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Pre-natal exposures to nicotine and alcohol are known risk factors for sudden infant

death syndrome (SIDS), the leading cause of post-neonatal infant mortality. Here, we

present data on nicotinic receptor binding, as determined by 125I-epibatidine receptor

autoradiography, in the brainstems of infants dying of SIDS and of other known causes

of death collected from the Safe Passage Study, a prospective, multicenter study with

clinical sites in Cape Town, South Africa and 5 United States sites, including 2 American

Indian Reservations.We examined 15 pons andmedulla regions related to cardiovascular

control and arousal in infants dying of SIDS (n= 12) and infants dying from known causes

(n = 20, 10 pre-discharge from time of birth, 10 post-discharge). Overall, there was

a developmental decrease in 125I-epibatidine binding with increasing postconceptional

age in 5 medullary sites [raphe obscurus, gigantocellularis, paragigantocellularis,

centralis, and dorsal accessory olive (p = 0.0002–0.03)], three of which are nuclei

containing serotonin cells. Comparing SIDS with post-discharge known cause of death
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(post-KCOD) controls, we found significant decreased binding in SIDS in the nucleus

pontis oralis (p = 0.02), a critical component of the cholinergic ascending arousal

system of the rostral pons (post-KCOD, 12.1 ± 0.9 fmol/mg and SIDS, 9.1 ± 0.78

fmol/mg). In addition, we found an effect of maternal smoking in SIDS (n= 11) combined

with post-KCOD controls (n = 8) on the raphe obscurus (p = 0.01), gigantocellularis

(p = 0.02), and the paragigantocellularis (p = 0.002), three medullary sites found in this

study to have decreased binding with age and found in previous studies to have abnormal

indices of serotonin neurotransmission in SIDS infants. At these sites, 125I-epibatidine

binding increased with increasing cigarettes per week. We found no effect of maternal

drinking on 125I-epibatidine binding at any site measured. Taken together, these data

support changes in nicotinic receptor binding related to development, cause of death,

and exposure to maternal cigarette smoking. These data present new evidence in a

prospective study supporting the roles of developmental factors, as well as adverse

exposure on nicotinic receptors, in serotonergic nuclei of the rostral medulla—a finding

that highlights the interwoven and complex relationship between acetylcholine (via

nicotinic receptors) and serotonergic neurotransmission in the medulla.

Keywords: acetylcholine, serotonin, cardiorespiratory, arousal, medulla oblongata, mesopontine tegmentum

INTRODUCTION

The sudden infant death syndrome (SIDS) is a major worldwide
public health problem. It is defined as the sudden death of
a seemingly healthy infant under 1 year of age that remains
unexplained after a thorough case investigation, including the
performance of a complete autopsy, an examination of the
death scene, and a review of the infant’s clinical history (1).
Death typically occurs during sleep or during one of the
many transitions to arousal that occur in normal infant sleep
(2). SIDS is the leading cause of post-neonatal infant death
in the United States where the overall rate is 0.35/1,000
live births (3). The SIDS risk increases in socioeconomically
disadvantaged minority populations throughout the world,
e.g., African-Americans in the urban United States, American
Indians in the Northern Plains, mixed ancestry groups
in Cape Town in South Africa, Maoris in New Zealand,
and Aboriginal and Torres Strait Islanders in Australia
(3–7). Biological mechanisms in minority high-risk SIDS
populations have been historically understudied because of the
decreased access to modern forensic centers with pediatric
research tools, lack of funds for research in health disparities,
and the general mistrust of autopsy by these minority
populations (8–10).

A leading hypothesis in SIDS research today is that there
is an abnormality in neurotransmitter networks in the lower
brainstem that regulate cardiorespiratory control and arousal
(11). We and others have reported abnormalities in tissue
parameters of the neurotransmitter serotonin (5-HT) in the
serotonergic homeostatic network in the medulla oblongata
(lower brainstem) in SIDS cases compared to controls (12–
17) as well as abnormalities in cholinergic (18–25), GABAergic
(26), and substance P (27) networks. These abnormalities likely
impair protective reflexes to life-threatening challenges during

a sleep period, leading to defective arousal to a metabolic
stressor (hypoxia, hypercarbia) and sleep-related sudden death.
The underlying premise is that a vulnerable infant with a
biological defect in homoeostasis dies suddenly in a sleep
period when they fail to respond to an exogenous stressor
in a critical developmental period (the Triple Risk model)
(28). While the origin or basis of the biological defect is
unknown, one possibility includes altered development of
neurotransmitter systems due to exposure to adverse conditions
in utero. Among these exposures, pre-natal exposure to nicotine
and alcohol are candidates based on epidemiological data
showing the contribution of maternal smoking (29–31) and
drinking (32) to SIDS risk. Most recently, the Safe Passage
Study conducted by the Pre-natal Alcohol in SIDS and Stillbirth
(PASS) Network (see below) reported an increased relative risk
for SIDS of 4.86 (95% CI: 0.97–24.27) for infants with pre-
natal exposure to smoking only beyond the first trimester, as
compared to those unexposed or those whose mothers reported
quitting early in pregnancy (33). The relative risk increased
to ∼12-fold (98% CI: 2.59–53.7) in infants whose mothers
reported both smoking and drinking beyond the first trimester,
suggesting a combined, possibly synergistic, effect on infant
risk (33).

The Safe Passage Study was a large, prospective,
multidisciplinary study designed, in part, to investigate the
association between pre-natal alcohol and/or pre-natal smoke
exposure, and SIDS and stillbirth (34). A key objective of
the Safe Passage Study was to elucidate the role of pre-
natal exposures in altered development of neurotransmitter
systems in the human brainstem. This includes development
of the cholinergic receptor system in cardiorespiratory and
arousal brainstem sites involved in homeostatic regulation.
Acetylcholine is a neurotransmitter that mediates its effects
via 2 classes of cholinergic receptors, metabotropic muscarinic
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receptors, and ionotropic nicotinic acetylcholine receptors
(nAChRs), localized diffusely throughout the brain and
brainstem. Early in fetal development, acetylcholine, via
interactions with acetylcholine receptors, serves as a growth
factor, affecting neuronal proliferation, growth, survival,
differentiation, and pathfinding (35). Aberrant embryonic
alterations in acetylcholine signaling adversely affects its
morphogenetic properties during development with lasting
effects into the post-natal period (35). In the Safe Passage
Study, we have focused specifically on acetylcholine signaling
as mediated by nAChRs because of the agonistic properties
of nicotine upon binding to this receptor subtype and
because of the documented effect of nicotine on nAChRs
expression (36).

Nicotinic receptors are ligand-gated cation channels that
exist as pentamers of subunits around a central pore. Genes
encoding a total of 16 subunits (α1–10, β1–4, δ, ε, γ) have
been identified in mammals (37). They are present as either
homopentamers (α7, α9) or heteropentamers throughout the
central and peripheral nervous system and can be found both at
pre- and post-synaptic membranes (38). Human developmental
studies have shown expression of many subunits as early
as 4 to 5 gestational weeks, with high expression during
early to midgestation, including within the brainstem (39).
During early infancy, nAChR expression decreases substantially
(40), suggesting a heightened vulnerability to the effects of
maternal smoking during gestation. Maternal smoking results
in nicotine crossing the placental barrier, the fetal blood–brain
barrier, and binding to the endogenous nAChRs in the fetal
brain (41) affecting nAChR expression and function. Similarly,
ethanol from maternal drinking crosses the placenta into the
fetal circulation and interacts with nAChRs via an ethanol
binding pocket to modulate the action of the receptor (42–
46). Given that both nicotine and ethanol affect the action of
nAChRs within the brain, these receptors represent a common
target underlying the adverse effect of maternal smoking and
drinking during pregnancy. Previous studies have examined
the effects of pre-natal exposures on nAChRs in the brain or
brainstem of autopsied infants and in relationship to SIDS
(19, 22–25), including in the American Indian population,
which is at a high risk for pre-natal exposure and SIDS
death (21). These studies were, however, retrospective in
nature with exposure information collected at autopsy. The
strengths of the Safe Passage Study include its prospective
design and rigorous assessment of quantity, frequency, and
timing of pre-natal alcohol and smoking exposures. It is
also uniquely focused on brainstem analysis in at-risk SIDS
minority populations. Using cases collected from the Safe
Passage Study and receptor ligand autoradiography, we tested
the 2-fold hypothesis that (1) nAChR binding, as determined
by binding to nAChR agonist 125I-epibatidine, is significantly
altered in medullary centers and pontine sites related to
cardiorespiratory function and arousal in SIDS infants compared
to controls and (2) that pre-natal exposure to alcohol and
smoking modifies 125I-epibatidine binding in these same
brainstem sites.

