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1 | INTRODUCTION

Coronavirus (CoV) is a single-stranded positive-sense RNA virus

in the order Nidovirales, family Coronaviridae. Based on genetic
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Abstract

Since first identified in December of 2019, COVID-19 has been quickly spreading
to the world in few months and COVID-19 cases are still undergoing rapid surge in
most countries worldwide. The causative agent, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), adapts and evolves rapidly in nature. With the avail-
ability of 16,092 SARS-CoV-2 full genomes in GISAID as of 13 May, we removed the
poor-quality genomes and performed mutational profiling analysis for the remaining
11,183 viral genomes. Global analysis of all sequences identified all single nucleotide
polymorphisms (SNPs) across the whole genome and critical SNPs with high mutation
frequency that contributes to five-clade classification of global strains. A total of 119
SNPs were found with 74 non-synonymous mutations, 43 synonymous mutations
and two mutations in intergenic regions. Analysis of geographic pattern of muta-
tional profiling for the whole genome reveals differences between each continent.
A transition mutation from C to T represents the most mutation types across the
genome, suggesting rapid evolution and adaptation of the virus in host. Amino acid
(AA) deletions and insertions found across the genome results in changes in viral
protein length and potential function alteration. Mutational profiling for each gene
was analysed, and results show that nucleocapsid gene demonstrates the highest
mutational frequency, followed by Nsp2, Nsp3 and Spike gene. We further focused
on non-synonymous mutational distributions on four key viral proteins, spike with
75 mutations, RNA-dependent-RNA-polymerase with 41 mutations, 3C-like protease
with 22 mutations and Papain-like protease with 10 mutations. Results show that
non-synonymous mutations on critical sites of these four proteins pose great chal-
lenge for development of anti-viral drugs and other countering measures. Overall,
this study provides more understanding of genetic diversity/variability of SARS-

CoV-2 and insights for development of anti-viral therapeutics.

KEYWORDS
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characterization, CoVs are classified into four genera, «, B, y and &
(Fehr & Perlman, 2015). There are seven known human coronavi-
ruses with two (229E and NL63) in a genus and five (OC43, HKU1,

severe acute respiratory syndrome coronavirus (SARS-CoV), Middle
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East Respiratory Syndrome CoV and SARS-CoV-2) in B genus (Liu
et al., 2020; Ye et al., 2020). SARS-CoV-2 was reported to be the
causative agent for the novel respiratory disease, COVID-19 (Zhu
etal.,2020). The disease was declared to be apandemic by WHO early
this year and has led to more than 32 million infected and 981,000
dead. SARS-CoV-2 RNA genome encodes 16 non-structural proteins
(Nsp) and at least 10 structural proteins including spike (S), ORF3a,
envelop (E), membrane (M), open reading frame 6 (ORF6), ORF7a,
ORF7b, ORF8, nucleocapsid (N) and ORF10 (Cagliani et al., 2020; Kim
et al., 2020). S protein contains receptor-binding domain (RBD) that
directly binds to human receptor angiotensin-converting enzyme 2
(ACE2) and induces neutralizing antibody response against SARS-
CoV-2 (Cao et al., 2020; Lan et al., 2020). Previous studies showed
that antibody response against SARS-CoV-2 is mainly against S and
N proteins (Erasmus et al., 2020; To et al., 2020). RNA viruses pos-
sess a high mutation rate of genome and readily adapt to changing
environmental conditions (Elena & Sanjuan, 2005). Thus, a swarm of
variants exist in RNA virus populations. A systemic tracking of SARS-
CoV-2 mutations allows monitoring of circulating strains around the
world (Guan et al., 2020) and provides guidance for development of
countering measures.

