometry 
and topology of a shape is represented by its spectrum, which are the 
eigenvalues of the Laplace-Beltrami operator. The HKS, WKS and PLO3S 
descriptors are constructed with the eigenvalues and eigenfunctions of 
the Laplace-Beltrami operator.

These spectra have multiple properties, the central one being the 
invariance to isometry [36,50,2]. Invariance to isometry prevents high-

amplitude, non-rigid transformations to modify the values of the de-
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scriptor, which is an important feature to take into account for protein 
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shape comparison since proteins are dynamic objects that display dif-

ferent conformations.

To our knowledge, no method has been designed to find local sur-

ficial similarities of proteins independently of the sequence using the 
spectra of the Laplace-Beltrami operator. The Surface Wave Interpo-

lated Maps (SWIM) descriptor has been developed on a protein surfaces 
dataset and is based on the spectra of the Laplace-Beltrami operator 
through the Wave Kernel Signature (WKS) descriptor. The SWIM de-

scriptor also reduces the dimensions to a 2D space, which reduces the 
computation time compared to classic spectra-based methods used for 
3D objects comparison such as HKS and WKS.

Although SWIM is a 2D descriptor and some information is lost when 
the dimensions are reduced, the precision-recall curves indicate a better 
performance of PLO3S compared to the other computer vision methods. 
Protein surfaces are rough, displaying many variations over their sur-

faces. Since computer vision methods are designed to be applied on 
objects that often display a flat surface, a rough protein surface can be 
considered as a noisy signal which decreases their performance in re-

trieval. In PLO3S, this problem is overcome by smoothing the surface 
shape (an average of the points of the 3D surface is projected on the 
same point on the 2D unit sphere).

For a set of 𝑛 objects, an all-against-all comparison requires 𝑛 × 𝑛

comparisons, while only 𝑛 descriptor computations are required (once 
per object). For this reason, the speed of the descriptors comparison 
affects the method time to a higher degree than the descriptor computa-

tion time. The slow computation of SWIM compared to the computation 
of HKS and WKS descriptors is not an issue in this context since it is a 
one-time operation that can be pre-processed. On the contrary, the com-

putation of dissimilarity in PLO3S is 272 times faster than in WKS and 
344 times faster than in HKS. This is due to (1) the definition of SWIM 
in the 2D space, and (2) the creation of a specific data structure that can 
be manipulated by the GPU with GPGPU. To the best of our knowledge, 
there is no GPGPU implementation of HKS and WKS.

The performances of PLO3S in enrichment are similar or higher than 
the reference computer vision methods evaluated in the present work 
with a faster comparison time to compute the dissimilarity. PLO3S can 
be used to quickly and efficiently decrease the size of a very large 
dataset while retaining the proteins that are surficial homologs to the 
query. Our method can be used for a screening in a big data environ-

ment to reduce a protein dataset that can be refined with a finer-grained 
method in a hierarchical protocol.

PLO3S is a local protein surface comparison method based on a sur-

face descriptor that relies only on the surface shape; therefore, it is 
independent of the sequence, structure or fold of the protein. It dif-

fers from most of the structure-based comparison methods that rely on 
the atomic 3D coordinates of the main-chain atoms. The lower perfor-

mance of PLO3S when compared to structure-based comparison method 
was expected as the ground truth essentially relies on the structural 
classification of proteins. However, PLO3S displays limited decrease 
of performance when compared to structure-based comparison meth-

ods and the best performance among the other evaluated computer 
vision methods. Thus, PLO3S represents an alternative approach for 
cases where the surficial properties are the key point of a study. There-

fore, our method complements the structure-based comparison methods 
in a variety of tasks, such as the search for potential surficial homologs 
in a drug discovery project or in a classification or annotation process.

4.4. Comparison of 3D surfaces projected on 2D maps

Protein surfaces have been studied for decades but attempts to com-

pare protein surfaces are relatively recent. PLO3S can be assimilated 
to some methods previously described for protein surfaces comparison 
that rely on 3D-to-2D projection. However, these methods differ from 
PLO3S by the choice of the descriptors (such as the Zernike polyno-

mial formalism [30,16]), the methods used for the 3D-to-2D projection 

[22,46], or by the decomposition of the surface into local patches [12]. 
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Moreover, unlike PLO3S, none of these methods allow for a global, 
quantitative comparison of the entire surface of proteins. Most focus 
on the search of local similarities using patches (defined as a group 
of points of the surface that are close to each other in the 3D space) 
extracted from the protein surface [12,30,16]. A few methods may com-

pare the whole surface (and any physico-chemical property projected 
on it), but they use a single-view projection and are thus limited to the 
comparison of homologous proteins 3D-aligned prior to any computa-

tion to allow for a correct comparison [22,46].

While not described here, PLO3S may be adapted to use any physico-

chemical property (or any combination of multiple physico-chemical 
properties) to help the comparison of protein surfaces. One may add 
a charge value (or any other property of interest) to each point of the 
3D mesh prior to the computing the WKS descriptor, in order to easily 
build a hybrid shape-property descriptor that may increase the PLO3S 
output. In this work, we focus on a first proof-of-concept that protein 
surfaces can be compared globally in high throughput manner, i.e. they 
can be used for screening purpose, as PLO3S does not suffer from the 
limitations of the other methods (patch comparison only or homologous 
proteins comparison only). Despite the high throughput of PLO3S, when 
compared to the protein comparison methods from the bio-informatics 
field, it suffers from a lower performance when considering the true pos-

itives only. The design of PLO3S, which renders the comparison step of 
3D surfaces ultra-fast, is therefore well-suited to the application we en-

visioned. It is designed to filter out true negatives from a pre-compiled 
surface database before applying a more precise and computationally-

intensive method.

5. Conclusions

In the present work, we introduced PLO3S that relies on the SWIM 
descriptor, a 2D representation of the surface topology based on a con-

formal projection of the protein surface. The SWIM descriptor allies 
the advantages of being spectrum-based, i.e. invariant to isometry and 
accounting for local surficial features of the shape, and of being in 
2D, allowing very fast computation of the shape dissimilarity for the 
screening of large protein surface datasets. In addition, SWIM is a lo-

cal descriptor that allows for a partial comparison and can therefore be 
used to find similarities between protein regions.

The performance of PLO3S in enrichment has been evaluated in a 
blind comparison of protein surfaces using a subset of the SHREC19 
protein shapes dataset. The PLO3S method can be used as a fast, coarse 
grained protein surface shape screening method that efficiently elimi-

nates proteins displaying dissimilar surfaces to downsize large datasets 
of protein surface shapes.

Since proteins with a related function often share a similar surface 
while potentially displaying a low sequence, structure or fold similar-

ity [44,18,27], PLO3S was developed to be used in complement to 
protein structure comparison methods in different applications where 
the identification of protein surficial homologs is important such as tar-

get fishing for adverse interaction screening or poly-pharmacology in a 
drug discovery pipeline and protein-protein interactions annotation.
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