MATERIALS AND METHODS

Design of the Safe Passage Study
The study’s hypotheses, specific aims, common protocol,
enrollment, shipping, compliance, and specimen donation have
been described in detail (34), as well as the approach to
autopsy consent in socioeconomically disadvantaged populations
(47). In brief, the Safe Passage Study was an international
prospective, multicenter longitudinal cohort study with data
collection conducted between August 2007 and October 2016.
Clinical sites were selected based upon known high rates of
maternal drinking and smoking during pregnancy and known
high rates of SIDS in the population; however, all women from
the catchment areas presenting for care at these sites were
eligible to participate. These predominately include pregnant
(1) American Indian and Caucasian women from the Northern
Plains and (2) mixed ancestry women of theWestern Cape, South
Africa. Screening and enrollment occurred at pre-natal clinics
affiliated with each clinical site between 6 weeks gestation up to,
but not including, delivery. The maternal and fetal/infant dyads
were followed during pregnancy and from birth until infants were
1 year of age, i.e., the risk period of SIDS. Detailed information
regarding quantity, frequency, and timing of substance use was
self-reported up to 4 times during pregnancy (recruitment,
20–24, 28–32, and 34+ gestational weeks) and at 1 month
post-delivery. At sites in South Africa, a medico-legal autopsy
was performed upon demise. Consent for research was sought
from the family as soon as possible after death (47). At sites
within the United States, an autopsy was regularly ordered
by the coroner/medical examiner after which the family was
approached for consent to the donation of tissue for research
purposes. If consent was given, brain portions were frozen and
shipped on dry ice to the Developmental Brain and Pathology
Center (DBPC), Department of Pathology, Boston Children’s
Hospital, the centralized laboratory for research analysis (48).
The study, including the use of brain tissue, was approved by the
Institutional Review Boards (IRBs) of the local hospitals at which
the infants were autopsied and Boston Children’s Hospital. When
designed, the Safe Passage Study for brain analysis anticipated
and was powered on 37 SIDS cases and 37 non-SIDS controls,
which would allow detection of a difference in receptor binding
levels as small as 0.67 standard deviation.

Clinical Database
SIDS was defined using a study definition that included the
sudden unexpected death of an infant, <1 year of age, whose
cause of death remained unexplained after review of all available
information, including performance of a complete autopsy,
examination or report of the death scene, and review of the
clinical history (1). In addition, SIDS included deaths that
might otherwise have been classified as undetermined including
infants dying in unsafe sleep conditions but without evidence
of mechanical asphyxia or suffocation by overlay. Known cause
of death (KCOD) controls were defined as infants whose
cause of death was identified after review of all available
information (33). All demises were adjudicated by a team of
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pediatric pathologists, neuropathologists, forensic pathologists,
a neonatologist, geneticist, obstetrician, and developmental
psychologist who were blinded to pre-natal exposures. Case
reviews did include toxicology, genetic testing (when appropriate
and available), and metabolic testing (when appropriate and
available). The postmortem interval (PMI) was calculated as the
time when the infant was last seen alive to proclamation of time
of discovery, as in previous studies by us (16, 49). Prospective
collection of demise cases in the Safe Passage Study included
28 SIDS and 38 control cases that died after discharge from the
hospital (post-discharge) (33). Of these cases, 12 SIDS and 10
post-discharge KCOD (post-KCOD) controls were available for
neurochemical studies. There were 16 SIDS and 28 post-KCOD
cases that were accrued in the Safe Passage Study but not available
for neurochemistry either due to a lack of consent for autopsy
research or due to technical issues related to quality of tissue.
There were 45 KCOD controls that died prior to leaving the
hospital after delivery [pre-discharge KCOD (pre-KCOD)] and
10 of these were analyzed for 125I-epibatidine binding to provide
baseline developmental data.

Brainstem Accrual
At autopsy, the brain was removed, weighed fresh, and examined
for gross developmental and acquired abnormalities. The entire
brainstem was removed from the level of the midbrain at the
mammillary bodies to the cervicomedullary junction in 1.5-
cm samples, sectioned on a Leica motorized cryostat at 20µm,
mounted on glass microscopic slides, and stored at −80◦C until
used for tissue receptor autoradiography. Frozen blocks were
stored at−80◦C in air-tight plastic containers.

125I-Epibatidine Binding and Generation of
Brainstem Autoradiograms
To examine nicotinic receptors, we used receptor ligand
autoradiography. Unlike homogenate radioligand binding,
autoradiography allows the visualization of spatial anatomy
and provides details of regional expression patterns (50). It is
quantitative in nature and thus provides benefits over other
techniques like immunohistochemistry. Radioligand 125I-
epibatidine was used for autoradiographic analysis. Epibatidine
is a nAChR agonist with high affinity to α4β2 nAChRs, one of the
major subtypes of nAChRs in the brain, and with lower affinity
to α7 nAChRs (51). The autoradiography procedures were
performed according to the detailed methodology previously
reported from our laboratory for 3H-epibatidine (52), with
modification for the iodinated ligand. All steps were performed
at room temperature. In brief, total 125I-epibatidine binding
was determined by incubation of the frozen, unfixed sections
with 0.5 nM 125I-epibatidine (2200 Ci/mmol, PerkinElmer,
Waltham, MA, USA) in binding buffer consisting of 50 nM
Tris–HCl, 120mM NaCl, 5mM KCl, 2.5mM CaCl2, and 1mM
MgCl2, pH 7.4 for 60min, an incubation time sufficient for
equilibrium to be reached in epibatidine binding experiments
(53). Non-specific binding was determined in adjacent sections
by addition of 0.5 nM 125I-epibatidine and 300µm of L-nicotine
bitartrate. To remove unbound ligand, the sections were
washed in a series of buffer changes (5min each) followed by

3 dips in distilled water. Sections were then left overnight for
drying, after which they were placed in cassettes and exposed
to a BAS_TR2025 phosphoimaging plate (GE Healthcare
Life Sciences, Marlborough, MA) for 20 h, with a set of 125I
standards (American Radiolabeled Chemicals, Inc, MO, USA)
calibrated by the manufacture in terms of radioactivity per
unit weight. The standards allowed for the conversion of
relative optical density to fentamoles per milligram (fmol/mg)
of tissue to determine binding levels. A BAS-500 Bioimaging
Analyzer (Fuji-Film) with Image Reader version 1.8 software
(FujiFilm) was used to generate digital autoradiographic images
from phosphoimaging plates. Quantitative densitometry of
autoradiograms was performed using a MCID 5+ imaging
system (Imaging Research). Specific receptor binding was
determined by subtracting non-specific binding from total
binding in individual tissue sections. The same sections
incubated for autoradiography were subsequently stained with
hematoxylin and eosin for anatomical assessment.

Analysis of 125I-Epibaditine Binding in
Homeostatic Brainstem Sites
For relevance, we provide detail of the neuroanatomical functions
and connectivity of the medullary and pontine nuclei studied
here (see Supplemental Material). The human brainstem sites
measured (Figure 1) were defined with reference to Olszewski
and Baxter brainstem atlas (54) and confirmed with Paxinos
and Huang brainstem atlas (55). For each case, 125I-epibatdine
binding in the brainstem was measured at 3 levels; mid medulla
at the level of nucleus of Roller, which included the nucleus
of the solitary tract (NTS) (all visceral sensory inputs of the
autonomic nervous system and sympathetic autonomic system
integration), the hypoglossal nucleus (HG) (airway patency,
especially during sleep), dorsal motor nucleus of the vagus
(DMX) (preganglionic vagal outflow of the parasympathetic
autonomic nervous system), centralis (CEN), principal inferior
olive (PIO), and medial accessory olive (MAO) (the cerebellar
network); rostral medulla at the level of the nucleus pre-positus,
which included the raphe obscurus (RO), gigantocellularis (GC),
paragigantocellularis lateralis (PGCL), core nuclei of serotonergic
homeostatic medullary network, and the dorsal accessory olive
(DAO); and rostral pons at the level of nucleus parabrachialis
lateralis, which included the locus coeruleus (LC) (major source
neurons of the noradrenergic ascending arousal network),
nucleus pontis oralis (PoO) (part of source neurons of the
cholinergic ascending arousal system), griseum pontis (GRPo)
(pre-cerebellar nucleus, part of the pontocerebellar network), and
median raphe (MR) (part of the rostral 5-HT ascending arousal
network) (Figure 1). With the exception of the midline nuclei
(RO and MR), 125I-epibatidine binding was measured from both
sides (left and right) of the section and the means calculated to
determine final value in fmol/mg.

