
ARTICLE OPEN

Combing machine learning and elemental profiling for
geographical authentication of Chinese Geographical
Indication (GI) rice
Fei Xu1,3, Fanzhou Kong1,3, Hong Peng 1✉, Shuofei Dong2, Weiyu Gao1 and Guangtao Zhang1

Identification of geographical origin is of great importance for protecting the authenticity of valuable agri-food products with
designated origins. In this study, a robust and accurate analytical method that could authenticate the geographical origin of
Geographical Indication (GI) products was developed. The method was based on elemental profiling using inductively coupled
plasma mass spectrometry (ICP-MS) in combination with machine learning techniques for model building and feature selection. The
method successfully predicted and classified six varieties of Chinese GI rice. The elemental profiles of 131 rice samples were
determined, and two machine learning algorithms were implemented, support vector machines (SVM) and random forest (RF),
together with the feature selection algorithm Relief. Prediction accuracy of 100% was achieved by both Relief-SVM and Relief-RF
models, using only four elements (Al, B, Rb, and Na). The methodology and knowledge from this study could be used to develop
reliable methods for tracing geographical origins and controlling fraudulent labeling of diverse high-value agri-food products.
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INTRODUCTION
Identification of geographical origins of agri-food products is an
indispensable first step of the food traceability system, serving as a
key to ensuring food quality and safety1,2. The concept of
geographical indication (GI) first originated during the 19th
century in Europe, with the aim of protecting industrial property
rights3. Nowadays, GI certification has been widely applied to
recognize products that possess given quality, reputation, or other
characteristics associated with their geographical origins4. The
European Union enforces the scheme of Protected Geographical
Indication as part of its food quality policy, while in China three
government sectors supervise and protect different aspects of GIs
at the administrative level5. These include the State Administration
for Industry and Commerce / the Trademark Office, the General
Administration of Quality Supervision, Inspection and Quarantine,
and the Ministry of Agriculture. Nevertheless, GI products are still
frequently mislabeled and adulterated6,7 due to the lack of
effective analytical methods for ensuring the proper deployment
of regulations and monitors8,9.
A number of analytical techniques have been proposed for

verifying the geographical origins of agri-food products, includ-
ing elemental profiling10, stable isotope analysis11, metabolomic
fingerprinting12,13, and DNA barcoding14. Elemental profiling in
combination with multivariate analysis (MVA) has attracted the
most attention and has been vigorously developed in recent
years15. The elemental profiles of agri-food products provide
valuable evidence of their geographical origins by reflecting
topography and soil characteristics16. MVA has generally been
used to process and integrate large datasets. Principal compo-
nent analysis (PCA) and discriminant analysis (and its variants)
are the two dominant methods in MVA, because of their
simplicity in spotting hidden trends embedded in the dataset
and their wide availability in commercial analytical software17.
However, these methods rely on the assumption of a linear

relationship between variables to perform well. This could result
in inferior prediction performance in real-world scenarios, where
sophisticated and nonlinear relationships between predictors are
prevalent18. In the past decade, an alternative approach using
machine learning techniques has proven successful in various
research areas19,20. These techniques handle large datasets very
efficiently and can be implemented easily on open-source
platforms21,22. Machine learning techniques have superior
predictive performance than conventional MVA methods, due
to their greater robustness for handling complex relationships
within the dataset23. Moreover, the reliability and validity of
predictive models were significantly improved when they were
built with machine learning techniques24.
Rice (Oryza sativa L.) is among the world’s three largest food

crops and is a staple food for nearly 50% of the world population.
China is the leading paddy rice grower globally, producing 220
million metric tons in 201825. Domestic demand for rice with
traceable origins is growing with the improvement in living
standards. However, Chinese GI rice has become more and more
vulnerable to adulteration due to the gap between limited
production and high market demand. A scandal in 2010 occurred
when ten times more Wuchang rice (a Chinese GI rice) was sold on
the market than was produced26. Development of a robust and
accurate method that can be applied to authenticate the
geographical origins of Chinese GI rice will be of great value for
protecting the rights and financial interests of farmers, retailers,
and consumers.
Elemental profiling has become used more widely to authenti-