Since the first report of SARS-CoV-2, whole-genome sequences
of the virus have been uploaded to the public available website,
GISAID. Nextstrain employed nomenclature through designation of
SARS-CoV-2 clades to label well-defined clades that reached geo-
graphic spread with significant frequency. Major clades were named
by the year that emerged and a letter. Current clades on Nextstrain
tree include 19A, 19B, 20A, 20B and 20C (Hadfield et al., 2018).
Another clade definition in GISAID used genetic markers and de-
fined six clades including S, L, V, G, GH and GR. L was splitinto G and
Vin March (Tang et al., 2020). In order to characterize the mutational
patterns and distributions across the whole genome, we performed
a mega data analysis of 11,183 high-quality sequences from GISAID
as of 13 May. Geographical distribution of mutations was analysed,
and we further focused on four key viral proteins including S, RNA-
dependent-RNA-polymerase (RdRp), 3C-like protease (3CLP™) and
Papain-like protease (PLP™). Potential functional impacts of muta-
tions were evaluated. This study provides more evidence of SARS-
CoV-2 genetic diversity, and mutations on key viral proteins may

affect development of anti-viral therapeutics.

2 | METHODS AND METHODS
2.1 | Sequence source and analysis

As of 13 May, there are 16,092 high coverage full genomes avail-
able in GISAID (Shu & McCauley, 2017). All were downloaded and
of which 4,909 were removed due to their poor assembly quality
resulting in 11,183 complete genomes used for subsequent analy-
sis. MAFFT was employed for sequence alignment referenced to
Wuhan-hu-1 strain (MN908947.3). Alignment results were further
processed and analysed through CLC Genomics Workbench 11
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(QIAGEN) and UGene (http://ugene.net). Statistical data analysis
was performed on Excel (Microsoft) and GraphPad Prism software
(GraphPad Software, Inc.). To determine the viral diversity and cred-
ibility of mutations across the genome, the entropy of nucleotide
sequences was calculated using BioEdit software version 7.0.9.0
(Hall, 1999). [Correction added on 27 May 2021, after first online
publication: In this paragraph, the reference “Shu & McCauley,
2017" has been included at the end of the first sentence in this cur-

rent version.]

2.2 | Protein structural analysis

Protein structures for RdRp, S and 3CLP™ were obtained from the
Protein Data Bank (PDB). For SARS-CoV-2 PLP™ structure, homol-
ogy modelling was carried out by using I-TASSER (Yang et al., 2015)
based on SARS-CoV PLP™ structure. Structural homology with high-
est C scores was selected for analysis. Visualization of protein struc-
tures was performed through PyMOL (PyMOL Molecular Graphics
System, version 1.7; Schrodinger, LLC).

3 | RESULTS

3.1 | Global SNPs across the genome and their
geographical distribution

A total of 16,092 complete genomes with high coverage as of 13
May were downloaded from GISAID. After removal of 4,909 prob-
lematic sequences using stringent inclusion criteria (any N in the ge-
nome), 11,183 sequences were included for analysis. Since a large
number of sequences do not have authentic or high-quality se-
quences for both 5’ and 3’ un-translational region (Singh et al., 2020),
terminal sequences for both ends were removed and only regions
(266-29674nt) from polyprotein to the last open reading frame (Bal
et al.,, 2020) sequences were included. Alignment against the ref-
erence strain, Wuhan-hu-1 (MN908947.3), was performed using
MAFFT (Katoh et al., 2017; Rozewicki et al., 2019). For global se-
quences analysed, an initial threshold setting of 1% (>111) was made
to identify classified clades around the globe (Table 1). A low thresh-
old of 0.3% (>33) was also set to identify a site of interest (Table S1).
A 0.3% threshold was also applied to countries/regions with more
than 333 sequences, and for those countries/regions with less than
333 sequences, single nucleotide polymorphisms (SNPs) with at
least two sequences were recorded.