Collection of Exposure Data
This study used a modified timeline follow-back method to
collect exposure related to maternal smoking/drinking during
pregnancy (56). At each visit during and after pregnancy, the
participant was asked about the last date of use (separately for
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FIGURE 1 | Representative distribution of 125 I-epibatidine binding in the pons and medulla. Illustrative autoradiograms displaying 125 I-epibatidine binding in tissue

sections at the level of the pons (left), rostral medulla (middle), and mid medulla (right). Sections are taken from a 52-postconceptional week SIDS case (pons) and a

45-postconceptional week SIDS case (rostral and mid medulla) case. Receptor binding is normalized to the same scale (shown). The amount of receptor binding in

fmol/mg is indicated with color according to the scale. The nuclei measured are denoted with dashed boundary lines and labeled. These nuclei include the following:

(Pons) MR, median raphe; LC, locus coeruleus; PoO, nucleus pontis oralis; GRPO, griseum pontis; (Rostral Medulla) RO, raphe obscurus; GC, gigantocellularis;

PGCL, paragigantocellularis lateralis; PIO, principal inferior olive; DAO, dorsal accessory olive; (mid medulla) HG, hypoglossal nucleus; DMX, dorsal motor nucleus of

the vagus; NTS, nucleus of the solitary tract; CEN, centralis; MAO, medial accessory olive.

alcohol and smoking). For data relating to alcohol, they were
asked about consumption for ±15 days around last menstrual
period, as well as 30 days prior to the last drinking day since
their last research appointment. For smoking, they were asked
about the frequency of smoking and number of cigarettes on a
typical day for the 30 days prior to the last date of use since
their last research appointment. To estimate the total number
of drinks consumed during pregnancy, each drink consumed
was first standardized where 1 drink is defined as 14 g of
ethanol. The study design did not allow consumption data to be
collected on every single day of pregnancy, somissing values were
imputed using the k-nearest neighbor (kNN) method. Methods
for alcohol imputation are cited elsewhere (57). Since frequency
of cigarette use was collected more sparsely, average cigarettes
smoked per week during pregnancy was used. The number of
cigarettes smoked each week during pregnancy was calculated,
and missing weeks was imputed in a similar way to the alcohol
imputation. After imputation, an average number of cigarettes
during pregnancy was calculated.

Statistical Analysis
Descriptive analysis was conducted to analyze differences
between cause of death (SIDS vs. KCOD controls) and
demographics, maternal substance use during pregnancy, infant
sleep practices, and relevant autopsy and clinical findings.
Analyses used included Student’s t-test or Mann–Whitney U for
continuous variables and chi-square testing with Fisher’s exact
test for categorical variables. Maternal demographics assessed
included age, education, housing type, history of loss by SIDS,
and delivery type. Infant demographics assessed included birth
weight and length, gestational age at birth, post-natal age at death,
gender, and race. Autopsy findings assessed included postmortem
interval, body weight at autopsy, and brain weight at autopsy.

Maternal use of alcohol and smoking during pregnancy were
assessed as binary values (used during pregnancy or not) and
as continuous values (total number of drinks during pregnancy
and average number of cigarettes per week). Maternal use of
alcohol and smoking by trimester was assessed as continuous
values (number of drinks by trimester and average cigarettes per
week). Infant sleep practices assessed included sleep position last
placed, sleep position found, and whether or not the infant was
covered by bedding or blankets.

Multivariate linear regression models were built to analyze
differences in mean 125I-epibatidine binding values by case
diagnosis and exposure. Post-conceptional age (PCA) was
controlled for in all models, as it is significantly different by
case diagnosis and associated with 125I-epibatidine binding.
A subanalysis assessed the effect of development (PCA) on
125I-epibatidine binding in the 10 pre-KCOD- and 10 post-
KCOD-control infants. There was no effect of PMI on binding;
therefore, PMI was not controlled for in the analyses. p < 0.05
were considered statistically significant. Analyses were conducted
using SAS 9.4.

RESULTS

Clinicopathological Information
The demise cohort for 125I-epibatidine analyses include SIDS
(n= 12), post-KCOD controls (n= 10), and pre-KCOD controls
(n = 10) (see above). The causes of death for the control
groups are given in Table 1, with demises separated as pre-
or post-discharge, based on whether the infant died in the
hospital without being discharged after birth or at home after
discharge. Selected demographic data including incidence of
exposure are summarized in Table 2. Pre-KCOD cases were
included only for the purpose of looking at developmental
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TABLE 1 | Causes of death in pre- and post-discharge known cause of death (KCOD) cases.

Case Pre- or Post-discharge GA (wks) PNA

(wks)

PCA

(wks)

Cause of death

1 Pre-discharge 25.7 0.1 25.8 Complications of pre-maturity

2 Pre-discharge 27.0 0.04 27.0 Hyaline membrane disease,

chorioamnionitis and placental abruption

3 Pre-discharge 27.0 0.6 27.6 Pre-eclampsia and pre-maturity

4 Pre-discharge 30.3 1.4 31.7 Omphalocele, peritonitis, sepsis

5 Pre-discharge 32.6 0.1 32.7 Pulmonary hemorrhage

6 Pre-discharge 32.9 0.1 33.0 Fetal head trauma due to motor vehicle

accident

7 Pre-discharge 31.7 1.6 33.3 Klebsiella pneumonia, necrotizing

enterocolitis, jaundice

8 Pre-discharge 37.0 0.04 37.0 Intrauterine growth restriction

9 Pre-discharge 37.5 0.02 37.5 Pulmonary hypoplasia, multicystic

dysplastic kidney disease complicating

Potter’s sequence

10 Pre-discharge 41.3 0.6 41.9 Meconium aspiration, severe

bronchopneumonia, perinatal asphyxia

11 Post-discharge 27.3 9.4 36.7 Respiratory infection

12 Post-discharge 35.6 2.1 38.0 Respiratory infection

13 Post-discharge 27.6 12.9 40.5 CNS infection

14 Post-discharge 38.9 1.6 40.5 Congenital defects

15 Post-discharge 32.1 12.1 44.2 Renal; tubule-interstitial nephritis

16 Post-discharge 36.0 9.0 45.0 Respiratory infection

17 Post-discharge 40.0 11.7 51.7 Respiratory infection

18 Post-discharge 38.3 14.1 52.4 CNS infection

19 Post-discharge 39.6 22.7 62.3 Gastrointestinal infection

20 Post-discharge 38.6 25.9 64.4 Respiratory infection

Pre-discharge cases are infants who died in the hospital prior to being released after birth. Post-discharge cases are infants that died after discharge from the hospital. KCOD, known

cause of death; CNS, central nervous system; N, number; GA, gestational age; PNA, post-natal age; PCA, postconceptional age; wks, weeks.

changes in receptor binding. Pre-KCOD cases (n = 10) ranged
from 25.8 to 41.9 postconceptional weeks (mean = 32.8 weeks)
(Table 2). Sixty percent of pre-KCOD cases were male (n = 6)
and 80% (n = 8) were South African mixed race with the other
20% being American Indian (n = 1) or Caucasian (n = 1).
The SIDS cohort was statistically analyzed relative to the post-
KCOD cases only. In the comparison between SIDS and post-
KCOD, there was no significant difference in mean gestational
age (GA), PCA, PMI, birth weight, sex, pre-mature birth,
autopsy body, or brain weight (Table 2). The majority of cases
was from the South Africa clinical site (Table 2), accounting
for the predominately South African mixed-race assignment
in SIDS (92%) and post-KCOD (80%) [p = non-significant
(ns)]. We assessed several maternal characteristics and found a
significant difference only in education status (p = 0.03) with
the majority of post-KCOD mothers completing high school
(60%) and the majority of SIDS mothers reporting some high
school education (67%) (Table 2). Other demographic measures
were not significantly different between SIDS and post-KCOD
controls. These include crowding index (>1 person/room),
employed (yes/no), marital status, and housing type (council
housing, informal shack/squatter, apartment/house, other) (data
not shown).