cate the geographical origins of premium high-value rice to
combat commercial fraud and deliberate mislabeling27. However,
only a few studies have employed machine learning techniques
and no studies have been made in Chinese rice to date. In this
study, a new method was developed for tracing the geographical
origin of Chinese GI rice using elemental profiling and machine
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learning techniques. The method could be useful for managing
fraudulent labeling of Chinese GI rice in the market, with potential
broader application in other GI products.

RESULTS AND DISCUSSION
Concentrations of elements
The measured concentrations of elements in the SRM 1568b
agreed well with the certified values (recovery ranged from 80.8%
to 102.3%), indicating the high accuracy of the ICP-MS analysis
(Table S1). The PCA analysis of the 12 elements measured in both
the rice samples and SRM 1568b samples is shown in Fig. S1. The
SRM 1568b samples closely clustered together, demonstrating a
good reproducibility of analysis. Results from the analysis of the 30
elements in the 131 Chinese GI rice samples are shown in Table
S2. Significant differences were observed among all elements
across all types of rice (p < 0.01), except for Pb (p > 0.05). However,
these differences were too intricate to clearly indicate which
element(s) may contribute the most to the differentiation among
six types of GI rice.

PCA
The 1st and 2nd principal components (PCs) together accounted
for 60.7% of the total variance, and a clear separation was
observed among PJ-1, GG, and the other types of GI rice (Fig. 1a).
No satisfactory separation was achieved for JS, PJ-2, SY, and WC.
The loading plot (Fig. 1b) showed that Al, Ga, Nb, V, and Ti
primarily contributed to the variations in PC1, while Na, Sc, Rb, Cs,
and Cd contributed to both PC1 and PC2. Notably, PJ-1 and PJ-2
could be clearly separated, despite their common geographical
origin (Fig. 1a).

Identification of geographical origins
High-quality sampling is fundamental for achieving reliable
results from multivariate modeling28. In this study, we collected

all the rice samples from rice processing factories rather than
sampling from a market, which ensured the authenticity of
samples and minimized the risk of modeling with a “contami-
nated” dataset. In addition, relatively equal quantities of each
variety of rice were collected to provide a balanced dataset, thus
preventing the risk of misclassification due to modeling with an
imbalanced dataset20,29.
Machine learning refers to a collection of algorithms that are

capable of constructing prediction models by acquiring and
integrating knowledge from large datasets, as well as further
improving these models by automatically learning from new
knowledge30. Machine learning techniques have been applied
widely in various research fields, and also show great potential for
food traceability31. In this study, two widely used supervised
classification algorithms, SVM and RF, were implemented for the
origin identification of Chinese GI rice based on elemental
profiles. In addition, feature selection was applied for model
optimization by reducing data dimensions, which is also capable
of identifying features with high predictability (also known as
biomarkers)32. The results of the model training are shown below
(Fig. 2 and Fig. S2). The results of feature selection based on the
relative importance of each of the 30 elements indicated that Al,
B, Rb, Na, and Sr were the main elements that contributed to the
differentiation of all types of GI rice (Fig. 2a). This is consistent
with the observations in a previous study, where feature selection
was also applied and 4 elements (Cd, Rb, Mg, and K) out of 21
evaluated were found to be the most relevant for the
differentiation between rice samples from two geographical
origins29. The performance of both RF and SVM models improved
significantly as more features were added, including accuracy
(Fig. 2b) and specificity and selectivity (Fig. S2). The mean cross-
validation accuracies for RF and SVM were 48% and 63%,
respectively with one feature (Al), both reached 100% when four
features (Al, B, Rb, and Na) were included. The optimal classifiers
were determined as four features with corresponding optimum
hyperparameters (max_depth= 26, max_features= ‘auto’, n_esti-
mators= 500 for Relief-RF; ‘linear’ kernel with C value= 1 for