Globally, with a threshold above 0.3%, we observed a total of
119 SNPs across the genome with 74 non-synonymous mutations,
43 synonymous mutations and two mutations in intergenic region
(Table 1 and Table S1). A new major clade can be proposed if it
reaches 20% frequency globally. Five major clades (19A, 19B, 20A,
20B and 20C) are classified based on nomenclature data provided
by Nextstrain (Figure S1). As shown in Table 1 and File S1, top SNPs
with most counts include A23403G in S gene (Clade 19A, Count:
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7,590, entropy: 0.63444), C14408T in RdRp (Clade 20A, Count:
7,564, entropy: 0.63513), C3037T in NSP3 (Clade 19A, Count: 7,552,
entropy: 0.63571), G25563T in ORF3a (Clade 20C, Count: 3,276, en-
tropy: 0.61047), C1059T in NSP2 (Clade 20C, Count: 2,679, entropy:
0.55524), G28881A (Clade 20B, Count: 2046, entropy: 0.48311),
G28883C (Clade 20B, Count: 2040, entropy: 0.47915) and G28882A
in N gene (Clade 20B, Count 2041, entropy: 0.4817). Clade 19B
contains C8782T (Count: 1,480, entropy: 0.39487). Higher entropy
value represents the mutational change in more sequences (Saha
et al., 2020), and the pattern of entropy was found to be consistent
with that of the SNP count (Figure S3, File S2). Another important
SNP, C241T, was not included in this analysis. Different clades based
on marker variants can also be defined according to GISAID. Clade
20A contains G clade (C241T, C3037T and A23403G), clade 20B
contains GR clade (C241T, C3037T, A23403G and G28882A), clade
20C contains GH clade (C241T, C3037T, A23403G and G25563T),
clade 19B contains S clade (C8782T and T28144C), and clade 19A
contains V clade (G11083T and G26144T) (Hadfield et al., 2018;
Rambaut et al., 2020). All clade classification criteria can be informed
by statistical distribution of genome distances in phylogenetic clus-
ters (Han et al., 2019). Mutations with high frequency found here
contribute to the clade classification.

Among all 119 SNPs across the genome, there are 60 positions
with nucleotide substitutions from C to T, accounting for half of
SNPs (Figure 1). It has been reported that transition mutations are
much more common than transversion mutations in viruses (Caudill
et al., 2019). With most positions possessing C to T mutation, CpG
sites decreased. The zinc-finger anti-viral protein binds specifically

to CpG for degradation of viral RNA genomes. Researchers found

T/G
T/C
T/A
GI/T
G/C
G/A
CIT
C/G
C/A
AIT
AlG
AlIC

0 20 40 60 80

Count of nucleotide positions

Mutations

FIGURE 1 Global mutation types across the genome. A total of
119 nucleotide substitutions were analysed by its mutation type.
Y-axis denotes the type of substitution while the x-axis represents
the count of each mutation type. C to T (U) mutation represents
the majority of nucleotide substitution type

Jransboundary and Emetgi
=,

that SARS-CoV-2 has the most extreme CpG deficiency in all known
betacoronavirus genomes, indicating viral rapid evolution in the host
(di Gioacchino et al., 2020; Xia, 2020). High-frequent C to T muta-
tion found in this study further demonstrates CpG deficiency and
SARS-CoV-2 has adapted to new host with high zinc-finger anti-viral
protein expression and evolved new ways for immune evasion. More
than a third of SNPs across the genome are synonymous mutations
(43), and among all non-synonymous mutation sites, 9 were mutated
from T to |, 6 from A to V and 6 also from S to L (Data not shown).
Although synonymous mutation does not result in change in amino
acid sequence, accumulation of these mutations has the capability to
erase the characteristic compactness imprint of the single-stranded
viral RNA genomes (Tubiana et al., 2015). We also summarized SNPs
in each gene of the viral genome. As shown in Figure 2, N gene has
15 nucleotide positions mutated, then nsp2 (13), nsp3 (13), S gene
(10), nsp14 (8), nsp12(7), ORF3a (7), nsp13 (6) and nsp5 (5).