The presence of infection in KCOD controls, including
peripheral and central infection, is noted in Table 1. Evidence
of mild infection was noted at autopsy in 7 out of 12 SIDS
cases including group B Streptococcus in the lungs (n = 1),
inflammatory changes in the larynx (n = 1), inflammatory
changes in the pharynx (n = 1), inflammatory cells in the
lamina propria (n = 1), mild pneumonitis (n = 2), and positive
Clostridioides difficile in the stool (n= 1).

Information regardingmaternal smoking and drinking during
pregnancy was available for all cases in the SIDS (n = 12) and
post-KCOD cases (n = 10). The incidence of maternal smoking
during pregnancy (yes or no) was 100% (12/12) in the SIDS group
(Table 2) and ranged from an average of 0.1 cigarettes per week
to 62.3 (median of 20.6) (Table 3A). This was not statistically
different from post-KCOD cases whose incidence of smoking was
90% (Table 2) and ranged from an average of 0 cigarettes per
week to 58.6 (median of 28.7) (Table 3A). Maternal smoking was
neither statistically different between SIDS and controls in any
one trimester nor was it statistically different across trimesters in
SIDS or in controls. The incidence of maternal drinking during
pregnancy (yes or no) was 50% (6/12) in the SIDS group (Table 2)
and ranged from 0 drinks during pregnancy to 210.75 drinks in
pregnancy (median of 2.6) (Table 3B). This was not statistically
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TABLE 2 | Selected demographic information.

Pre-discharge

Pre-KCOD

Post-discharge

SIDS Post-KCOD p-value

N Mean ± STD or n

(%) or median

N Mean ± STD or n

(%) or median

N Mean ± STD or n

(%) or median

Maternal age (yrs) 10 25.8 ± 7.8 12 27.1 ± 4.9 10 27.0 ± 6.1 0.97

Maternal history of loss by SIDS 6 0 (0) 11 1 (9) 7 0 (0) 1.00

Caesarian section 10 5 (50) 12 3 (25) 10 3 (30) 1.00

Maternal education 9 12 10 0.03

Any primary school 0 (0) 2 (17) 0 (0)

Some HS 7 (78) 8 (67) 4 (40)

Completed HS 2 (22) 1 (8) 6 (60)

Beyond HS 0 (0) 1 (8) 0 (0)

GA (wks) 10 32.3 ± 5.1 12 36.1 ± 3.4 10 35.4 ± 4.8 0.70

PCA (wks) 10 32.8 ± 5.1 12 49.0 ± 12.1 10 47.6 ± 9.8 0.76

PMI (h) 10 44.1 ± 34.4 12 41.6 ± 25.3 10 47.6 ± 37.1 0.66

Birth weight (g) 10 1,590.8 ± 803.4 12 2,388.3 ± 785.0 10 2,535.0 ± 1,061.0 0.71

Birth length (cm) 2 33.5 ± 3.5 10 47.4 ± 4.3 8 47.8 ± 5.7 0.88

Male sex 10 6 (60) 12 6 (50) 10 6 (60) 0.69

Pre-term birth

(<37 GA wks)

10 7 (70) 12 7 (58) 10 5 (50) 1.0

Race 10 12 10 0.71

American Indian 1 (10) 0 (0) 1 (10)

South African mixed race 8 (80) 11 (92) 8 (80)

Caucasian 1 (10) 1 (8) 1 (10)

Autopsy body wt (g) 10 2,283.3 ± 1,723.7 12 4„168.7 ± 1,935.7 9 3672.4 ± 1,870.0 0.56

Autopsy brain wt (g) 9 236.2 ± 126.9 10 510.3 ± 173.9 6 507.8 ± 238.1 0.98

Occipital frontal çircum (cm) 10 29.0 ± 4.9 12 37.4 ± 4.6 9 37.5 ± 4.9 0.97

Alcohol during pregnancy (y/n) 8 5 (63) 12 6 (50) 10 7 (70) 0.41

N drinks in pregnancy 10 0.9 12 2.6 10 8.3 0.48

Smoking during pregnancy (y/n) 8 8 (100) 12 12 (100) 10 9 (90) 0.45

Avg cigarettes/week 6 9.3 11 20.6 8 28.7 0.90

N represents the number of cases with available demographic information. KCOD, known cause of death; SIDS, sudden infant death syndrome; yrs, years; HS, high school; GA,

gestational age; PCA, postconceptional age; PMI, postmortem interval; wks, weeks; hrs, hours; circum; circumference; cm, centimeter; y/n, yes/no; Avg, average; g, grams, STD,

standard deviation. Significant p < 0.05 are in bold.

different from post-KCOD cases whose incidence of drinking
was 70% (Table 2) and ranged from 0 drinks during pregnancy
to 102.5 drinks in pregnancy (median of 8.3) (Table 3). There
was no statistical difference between SIDS and post-KCOD cases
when exposure was analyzed by trimesters (Tables 3A,B).

Information regarding sleep-related risk factors was available
for all cases within the SIDS group but only 2 of the 10 post-
KCOD controls (data not shown). Within the SIDS group, the
prevalence of infants last placed supine was 8% (1/12), on their
side (lateral) was 33% (4/12), and prone was 58% (7/12). The

prevalence of SIDS infants in the demised state on their side
(lateral) was 64% (7/11) and in the prone positionwas 36% (4/11).
In the post-KCOD group, the position last being placed supine
was two of two; one of two was found dead in the supine position,
and the other was found prone.

Information regarding post-natal exposure to cigarette smoke
was available in 11 out of 22 (50%) of post-discharge infants.

Of these 11, only 5 (2 SIDS and 3 post-KCOD controls)
reported the infant being exposed to cigarettes at home.
Information regarding other illicit drugs (i.e., marijuana and
methamphetamine) was available on 24 of 32 total KCOD
controls and SIDS. In total, only 4 cases (one pre-KCOD control,
two post-KCOD controls, and one SIDS) reported any illicit
drug use.

125I-Epibatidine Binding Distribution in the
Developing Brainstem
We assessed 125I-epibatidine binding in the medulla and the
pons from 26 postconceptional (PC) weeks (midgestation) to
64 PC weeks (∼6 post-natal months) in the pre-KCOD (n = 10)
and post-KCOD (n = 10) cases for developmental information.
The inclusion of pre-KCOD controls allowed us to analyze a
greater range of ages and provide increased information on
development through gestation. By midgestation binding was
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TABLE 3A | Smoking through pregnancy and by trimesters.

N Mean STD Median Min Max Wilcoxin p-value

Through pregnancy

Average cigarettes/week 0.90

SIDS 11 27.1 20.14 20.6 0.1 62.3

Post-KCOD 8 26.8 23.91 28.7 0 58.6

By trimester

Average cigarettes/week by trimester

Trimester 1 0.54

SIDS 11 26.7 20.06 23.7 0 61.7

Post-KCOD 8 19.2 20.32 12.1 0 52.4

Trimester 2 0.90

SIDS 11 27.9 21.63 22.5 0 64.4

Post-KCOD 8 27.7 23.80 27.6 0 60.0

Trimester 3 0.72

SIDS 11 26.8 19.59 21.3 0.2 60.4

Post-KCOD 7 27.7 31.79 7.7 0 67.6

N, number; STD, standard deviation; Min, minimum; Max, maximum; Post-KCOD, post-discharge known cause of death; SIDS, sudden infant death syndrome.

TABLE 3B | Drinking exposure through pregnancy and by trimesters.