Fig. 1 PCA analysis of the 30 elements measured in the 131 Chinese GI rice samples. a Scoring plot of PC1 and PC2, with 95% confidence
interval eclipse. b Loading plot of all features projected on the first two PCs.
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Relief-SVM). Feature selection was applied solely to the training
set and not to the entire dataset, which eliminated the risk of
selection bias33.
Cross-validation using a training set can assess the goodness of

fit of a particular model. However, independent validation using a
separate data set is critical to ultimately evaluate prediction
performance, as it incorporates the future working situation34,35.
Independent validation was conducted in this study using the
testing set (Table 1). Both classifiers (Relief-RF and Relief-SVM) could
predict the geographical origins of all types of rice with 100%
accuracy. The results demonstrated the capability of the machine
learning-based method established in this study, especially in
constructing reliable predictive models, while simultaneously
identifying potential biomarkers accounting for the differentiation.

Radar plot analysis
The differentiation power of the four features is visualized in the
plot of relative median concentrations (Fig. 3). The elemental
profile of each GI rice was significantly different. It is noteworthy
that the concentration of Al was highest in PJ-1 and lowest in PJ-2,
even though PJ-1 and PJ-2 were sampled from the same
geographical location. In addition, the other three elements were
present in considerably different proportions in PJ-1 and PJ-2.
These observations agreed with previous findings that cultivar
types also play a significant role in the composition of elements in
rice kernels36,37. The significant difference of Al concentrations
between PJ-1 and PJ-2 indicated that the genotype of rice could
contribute more to the variation of Al in rice, comparing with
geographic region. It remains a challenge to elucidate why the

Fig. 2 Feature ranking by Relief algorithm and model optimization with cross-validation. a Relative importance of each feature based on
Relief. b Cross-validation accuracy of classification models built with different numbers of features.

Table 1. Confusion matrix for the independent validation using the testing set.

Classifier Predicted Reference Overall accuracy

GG (n= 4) JS (n= 4) PJ-1 (n= 7) PJ-2 (n= 4) SY (n= 4) WC (n= 4)

Relief-RF GG 4 0 0 0 0 0 100%

JS 0 4 0 0 0 0

PJ-1 0 0 7 0 0 0

PJ-2 0 0 0 4 0 0

SY 0 0 0 0 4 0

WC 0 0 0 0 0 4

Relief-SVM GG 4 0 0 0 0 0 100%

JS 0 4 0 0 0 0

PJ-1 0 0 7 0 0 0

PJ-2 0 0 0 4 0 0

SY 0 0 0 0 4 0

WC 0 0 0 0 0 4
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four elements showed such strong differentiation power, as the
sample set used in this study was diverse and complex. The
samples were from the three dominant rice-producing regions of
China, including the northeast China plain (WC, PJ-1, and PJ-2),
Yangtze River Basin (SY, JS), and southeast coastal region (GG).
Such geographically wide sampling introduced multiple variables,
including soil characteristics, agricultural practices, and genotype
variations, all of which could affect the elemental profile of
crops38,39. Similar findings have been reported by Qian et al.40 in a
study on the determination of the geographical origin of
Wuchang rice (one type of Chinese GI rice) using elemental
profiling. Likewise, elements of Na, Al, and Rb were identified with
significant differences among various geographic origins and were
applied to establish the discrimination model where all the
Wuchang rice samples were successfully separated from the other
rice samples. Moreover, the genotype variation was also demon-
strated as Cu showed significant differences among samples of
different genotypes.
A study on Brazilian rice29 reported that Cd only could

differentiate rice samples from two geographical origins, and it
was the difference in irrigation methods that resulted in the
variance of Cd content. Cadmium was detected in all six types of
Chinese GI rice, with the highest concentration in GG from
Guangxi province (Table S2). A previous national-scale study
reported that the concentrations of Cd in paddy soils varied
significantly in different regions of China, and were higher in
southeast coastal regions such as Guangxi province41. The
feasibility of using only Cd to differentiate between GG and
non-GG rice samples was also evaluated in this study. The original
dataset was regrouped as GG and non-GG, and the developed
machine learning-based workflow was applied. The result of
feature selection indicated that Cd was the element with the
highest relative importance, and the prediction accuracy of 100%
was achieved using Cd alone, by both Relief-SVM and Relief-RF
models. These results again demonstrated the effectiveness of the
developed machine learning-based method, which is valid not
only for the discrimination of multiple varieties but also for the
differentiation of relatively fewer varieties using the least number
of features, with the potential of greatly improving working
efficiency and productivity.
In conclusion, a reliable method for tracing the geographical

origins of Chinese GI rice was successfully developed using
machine learning models built with multielement fingerprints. A
series of predictive models were established, serving various
purposes. Two predictive models were established for the

classification of six GI varieties simultaneously, and 100%
prediction accuracy was achieved with a feature set of four
elements. Another set of models successfully discriminated one GI
variety from others, with Cd identified as the predictor with the
most discriminatory power. A comprehensive workflow for
machine learning modeling has been provided and all important
factors for building reliable classification models have been
discussed. This method provides a basis for others to develop
fit-for-purpose methods for tracing origins of other valuable agri-
food products with designated origins, as well as discovering key
elemental biomarkers associated with their geographical
locations.

METHODS
Sample collection
One hundred and thirty-one Chinese GI rice samples with six GI varieties
were directly collected from rice processing factories in five provinces in
China, including Heilongjiang and Liaoning [two sample sets] in the
northeastern production area, Jiangsu in the eastern production area,
Hubei in the mid-southern production area and Guangxi in the south-
eastern production area. These are labeled as WC, PJ-1, PJ-2, SY, JS, and GG,
respectively, in the remainder of this manuscript. Sample numbers
obtained from each region are as follows: WC (n= 20), PJ-1 (n= 35), PJ-
2 (n= 20), SY (n= 20), JS (n= 20), and GG (n= 16).

Reagents and standards
Nitric acid (69%, part# 100441) was purchased from Merck Millipore
(Darmstadt, Ger-many). Deionized water (DIW, 18.2MΩ·cm) was obtained
from a Milli-Q system (Millipore, MA, USA). Multi-element calibration
standard 2A (part# 8500-6940) and 4 (part# 8500-6942), environmental
calibration standard (part# 5183-4688), and standard solutions of scandium
(Sc, part# 5190-8578) and rhodium (Rh, part# 8500-6945) were purchased
from Agilent Technologies (Santa Clara, CA, USA). The Standard Reference
Material (SRM) of rice flour (1568b) was purchased from the National
Institute of Standards and Technology (NIST, Gaithersburg, MD, USA).

ICP-MS analysis
Rice samples were pre-processed and acid digested according to the
method recently published42. A portion of 0.5 g of rice grains was weighed
in a polytetrafluoroethylene (PTFE) digestion vessel and mixed with 6 mL
of nitric acid. The vessel was placed in a fume hood overnight for pre-
digestion and then transferred into the microwave oven (Anton Paar,
Austria) for acid digestion. The digestion temperature of 180 °C was
gradually reached in 15min and held for 20min. Then the solution was
cooled to room temperature and diluted to 50mL with DIW. Before usage,

Fig. 3 Radar plot of the relative median concentrations for the four features (Al, B, Rb, and Na) in the six types of Chinese GI rice. The
graph displays differences in elemental patterns among geographical origins. Each subgraph corresponds to a different GI variety.
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all materials including the digestion vessels were soaked in a 30% (v/v)
nitric acid solution for 24 h and rinsed with DIW three times to avoid cross-
contamination.
The concentrations of 30 elements (B, Na, Mg, Al, K, Ca, Sc, Ti, V, Cr, Mn,

Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Rb, Sr, Nb, Mo, Ag, Cd, Cs, Ba, Hg, and Pb)
were measured using an Agilent 7900 ICP-MS (Agilent Technologies, Santa
Clara, CA, USA). The instrumental setting and operating conditions were
adopted from a previously published method43 with some modifications.
In brief, only helium tune mode was used, and the plasma parameters
were as follows: radio frequency power 1550W; sampling depth 8mm;
carrier gas flow (Argon) 1.16 L·min−1; cell gas (helium) flow 5.0 mL·min−1.
The calibration solution was prepared by mixing and diluting the standards
mentioned in the previous section (except for Rh). A diluted Rh standard
solution (1 mg·L−1) was used as the internal standard to correct matrix
effects and to compensate for possible instrument deviations. It was mixed
with the sample stream using a tee joint. The accuracy and reproducibility
of analysis were verified by analyzing the rice flour SRM 1568b once every
ten samples. Each rice sample was analyzed in duplicate.

Statistical analysis
One-way analysis of variance (ANOVA) coupled with Tukey’s test (p < 0.05)
was used for preliminary analysis of the concentration of the 30 elements
in each GI rice. The dataset was then scaled through logarithmic
transformation and subjected to unsupervised PCA for the initial
visualization of data distribution. Subsequently, the dataset was used to
construct predictive models with machine learning algorithms.

Machine learning modeling
Two machine learning algorithms, RF and SVM, were implemented to
construct predictive models. RF is an ensemble of decision trees that are
generated from the original dataset using bootstrap partition44. SVM
implements classifications by projecting input vectors into a high
dimensional space, thus finding a hyperplane that could separate
different classes45. Feature selection is a data mining technique, aiming
to identify pertinent features, as well as optimize predictive models,
through discarding irrelevant ones that are not informative but contribute
to the overall dimensionality of the problem space46. In our study, the
Relief algorithm was utilized to select features through investigating their
relative importance based on a calculated proxy statistic47. Specifically,
we have proposed a machine learning-based workflow for unbiased
feature selection, model construction, and performance evaluation (below
and Fig. 4).

1. The scaled dataset was randomly split into a training set (n= 104)
and a testing set (n= 27) in a stratified fashion (80:20).

2. Feature selection was applied to the training set and all the 30
features were ranked based on their differentiation power.
Subsequently, stepwise forward selection48 was conducted along
with hyperparameter tuning (grid-search). After 10-fold cross-
validation, the best combinations of feature subsets and hyperpara-
meters were used to construct optimal classifiers. The tested
hyperparameters can be found in Table S3.

3. The optimal classifiers were then independently validated on the
testing set, and their prediction accuracies were determined.

All statistical analyses and model development were carried out on R
version 3.5.1 (packages factoextra49, tidyverse50, and agricolae51) and
Python version 3.7 (packages skearn52 and skrebate53).

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The authors declare that all relevant data supporting this study has been included in
the paper and supplementary materials; raw data will be available from the
corresponding author upon reasonable request.

CODE AVAILABILITY
The source code used in this manuscript can be found in the GitHub repository upon
request: https://github.com/lancelot0821/Special_issue_rice_authenticity.

Received: 5 February 2021; Accepted: 24 May 2021;

REFERENCES
1. Özbay, S. & Şireli, U. Determination tools of origin in the food traceability. J. Food

Health Sci. 2, 140–146 (2016).
2. Katerinopoulou, K., Kontogeorgos, A., Salmas, C. E., Patakas, A. & Ladavos, A.

Geographical origin authentication of agri-food products: a review. Foods 9, 489
(2020).

3. World Intellectual Property Organization. Summary of the Paris Convention for the
Protection of Industrial Property. Retrieved from https://www.wipo.int/treaties/en/
ip/paris/summary_paris.html (1883).

4. Luykx, D. M. A. M. & Ruth, S. M. V. An overview of analytical methods for
determining the geographical origin of food products. Food Chem. 107, 897–911
(2008).