N Mean STD Median Min Max Wilcoxin p-value

Through pregnancy

N drinks in pregnancy 0.48

SIDS 12 25.1 59.57 2.6 0 210.75

Post-KCOD 10 25.3 35.42 8.3 0 102.5

By trimester

N drinks by trimester

Trimester 1 0.23

SIDS 12 8.3 22.80 0 0 80.1

Post-KCOD 10 10.1 13.56 3.6 0 37.5

Trimester 2 0.65

SIDS 12 13.6 27.57 0 0 94.8

Post-KCOD 10 13.5 28.27 0 0 69.2

Trimester 3 0.96

SIDS 12 3.3 10.31 0 0 35.9

Post-KCOD 10 1.6 4.55 0 0 14.5

N, number; STD, standard deviation; Min, minimum; Max, maximum; Post-KCOD, post-discharge known cause of death; SIDS, sudden infant death syndrome.

differentially localized to nuclei of interest in a relatively fixed
distribution (Figure 1). Medullary binding patterns across all
controls combined showed the highest binding in the PIO and
lowest binding in the RO (Table 4, Figure 1). In the rostral
pons, binding in nuclei of the pontine tegmentum (MR, LC,
and PoO) were relatively high compared to measurements
in the basis pontis (GRPO) (Table 4, Figure 1). There was a
significant developmental decrease in binding with increasing
postconceptional age (p < 0.05) in the RO, GC, PGCL, and DAO
(beta values from −0.39 to −0.25) of the rostral medulla and in
the CEN of the mid medulla (beta = −0.22) (Table 4). There
was a marginally significant developmental decrease binding in
in the LC and PoO of the rostral pons (p = 0.07; beta = −0.22
and p = 0.05; beta = −0.24, respectively). To illustrate this

effect, a decrease in 125I-epibatidine binding with increasing PC
age is shown for the RO, GC, and PGCL of the rostral medulla
(Figure 2). Of note, three rostral medullary sites found to have
decreased binding with age (RO, GC, and PGCL) were also found
to be significantly affected by nicotine exposure when SIDS and
post-KCOD controls were combined (see Table 6). The effects of
age on these sites remained significant even after adjusting for the
effect of smoking (see Table 6).

125I-Epibatidine Binding Between All SIDS
and All Post-KCOD Controls
Using analysis of covariance (ACOVA) controlling for the effect
of PCA, there was a significant effect of diagnosis only in rostral
pons PoO (p = 0.02) with post-KCOD controls having a higher
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TABLE 4 | Effect of PCA in Pre- and Post-KCOD controls combined on 125 I-epibatidine binding in brainstem nuclei.

PCA-adjusted mean of 125I-epibatidine

binding in specific brainstem nuclei

Effect of PCA on
125I-epibatidine binding

N Mean ± SE

(fmol/mg)

Beta p-value

Mid medulla

HG 20 13.03 ± 2.42 −0.21 0.37

DMX 20 13.36 ± 1.69 0.19 0.26

NTS 20 15.22 ± 2.53 0.21 0.39

CEN 20 11.82 ± 1.02 −0.22 0.03

PIO 20 23.46 ± 3.08 0.27 0.37

MAO 19 16.58 ± 1.84 −0.01 0.94

Rostral medulla

RO 20 9.35 ± 0.65 −0.29 0.0002

GC 20 13.63 ± 1.15 −0.39 0.002

PGCL 20 11.95 ± 0.81 −0.30 0.001

DAO 16 14.71 ± 1.05 −0.25 0.022

PIO 20 16.82 ± 0.97 0.06 0.53

Rostral pons

MR 16 15.75 ± 1.47 −0.22 0.13

LC 16 13.46 ± 1.20 −0.22 0.07

PoO 16 14.24 ± 1.22 −0.24 0.05

GRPO 16 6.19 ± 0.79 0.01 0.89

Significant p (< 0.05) are bolded. Marginal p (> 0.05 and <0.1) are in italics.

The beta values represent the degree of change in 125 I-epibatidine binding associated with a change in postconceptional age (PCA). Negative beta values indicate a decrease in
125 I-epibatidine binding with PCA. All binding values are in fmol/mg. N, number of cases measured; SE, standard error. Pre-KCOD, predischarge known cause of death; Post-KCOD,

post-discharge KCOD; HG, hypoglossal nucleus; DMX, dorsal motor nucleus of the vagus; NTS, nucleus of the solitary tract; CEN, centralis; PIO, principal inferior olive; MAO, medial

accessory olive; RO, raphe obscurus; GC, gigantocellularis; PGCL, paragigantocellularis lateralis; DAO, dorsal accessory olive; MR, median raphe; LC, locus coeruleus; PoO, nucleus

pontis oralis; GRPo, griseum pontis.

FIGURE 2 | Developmental decrease in 125 I-epibatidine binding in the rostral medulla. Combined pre- and post-KCOD controls show a decrease in 125 I-epibatidine

binding in nuclei of the rostral medulla. This relationship is illustrated in the RO (p = 0.0002), GC (p = 0.002), and PGCL (p = 0.001).

binding than SIDS (12.1 ± 0.9 fmol/mg and 9.1 ± 0.8 fmol/mg,
respectively) (Table 5). There was a marginally significant effect
in the LC of the rostral pons (p= 0.08) with post-KCOD controls
having a higher binding than SIDS (Table 5). The demise cohort
within PASS has a relatively high prevalence of pre-term birth
(58%, SIDS; 50% KCOD) (Table 2). Thus, we analyzed 125I-
epibatidine binding in the PASS cohort based on pre-term (<37
gestational weeks) or term birth (>37 gestational weeks). 125I-
Epibatidine binding from pre-term SIDS (n = 7) was compared
to pre-term post-KCOD controls (n = 5), adjusting for PCA.

Similarly, 125I-epibatidine binding from term SIDS (n = 5) was
compared to term post-KCOD controls (n = 5), adjusting for
PCA. We found no significant effect of diagnosis in any nuclei
in either pre-term or term cases (data not shown).

Effect of Exposure on 125I-Epibatidine
Binding
We assessed the effect of the amount of maternal drinking
(number of drinks consumed) on 125I-epibatidine binding in all
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TABLE 5 | Effect of diagnosis controlling for PCA on 125 I-epibatidine binding in the brainstem.

Cause of death PCA

SIDS Post-KCOD

N Mean ± SE

(fmol/mg)

N Mean ± SE

(fmol/mg)

p-value Beta p-value

Mid medulla

HG 12 8.3 ± 2.34 10 12.3 ± 2.56 0.26 −0.15 0.37

DMX 12 10.8 ± 2.32 10 14.2 ± 2.53 0.33 0.16 0.33

NTS 12 13.5 ± 3.70 10 17.0 ± 4.04 0.53 0.12 0.65

CEN 12 9.0 ± 1.26 10 9.3 ± 1.37 0.88 −0.23 0.02

PIO 12 19.8 ± 4.42 10 27.4 ± 4.83 0.27 −0.21 0.51

MAO 12 14.2 ± 3.13 10 16.1 ± 3.42 0.70 −0.31 0.17

Rostral medulla

RO 12 6.8 ± 0.80 10 6.9 ± 0.87 0.94 −0.24 <0.001

GC 12 9.9 ± 1.11 10 10.4 ± 1.21 0.73 −0.30 0.001

PGCL 12 9.6 ± 1.08 10 9.2 ± 1.18 0.83 −0.27 0.002

DAO 9 13.6 ± 1.85 10 12.7 ± 1.67 0.72 −0.35 0.011

PIO 12 15.5 ± 1.34 10 17.9 ± 1.46 0.24 −0.02 0.82

Rostral pons

MR 9 10.2 ± 1.55 7 13.0 ± 1.72 0.25 −0.02 0.88

LC 10 8.9 ± 0.89 7 11.5 ± 1.04 0.08 −0.11 0.10

PoO 10 9.1 ± 0.78 7 12.1 ± 0.91 0.02 −0.15 0.02

GRPO 10 5.9 ± 0.59 7 6.5 ± 0.69 0.53 −0.05 0.25

Diagnosis p-values are adjusted for postconceptional age (PCA). Means estimated for PCA = 48. Significant p (< 0.05) are bolded. Marginally significant (> 0.05 and <0.10) p-values

are in italics. SE, standard error; Post-KCOD, post-discharge known cause of death; SIDS, sudden infant death syndrome; HG, hypoglossal nucleus; DMX, dorsal motor nucleus of the

vagus; NTS, nucleus of the solitary tract; CEN, centralis; PIO, principal inferior olive; MAO, medial accessory olive; RO, raphe obscurus; GC, gigantocellularis; PGCL, paragigantocellularis

lateralis; DAO, dorsal accessory olive; MR, median raphe; LC, locus coeruleus; PoO, nucleus pontis oralis; GRPo, griseum pontis.