5. Li, Y. Protection of Geographical Indications in China. https://www.niuyie.com/
protection-of-geographical-indications-in-china (2017).

6. Jacquet, J. L. & Pauly, D. Trade secrets: renaming and mislabeling of seafood. Mar.
Policy 32, 309–318 (2008).

7. Rodriguez, L., Li, J. & Sar, S. Social trust and risk knowledge, perception and
behaviours resulting from a rice tampering scandal. Int. J. Food Saf. 5, 80–96
(2014).

8. Badia-Melis, R., Mishra, P. & Ruiz-García, L. Food traceability: new trends and
recent advances. A review. Food Control 57, 393–401 (2015).

9. Tang, Q. et al. Food traceability systems in China: the current status of and future
perspectives on food supply chain databases, legal support, and technological
research and support for food safety regulation. Biosci. Trends 9, 7–15 (2015).

10. De Nadai Fernandes, E. A. et al. Trace elements and machine learning for Brazilian
beef traceability. Food Chem. 333, 127462–127462 (2020).

11. Wu, Y. et al. Geographical origin of cereal grains based on element analyser-stable
isotope ratio mass spectrometry (EA-SIRMS). Food Chem. 174, 553–557 (2015).

12. Ch, R. et al. Metabolomic fingerprinting of volatile organic compounds for the
geographical discrimination of rice samples from China, Vietnam and India. Food
Chem. 334, 127553 (2021).

13. Fernandes, S. et al. Typicality assessment of onions (Allium cepa) from different
geographical regions based on the volatile signature and chemometric tools.
Foods 9, 375 (2020).

14. Barcaccia, G., Lucchin, M. & Cassandro, M. DNA barcoding as a molecular tool to
track down mislabeling and food piracy. Diversity 8, 2 (2016).

15. Cheajesadagul, P., Arnaudguilhem, C., Shiowatana, J., Siripinyanond, A. & Szpunar,
J. Discrimination of geographical origin of rice based on multi-element finger-
printing by high resolution inductively coupled plasma mass spectrometry. Food
Chem. 141, 3504–3509 (2013).

Fig. 4 Diagram of the proposed machine learning-based work-
flow. The flowchart describes the entire process of the developed
machine learning-based data processing workflow, including all
important factors of the data partition, feature selection, hyperpara-
meter tuning, and model validation. The steps for model training
and model validation are outlined in boxes with blue and red
dashed lines, respectively.

F. Xu et al.

5

Published in partnership with Beijing Technology and Business University npj Science of Food (2021)    18 

https://github.com/lancelot0821/Special_issue_rice_authenticity
https://www.wipo.int/treaties/en/ip/paris/summary_paris.html
https://www.wipo.int/treaties/en/ip/paris/summary_paris.html
https://www.niuyie.com/protection-of-geographical-indications-in-china
https://www.niuyie.com/protection-of-geographical-indications-in-china


16. Kukusamude, C. & Kongsri, S. Elemental and isotopic profiling of Thai jasmine rice
(Khao Dawk Mali 105) for discrimination of geographical origins in Thung Kula
Rong Hai area, Thailand. Food Control 91, 357–364 (2018).

17. D’Archivio, A. A. et al. Geographical discrimination of red garlic (Allium sativum L.)
produced in Italy by means of multivariate statistical analysis of ICP-OES data.
Food Chem. 275, 333–338 (2019).

18. Reid, C. E. et al. Spatiotemporal prediction of fine particulate matter during the
2008 Northern California wildfires using machine learning. Environ. Sci. Technol.
49, 3887–3896 (2015).

19. Cutler, D. et al. Random forests for classification in ecology. Ecology 88,
2783–2792 (2007).

20. Wei, Q. & Dunbrack, R. L. Jr The role of balanced training and testing data sets for
binary classifiers in bioinformatics. PLoS ONE 8, 1–12 (2013).

21. Jiménez-Carvelo, A. M., González-Casado, A., Bagur-González, M. G. & Cuadros-
Rodríguez, L. Alternative data mining/machine learning methods for the analy-
tical evaluation of food quality and authenticity–a review. Food Res. Int. 122,
25–39 (2019).

22. Wuest, T., Weimer, D., Irgens, C. & Thoben, K.-D. Machine learning in manufacturing:
advantages, challenges, and applications. Prod. Manuf. Res. 4, 23–45 (2016).

23. Gromski, P. S. et al. A comparison of different chemometrics approaches for the
robust classification of electronic nose data. Anal. Bioanal. Chem. 406, 7581–7590
(2014).

24. Teye, E., Huang, X., Dai, H. & Chen, Q. Rapid differentiation of Ghana cocoa beans
by FT-NIR spectroscopy coupled with multivariate classification. Spectrochim. Acta
A. 114, 183–189 (2013).

25. Shahbandeh, M. Paddy Rice Production Worldwide 2017-2018, by Country. https://
www.statista.com/statistics/255937/leading-rice-producers-worldwide (2020).

26. Rodriguez, L., Hall, B., Avenue, S. G., Hall, G. & Street, S. W. Social trust and risk
knowledge, perception and behaviours resulting from a rice tampering scandal.
Int. J. Food Saf. 5, 80–96 (2014).

27. Berriel, V., Barreto, P. & Perdomo, C. Characterisation of Uruguayan honeys by
multi-elemental analyses as a basis to assess their geographical origin. Foods 8,
24 (2019).

28. Brereton, R. G. et al. Chemometrics in analytical chemistry—part I: history,
experimental design and data analysis tools. Anal. Bioanal. Chem. 409, 5891–5899
(2017).

29. Maione, C., Batista, B. L., Campiglia, A. D., Barbosa, F. & Barbosa, R. M. Classification
of geographic origin of rice by data mining and inductively coupled plasma mass
spectrometry. Comput. Electron. Agric. 121, 101–107 (2016).

30. Woolf, B. P. Building Intelligent Interactive Tutors (ed. Beverly P.W.) 221–297
(Morgan Kaufmann, Burlington, 2009).

31. Qi, J. et al. Geographic origin discrimination of pork from different Chinese
regions using mineral elements analysis assisted by machine learning techniques.
Food Chem. 337, 127779 (2021).

32. Grissa, D. et al. Feature selection methods for early predictive biomarker dis-
covery using untargeted metabolomic data. Front. Mol. Biosci. 3, 30–30 (2016).

33. Krawczuk, J. & Łukaszuk, T. The feature selection bias problem in relation to high-
dimensional gene data. Artif. Intell. Med. 66, 63–71 (2016).

34. Esbensen, K. H. & Geladi, P. Principles of proper validation: use and abuse of re-
sampling for validation. J. Chemom. 24, 168–187 (2010).

35. Gao, B. et al. Opportunities and challenges using non-targeted methods for food
fraud detection. J. Agric. Food Chem. 67, 8425–8430 (2019).

36. Li, Z., Li, L., Pan, G. & Chen, J. Bioavailability of Cd in a soil-rice system in China: soil
type versus genotype effects. Plant Soil. 271, 165–173 (2005).

37. Wang-da, C., Guo-ping, Z., Hai-gen, Y., Wei, W. & Min, X. Genotypic and envir-
onmental variation in cadmium, chromium, arsenic, nickel, and lead concentra-
tions in rice grains. J. Zhejiang Univ. Sci. B. 7, 565–571 (2006).

38. Chung, I. M. et al. Geographic authentication of Asian rice (Oryza sativa L.) using
multi-elemental and stable isotopic data combined with multivariate analysis.
Food Chem. 240, 840–849 (2018).

39. Zhang, Y. et al. Mineral element concentrations in grains of Chinese wheat cul-
tivars. Euphytica 174, 303–313 (2010).

40. Qian, L. et al. Determination of geographical origin of wuchang rice with the geo-
graphical indicator by multielement analysis. J. Food Qual. 2019, 8396865 (2019).