SIDS (n = 12) and post-KCOD controls (n = 10) combined,
adjusting for PCA. There were no significant effects of amount
of drinking on 125I-epibatidine binding in any nuclei (Table 6).
Given that 50% of SIDS mothers and 70% of post-KCOD
mothers reported drinking during pregnancy, we repeated the
analyses with exposed-only, SIDS (n = 6), and post-KCOD
controls (n = 7) combined. Similar to the analyses in Table 5,
the analysis in alcohol exposed-only cases showed no effect
of amount of drinking on 125I-epibatidine binding in any
nuclei (data not shown). There was no effect of maternal
drinking on pre-KCOD controls (data not shown). Similarly,
we assessed the effects of amount of smoking on SIDS and
post-KCOD controls combined, adjusting for PCA. A significant
positive association between average cigarettes per week and
125I-epibatidine binding was found in the following rostral
medullary nuclei: RO, GC, and PGCL (p = 0.01, 0.02, and 0.002,
respectively) (Table 6). Given the effect of smoking on both SIDS
and post-KCOD controls combined, we analyzed each group
separately to determine if cigarette smoking had a differential
effect on one compared to the other. In post-KCOD controls, we
found a significant positive association between 125I-epibatidine
binding and cigarettes smoked per week in the RO (p = 0.047)
and the PGCL (p = 0.03) but little effect in any nuclei in
SIDS (Table 7). Of note, there was a significant effect of PCA
in the RO, GC, and PGCL of post-KCOD controls consistent
with the developmental data of Table 4. Likewise, there was a

significant effect of PCA in these same nuclei in SIDS cases.
Given the effect of smoking on 125I-epibatidine binding in sites
of the rostral medulla, we reanalyzed the SIDS vs. post-KCOD
control data to examine the effect of diagnosis controlled for
smoking and PCA. The significant effect of diagnosis remained
in the PoO (p = 0.04). A marginal significance of diagnosis
was seen in the GC (p = 0.07) and DAO (p = 0.07) (data
not shown).

DISCUSSION

The Safe Passage Study is the first prospective, multicenter
longitudinal study to provide evidence that infants exposed
to pre-natal alcohol and cigarette smoke continuing beyond
the first trimester have substantially higher risk of SIDS,
as compared to those unexposed or exposed only in the
first trimester (33). While the first trimester is critical for
neurulation and neurogenesis, brain development through the
second and third trimesters involves neuronal maturation,
synaptogenesis, and synaptic reorganization and pruning—
processes that are adversely affected by exposure to nicotine
and alcohol (58). Although the fundamental mechanism of pre-
natal exposures upon SIDS risk is unknown, we hypothesize
that it involves adverse effects on the cholinergic receptor
system during brain development. The Safe Passage Study
provided an opportunity to examine this hypothesis in an
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TABLE 6 | Effects of exposure on 125 I-epibatidine binding in the brainstem in SIDS and Post-KCOD controls combined.

Alcohol on 125I-epibatidine Smoking on 125I-epibatidine

N drinks per pregnancy PCA Ave. cigarettes per week PCA

N Beta p-value Beta p-value N Beta p-value Beta p-value

Mid medulla

HG 22 −0.01 0.76 −0.17 0.32 19 0.15 0.12 −0.19 0.31

DMX 22 −0.04 0.31 0.11 0.50 19 −0.04 0.56 0.15 0.27

NTS 22 −0.07 0.23 0.04 0.87 19 −0.11 0.30 0.10 0.64

CEN 22 −0.02 0.28 −0.25 0.008 19 0.04 0.15 −0.18 0.006

PIO 22 −0.05 0.50 −0.28 0.39 19 0.08 0.46 0.08 0.70

MAO 22 −0.05 0.32 −0.36 0.11 19 0.03 0.58 −0.12 0.34

Rostral medulla

RO 22 −0.01 0.45 −0.25 0.0003 19 0.06 0.01 −0.19 0.0001

GC 22 −0.02 0.22 −0.32 0.0005 19 0.07 0.02 −0.25 0.0002

PGCL 22 −0.01 0.41 −0.28 0.0014 19 0.07 0.002 −0.20 <0.0001

DAO 19 −0.04 0.32 −0.35 0.0074 16 0.03 0.39 −0.20 0.007

PIO 22 −0.03 0.18 −0.06 0.54 19 0.01 0.80 0.001 1.00

Rostral pons

MR 16 −0.004 0.93 0.004 0.97 15 −0.06 0.32 0.03 0.82

LC 17 0.01 0.85 −0.12 0.12 16 0.02 0.65 −0.11 0.15

PoO 17 0.02 0.52 −0.15 0.04 16 0.03 0.45 −0.16 0.04

GRPO 17 −0.03 0.10 −0.07 0.10 16 0.02 0.42 −0.08 0.09

Significant p (<0.05) are bolded. Marginal p (> 0.05 and<0.1) are in italics. The effects of individual exposure (N drinks per pregnancy or average cigarettes per week) on 125 I-epibatidine

binding is adjusted for PCA. N, number; PCA, postconceptional age in weeks, Ave, average; Post-KCOD, post-discharge known cause of death; SIDS, sudden infant death syndrome;

HG, hypoglossal nucleus; DMX, dorsal motor nucleus of the vagus; NTS, nucleus of the solitary tract; CEN, centralis; PIO, principal inferior olive; MAO, medial accessory olive; RO,

raphe obscurus; GC, gigantocellularis; PGCL, paragigantocellularis lateralis; DAO, dorsal accessory olive; MR, median raphe; LC, locus coeruleus; PoO, nucleus pontis oralis; GRPo,

griseum pontis.

international cohort of prospectively collected cases. Our major
findings are as follows: (1) there is a developmental decrease
in 125I-epibatidine binding with age in 5 sites within the
rostral and mid medulla; (2) there is a decrease in 125I-
epibatidine binding in the PoO, a critical component of the
cholinergic ascending arousal system of the rostral pons, in
SIDS compared to post-KCOD controls; and (3) smoking
affected 125I-epibatidine binding in 3 rostral medullary sites
that contain 5-HT neurons and that have been shown to be
abnormal in SIDS infants when examined for the serotonin
receptor 1A (5-HT1A) (16, 49). These new prospective analyses
not only provide reproducibility of developmental changes in
cholinergic systems within the brainstem and select cholinergic
abnormalities in SIDS but also provide new insights and
hypotheses regarding mechanisms by which pre-natal exposures
may adversely affect critical medullary neurotransmitter systems
involved in cardiorespiratory functions.

125I-Epibatidine Binding in the
Brainstem—Effect of PCA on KCOD
Controls
The baseline (control) expression pattern of the nicotinic
receptors in the brainstem of humans and other species has been
studied extensively at the mRNA, protein, and receptor level via
themethods of in situ hybridization, immunohistochemistry, and

receptor-ligand binding autoradiography, respectively [reviewed
in Vivekanandarajah et al. (36)]. The relative distribution of
125I-epibatidine binding in selected human infant brainstem
sites of this study is similar in pattern to previous observations
with 3H-epibatidine binding (40), 3H-nicotine binding (19,
21, 59), and immunohistochemistry (24, 60). In this study,
we observed a significant decrease in 125I-epibatidine binding
with increasing PCA in all controls combined (pre- and post-
discharge) in the rostral medullary nuclei RO, GC, PGCL, and
DAO, mid-medullary nucleus CEN, and a marginally significant
effect of age in the PoO of the rostral pons. Given that
our KCOD controls ranged from 26 to 64 PC weeks, these
data provide information on nAChRs and epibatidine binding
prenatally through the second half of gestation and postnatally
into the first 6 months of life. The decrease in binding with
age suggests that this developmental window is a dynamic
period of cholinergic influence on brain development and
function. While a decrease in the DAO, PoO, and CEN with
age has previously been reported using either 3H-epibatidine
(DAO) (40) or 3H-nicotine (CEN, PoO) (19), a developmental
decrease in the RO, GC, and PGCL using 125I-epibatidine
as a ligand has not been shown. The RO, GC, and PGCL
nuclei of the medullary 5-HT system contain 5-HT cells and
project diffusely to other regions of the brainstem and the
spinal cord. These nuclei form part of the homeostatic network
of the rostral medulla, critically involved in cardiorespiratory
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TABLE 7 | Effects of maternal cigarette smoking on 125 I-epibatidine binding in the brainstem in SIDS and Post-KCOD.