41. Liu, X., Tian, G., Jiang, D., Zhang, C. & Kong, L. Cadmium (Cd) distribution and
contamination in Chinese paddy soils on national scale. Environ. Sci. Pollut. Res.
23, 17941–17952 (2016).

42. McGrath, T. F. et al. Food fingerprinting: using a two-tiered approach to monitor
and mitigate food fraud in rice. J. AOAC Int. 104, 16–28 (2021).

43. Hopfer, H., Nelson, J., Collins, T. S., Heymann, H. & Ebeler, S. E. The combined
impact of vineyard origin and processing winery on the elemental profile of red
wines. Food Chem. 172, 486–496 (2015).

44. Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).
45. Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297 (1995).
46. Rudnicki, W., Wrzesień, M. & Paja, W. All relevant feature selection methods and

applications. Stud. Comput. Intell. 584, 11–28 (2015).
47. Urbanowicz, R. J., Olson, R. S., Schmitt, P., Meeker, M. & Moore, J. H. Benchmarking

relief-based feature selection methods for bioinformatics data mining. J. Biomed.
Inform. 85, 168–188 (2018).

48. Heinze, G., Wallisch, C. & Dunkler, D. Variable selection-a review and recom-
mendations for the practicing statistician. Biom. J. 60, 431–449 (2018).

49. Mundt, A. K. & Fabian. Factoextra: Extract and Visualize the Results of Multivariate
Data Analyses. https://cran.r-project.org/web/packages/factoextra/index.html
(2017).

50. Wickham, H. et al. Welcome to the Tidyverse. J. Open Source Softw. 4, 1686 (2019).
51. Mendiburu, F. & Simon, R. Agricolae: Statistical Procedures for Agricultural Research.

https://CRAN.R-project.org/package=agricolae (2020).
52. Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res.

12, 2825–2830 (2011).
53. Urbanowicz, R., Meeker, M., LaCava, W., Olson, R. & Moore, J. Relief-based feature

selection: introduction and review. J. Biomed. Inform. 85, 189–203 (2017).

ACKNOWLEDGEMENTS
The authors would like to thank Mars Incorporated and Agilent Foundation for
funding the work. The authors want to thank Di Wu from the Yangtze Delta Region
Institute of Tsinghua University for his tremendous support on sampling. The authors
also thank Si Lin and Hongwei Qiao for their industrious work on experimentation
and documentation.

AUTHOR CONTRIBUTIONS
Conceptualization and funding acquisition (G.Z.); supervision and project adminis-
tration (H.P. and G.Z.); methodology (F.X., S.D., and W.G.); software, validation, formal
analysis, data curation, visualization (F.K. and F.X.); investigation (F.X. and W.G.);
resources (F.X.); writing—original draft preparation (F.K., F.X., and S.D.); writing—
review and editing (F.K., F.X., H.P., and G.Z.). F.X. and F.K equally contributed to this
study as the co-first authors. All authors have read and agreed to the published
version of the manuscript.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41538-021-00100-8.

Correspondence and requests for materials should be addressed to H.P.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

F. Xu et al.

6

npj Science of Food (2021)    18 Published in partnership with Beijing Technology and Business University

https://www.statista.com/statistics/255937/leading-rice-producers-worldwide
https://www.statista.com/statistics/255937/leading-rice-producers-worldwide
https://cran.r-project.org/web/packages/factoextra/index.html
https://CRAN.R-project.org/package=agricolae
https://doi.org/10.1038/s41538-021-00100-8
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Combing machine learning and elemental profiling for geographical authentication of Chinese Geographical Indication (GI) rice
	Introduction
	Results and discussion
	Concentrations of elements
	PCA
	Identification of geographical origins
	Radar plot analysis

	Methods
	Sample collection
	Reagents and standards
	ICP-MS analysis
	Statistical analysis
	Machine learning modeling
	Reporting summary

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