Smoking on epibatidine—SIDS Only Smoking on epibatidine—Post-KCOD Only

N Ave. cigarettes

per week

PCA N Ave. cigarettes

per week

PCA

Beta p-value Beta p-value Beta p-value Beta p-value

Mid medulla

HG 11 0.07 0.22 −0.11 0.24 8 0.23 0.33 −0.19 0.71

DMX 11 −0.06 0.50 0.13 0.38 8 −0.01 0.93 0.22 0.48

NTS 11 −0.27 0.07 0.23 0.34 8 0.03 0.87 0.01 0.98

CEN 11 0.04 0.30 −0.19 0.02 8 0.05 0.41 −0.14 0.30

PIO 11 −0.08 0.21 0.22 0.07 8 0.23 0.34 0.06 0.91

MAO 11 −0.004 0.93 −0.12 0.21 8 0.08 0.55 −0.02 0.95

Rostral medulla

RO 11 0.05 0.18 −0.17 0.02 8 0.06 0.047 −0.21 0.01

GC 11 0.05 0.13 −0.20 0.006 8 0.09 0.10 −0.31 0.03

PGCL 11 0.05 0.10 −0.19 0.004 8 0.09 0.03 −0.19 0.04

DAO 8 −0.03 0.45 −0.06 0.44 8 0.03 0.59 −0.19 0.16

PIO 11 −0.11 0.10 0.14 0.20 8 0.12 0.17 −0.12 0.53

Rostral pons

MR 9 −0.05 0.63 0.04 0.80 6 −0.10 0.41 −0.07 0.82

LC 10 0.03 0.64 −0.11 0.30 6 −0.01 0.85 −0.16 0.31

PoO 10 0.04 0.37 −0.15 0.06 6 −0.01 0.93 −0.23 0.27

GRPO 10 0.01 0.67 −0.05 0.21 6 0.01 0.91 −0.15 0.35

Significant p (< 0.05) are bolded. Marginally significant p (> 0.05 and <0.1) are in italics. PCA, postconceptional age; Ave, average; Post-KCOD, post-discharge known cause of death;

SIDS, sudden infant death syndrome; HG, hypoglossal nucleus; DMX, dorsal motor nucleus of the vagus; NTS, nucleus of the solitary tract; CEN, centralis; PIO, principal inferior olive;

MAO, medial accessory olive; RO, raphe obscurus; GC, gigantocellularis; PGCL, paragigantocellularis lateralis; DAO, dorsal accessory olive; MR, median raphe; LC, locus coeruleus;

PoO, nucleus pontis oralis; GRPo, griseum pontis.

integration and arousal (11). Serotonergic neurons within the
nuclei mediate these homeostatic responses (11, 61, 62). Given
that serotonergic neurons in these regions express nicotinic
receptors (40) and that these serotonergic neurons are likely
undergoing developmental changes in 5-HT neurotransmission
(as determined by developmental changes in ligand binding
to general 5-HT receptor agonist 3H-LSD), particularly from
midgestation to infancy (63), developmental changes in 125I-
epibatidine binding support a dynamic and complex relationship
between the neurotransmitter systems—a relationship likely
vulnerable to dysregulation during development due to pre-
natal exposure to nicotine and inappropriate nicotinic receptor
binding at these sites. Evidence supporting the effects of nicotine
on 5-HT function is detailed below. Studies of additional
neurotransmitter systems (including 5-HT) in the PASS cohort
are warranted to address potential interrelationships between
receptor systems.

125I-Epibatidine Binding Between SIDS and
Post-KCOD Controls
In our analysis between SIDS and post-KCOD controls, we
found no difference in 125I-epibatidine binding in the SIDS
brainstem in 14 out of 15 brainstem sites. This lack of difference
is consistent with the findings of Duncan et al. (21) and
Nachmanoff et al. (19), both of which used nicotine as a ligand as

opposed to epibatidine and both of which showed no difference
in any nuclei when SIDS were compared to controls. We did,
however, find a significant decrease in SIDS compared to post-
KCOD controls in the PoO and a marginal decrease in the
LC, both nuclei of the rostral pons. The LC and PoO are
components of the extrathalamic and thalamic arousal system,
respectively, and a decrease in cholinergic neurotransmission
at these sites in SIDS infants potentially reflect an impairment
of arousal responses. With regard to sleeping/waking, the
functional significance of a nAChR deficiency in the PoO and LC
(marginally decreased) of the SIDS cases compared to controls
is unknown. However, given a postulated role of the PoO
in the generation of rapid eye movement (REM) sleep (64),
we speculate that this lesion may interfere with REM–non-
REM (NREM) sleep regulation and the generation of REM
sleep in SIDS cases with associated dysfunction in breathing
and/or heart rate. Similarly, the LC’s involvement in sleep to
wake transitions and arousal (65) further support a role for
dysfunctional sleep regulation as part of the pathogenesis of SIDS.
While the current finding of decreased binding in the PoO and
LC in SIDS differs from previous studies that found no change
at these sites, these pontine sites were previously identified
as affected by maternal smoking (19), thus supporting their
inherent vulnerability to alterations in cholinergic development
and potentially function.
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Effects of Pre-natal Exposure on
125I-Epibatidine Binding in the Infant
Brainstem
A major finding in this study is that pre-natal smoking

is associated with an increase in 125I-epibatidine binding
in SIDS and controls combined in 3 sites of the rostral

medulla after controlling for PCA—the GC, RO, and PGCL.
Additional analyses show that this significant effect is being

driven mainly by post-KCOD controls, particularly in the

RO and PGCL where smoking significantly increases 125I-
epibatidine binding in the controls but not in SIDS. Our

data of increased receptor binding in response to pre-natal
smoking are consistent with the literature (see below) and

suggests a compensatory upregulation of 125I-epibatidine-labeled

nAChRs, possibly in response to a decrease in cholinergic
activity at these sites (66, 67). Further studies on other

cholinergic markers in this dataset are necessary to address
the compensatory relationship between cholinergic markers and
nAChRs in our dataset. It is of interest that the significant
increase in 125I-epibatidine binding, seen predominately in
controls, occurred in three of the five medullary nuclei that are
significantly decreasing with age. This represents complex and
dynamic neuroplastic changes associated with both development

and exposure. The fact that the effect of exposure in the

SIDS infants was not statistically significant at these sites
suggests a lack of compensatory neuroplasticity within these
sites in SIDS. Whether the normal mechanisms shown to
be involved in upregulation of nAChRs [post-translational
receptor assembly (68), trafficking (68), cell surface expression
(68), degradation (68), and affinity alterations (69); post-
transcriptional modification by microRNAs (70)] are deficient
in SIDS is unknown; however, the potential consequences of

incomplete compensation are noteworthy.
Given that acetylcholine modulates serotonergic activity in

regulation of cardiorespiratory and homeostatic functions (71–
74), an imbalance of acetylcholine transmission (via abnormal
nicotinic and/or muscarinic receptors) in SIDS infants likely
puts them at risk for sudden death in response to homeostatic
challenges. As noted, embedded within the GC, PGCL, and RO
are 5-HT neurons. Our data showing an effect of pre-natal
smoking in these nuclei support literature reporting an effect
of pre-natal nicotine on 5-HT neuron neurotransmission in
general (67, 75–77) and directly on medullary 5-HT neurons
(78, 79). Numerous experimental and human studies [reviewed
in Vivekanandarajah et al. (36)] have shown that maternal
cigarette smoke/nicotine exposure adversely affects ventilation
(80), breathing drive (81), respiration rate (82–84), ventilatory
drive (85, 86), respiratory rhythm pattern generation (87),
and arousal responses to adverse stimuli such as hypoxia and
hypercapnia (88–91)—responses mediated in part by medullary
5-HT neurons within the RO, GC, and PGCL. It is important
to note that maternal smoking exposes a fetus to more than just
nicotine, including toxins that have been shown to have unique
neurodevelopmental effects and/or combine with nicotine to
exacerbate nicotine’s effect (66, 67). Given this, our findings are
likely not attributed to nicotine alone.

Our data on the amount of pre-natal smoke exposure
positively associated with post-natal nicotinic receptor binding
are in agreement with the experimental animal models studying
the brainstem. Animal models of chronic pre-natal exposure
have generally shown increased nAChR expression in the
infant brainstem (92–96). Maternal nicotine exposure during
pregnancy have resulted in increased nAChR binding in mouse
(97) and rhesusmonkey (93), increased nicotinic receptor mRNA
in the rat (95), and increased nAChR protein expression in
the mouse (98) at various brainstem sites. Slotkin et al. also
reported an overall increase in 125I α-bungarotoxin binding
in the brainstem that emerged in the early post-natal period
(99). Studies of human infant pre-natal exposures demonstrate
conflicting results. Our laboratory previously reported an
increase in 3H-nicotine binding in mesopontine nuclei related
to cardiorespiration (nucleus parabrachialis) and arousal (LC
and PoO) (19) and a decrease in binding in the LC nucleus,
periaqueductal gray, and the raphe dorsalis, part of the ascending
5-HT arousal system (21). Other groups have reported decreased
α7, β2 nAChR protein expression in the arcuate nucleus, XII, and
NTS (22), decreased α4 nAChR fiber staining in the cribriform
nucleus (24) in smoke-exposed infants, and increased α7 nAChR
protein expression in major brainstem sites associated with pre-
natal smoke exposure (100). The differences in the direction of
change may be attributable to the composition of the control
groups across the datasets with differing cohorts of infants who
die from varying causes, the patterns of smoking, and/or the
experimental measures, including the use of different ligands and
antibodies. Irrespective of direction (up- or downregulation due
to exposure), the specificity of change only in KCOD controls is
consistent with our other studies showing alterations in controls
but not in SIDS. Furthermore, these differences provide an
example of the complexity of human autopsy studies where,
without measurable cotinine levels, it is unclear whether the
differences are due to acute changes in circulating nicotine close
to the time of death or due to early or sustained developmental
effects of nicotine exposure in utero.

Interestingly, there was no effect of the amount of maternal
alcohol use on 125I-epibatidine binding in the brainstem. This
differs from the Aberdeen Area Infant Mortality Study (AAIMS)
showing a significant reduction in nicotinic receptor binding
with an increase in the average number of drinks per month
during pregnancy (21). It also differs from experimental studies,
both in vivo (101–103) and in vitro (104), that have shown
changes in nicotinic receptor expression following alcohol
exposure. It is possible that our continuous measure of drinks
per pregnancy is not discerning enough to detect small effects or
effects that are trimester specific. It is also possible that the size
of the cohort does not have the statistical power to detect effects
of alcohol on 125I-epibatidine. With these caveats, however, our
data do support that, in this cohort, pre-natal smoke exposure
plays a greater role in altering nicotinic receptor binding than
pre-natal alcohol exposure. Although the results of the present
study show that amount of pre-natal alcohol exposure does not
alter brainstem nicotinic receptors in infants, further studies are
warranted to investigate the effect on other neurotransmitter
systems, such as the serotonergic system.
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Other Factors of Consideration

Many of the cases (KCOD and SIDS) had some degree of
infection, either peripheral or central. In SIDS, this is consistent
with minor infection prior to death as a known risk factor
(105). The role of nAChRs, specifically the α7 subtype, in
neuroinflammation is becoming more appreciated with regard
to their function on inflammatory cells (106) and the changes
seen in α7 neuronal expression in response to some pathogens
and pathogen-specific proteins (107). While we cannot rule
out a possible effect of inflammation on our data, given that
epibatidine binds the α4β2 nAChR subtype with a much
greater affinity than the α7 nAChR subtype (108), an effect
of inflammatory-associated influence on α7 nAChR is likely
to be minimal. Post-natal exposure to cigarette smoke is
another potential consideration (22) as is the effects of pre-
natal exposure to cannabinoids (109) from marijuana and
methamphetamine (110). Given the relatively small number
of cases across SIDS and KCOD controls reportedly exposed
postnatally to cigarette smoke (n = 5) and prenatally to
marijuana and/or methamphetamine (n = 4), we did not assess
their influence on our data. Larger datasets with quantitative
measures of these exposures are necessary to separate out
an independent or potentially synergistic influence of these
exposures on nAChR binding. Finally, intermittent episodes
of hypoxia either prenatally or postnatally have been proposed
in the pathogenesis of SIDS (61). While we have no means
to identify or quantitate hypoxic events in our cases, the
potential influence of hypoxia on nAChR expression should be
noted (111–113).

Limitations of the Study
Amajor limitation of this study is the relatively small sample size.
The validity of results is supported, however, by their general
consistency with previously reported data in other cohorts and
animal models. A second limitation of this study is the fact
that all SIDS, nearly all post-KCOD controls (90%), and all pre-
KCOD controls were exposed to pre-natal smoking to some
degree, thus making it difficult to detect differences in binding
between SIDS and post-KCOD controls controlling for exposure.
Despite this, the continuous values measuring pre-natal exposure
to smoking enabled us to determine the association between
the amount of exposure and nicotinic receptor binding and the
developmental trajectory of nicotinic receptor binding with age.
A third limitation is that the autopsied control infants were not
representative of living controls. This limitation is not specific to
the Safe Passage Study but is inherent in all autopsy case/control
studies. Another limitation of the study is that there was no
experimental verification of the biological concentration of pre-
natal exposure in the infant’s system. The pre-natal exposures
related to smoking and alcohol was based on the mother’s self-
report of her consumption without verification with biomarkers
such as cotinine measurements for smoke exposure and ethanol
metabolites for alcohol exposure in infant blood. Finally, the
selected radioligand 125I-epibatidine binds with most, but not
optimally, or with all nicotinic receptor subtypes. Additional

analysis of and comparison between 125I-bungarotoxin and 3H-
nicotine would allow for a more comprehensive analysis of
nAChRs in the brainstem (114, 115).

CONCLUSIONS

In summary, our data confirmed our hypothesis that nAChR
binding is abnormal in SIDS infants compared to infants dying of
known causes. Although significant difference was only detected
in one nucleus, the PoO, this abnormality represents a deficit in
an arousal system that likely places an infant at risk for SIDS. The
fact that deficiencies were only found in one nucleus supports
that other neurotransmitters, including 5-HT, may be more
affected in SIDS in this database. Relevant to pre-natal exposures,
our data support that SIDS infants are not properly responding
to or compensating for an effect of pre-natal nicotine exposure
by increasing nicotinic receptors. This deficiency, especially in
medullary nuclei containing 5-HT neurons, could hinder a
normal adaptive/neuroplastic mechanism in SIDS that extends
into the post-natal period and decreases the effectiveness of
homeostatic responses. Our data showing an effect of pre-natal
smoking in medullary nuclei containing 5-HT neurons support
the vulnerability of these sites, previously identified as abnormal
in SIDS by serotonergic measures, to adverse developmental
exposures. The vulnerability is likely heightened during the first
year of life when post-natal developmental changes in 5-HT and
acetylcholine systems converge. In the Safe Passage Study, we
recently reported a synergistic effect of maternal smoking and
drinking on SIDS risk—an effect greater than either exposure
alone (33). The results reported here showing no effect of
maternal drinking on nAChRs suggest that the neuropathological
basis for this combined exposure likely involves other systems,
including other neurotransmitter systems within the brain.
Overall, our results contribute to the wealth of other data, human
and animal, supporting the evidence for the adverse effects of
pre-natal exposures on a developing fetus, effects that persist into
post-natal life, including the period of risk for SIDS.
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AUTHOR’S NOTE

The authors of this manuscript from the Safe Passage Study
would like to dedicate it to a belovedmember of our group, Johan
Dempers, who died of COVID-19 days before this manuscript
was accepted for publication. Johan Dempers served on the
front lines as the Head of Forensic Medicine at the Western
Cape Forensic Pathology Service, Tygerberg, and the Faculty of
Medicine and Health Sciences of Stellenbosch University in Cape
Town, South Africa.

The Safe Passage Study could not have been completed
without Johan’s leadership and grasp of the impact of infant
mortality on his community. He was motivated to pursue SIDS
research by a love of children, having two beautiful children of
his own. He was passionate about finding the cause of SIDS,
especially among disenfranchised groups in South Africa. He
was described by many as larger than life, with wide and varied
interests, including reading Shakespeare, playing drums in a band
(with his daughter as singer and bass guitar) and traveling the
world with his beloved family: his wife Karen, daughter Mieneke,
and son Daniël. He was proud of his Afrikaans language and
heritage and his country, acknowledging its faults of the past
to assure a better and more educated tomorrow. He was a
wise and enthusiastic scholar and teacher of forensic medicine,
a man who loved life and held it sacred in the most difficult
settings, including the tragedy of infant death. He took on
some of the most challenging, hardened and complex cases in
the courtroom with an unshakeable sense of fairness and both
academic knowledge and experience to guide the legal profession.
He was never without a smile, a word of encouragement, a
hearty laugh and the ability to relate to all. His kindness and
philanthropy were constant and personal—assisting a friend or
stranger just because he could meet a need. We were privileged
to know him and to work with him. He became a friend to us
all, without exception, and we will greatly miss his joyful and
all-inclusive ways.
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