To illustrate SNPs landscapes in each country/region, we further
did analysis on countries/regions with the number of sequences above
40. Among 11,183 sequences around the globe, 2 North American
countries include USA (3,599) and Canada (120); 16 European coun-
tries including UK (3,077), Iceland (405), Netherland (401), Denmark
(350), Belgium (334), France (274), Austria (224), Spain (181), Russia
(139), Germany (109), Sweden (104), Luxembourg (96), Portugal (95),
Greece (64), Switzerland (55) and Italy (44); 7 Asia countries/regions
including China (294), India (141), Saudi Arabia (127), Singapore
(124), Japan (105), Taiwan (80) and Thailand (53); 1 South American
country (Brazil, 40); and 1 Oceania country (Australia, 493). The
remaining 55 sequences represent the rest of the world. Figure 3a
(File S1) demonstrates a landscape comparison between globe and
Asia countries/regions. With an exception of China, all other Asia
countries/regions displayed a relatively higher mutation frequency
across the viral genome, representing potential viral adaptation to
hosts. Compared to globe and all other Asia countries/regions, vari-
ants from China exhibit much lower SNPs frequencies in terms of
B (C3037T), E (C14408T), J (A23403G) and K (G25563T). Instead,
SNPs frequencies in China regarding positions in C (C8782T) and M
(T28144C) are obviously much higher, which is different from the
rest of world that have SNP pattern featuring A23403G (aa: D614G)
mutation. It reveals that D614G, which barely exist in China strains,
gained more replicative advantages when the virus spread outside
of China to the world. Reports from WHO have shown that the new
COVID-19 outbreak in Beijing, China exhibits sequence identities
more closely to European strains with D614G mutation. For the
three major dominant SNPs (Chen et al., 2020; Hillen et al., 2020;
Lan et al., 2020; Mercurio et al., 2020; Walls et al., 2020), B (C3037T)
and J (A23403G) contribute to 19A clade, and E (C14408T) contrib-
utes to 20A clade (Table 1). SNPs G (C17747T), H (A17858G) and |
(C18060T) were found predominantly in variants from USA, Canada
and Australia (Figure 3b). Interestingly, sequences from Brazil and
all European countries displayed an apparently low SNPs frequen-
cies except the three major markers, B (C3037T), J (A23403G) and
E (C14408T) (Figure 3b,c, File S1). In other words, SARS-CoV-2 is

relatively more stable in these countries. Thus, mutational patterns
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of SARS-CoV-2 in different regions differ from each other. In order
to check the number of SNPs across the genome for different coun-
tries, we analysed those countries with more than 333 sequences.
We chose threshold of 333 or 0.3% because countries below this
threshold theoretically have only one count if SNP was observed. To
reduce the inaccuracy, at least two counts should be recorded for a
deemed mutation. As is shown in Figure 4, there are 119 SNPs across
the genome globally, and Australia sequences contain the most SNPs
of 201, while Denmark sequences only have 78 SNPs. Other coun-
tries have SNPs of 116 for USA, 132 for UK, 122 for Iceland, 115
for Netherland and 114 for Belgium. In addition, case-fatality rate
of selected countries/regions on 13 May has varied a lot from below
1% in Russia, Saudi Arabia, Iceland, Singapore to 19.25% in France,
16.29% in Belgium, 14.44% in UK, etc. (Figure S2). We are trying
to find a genetic determinant causing different case-fatality rates
among different countries, but we did not find one. According to
CDC report, clinical outcomes of COVID-19 patients relate to a vari-
ety of factors, such as age, gender, poverty, medical conditions and
even blood types (Ellinghaus et al., 2020; Li et al., 2020).

3.2 | Analysis of mutations affecting
protein synthesis

Genetic variation/SNPs contribute to alterations of protein trans-
lation. We observed multiple deletions and insertions across the
genome in different countries/regions (Table 2). Three nucleotide
deletion in 1605-1607nt region result in amino acid N deletion in
position 267 of nsp2. Twenty-nine counts of ninenucleotides dele-
tion in 686-694nt lead to three amino acids deletions in nspl re-
gion. Another 9nt deletion (515-520nt) also occurs in nspl region,
resulting in two amino acids (72V, 73M) missing. Deletion was also
found in S gene with thre nucleotides deletion in 21991-21993nt.
Accordingly, the single amino acid (Y) was missed in position 144 of S

protein. In addition, insertion was found in nspé. Three consecutive

6
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FIGURE 2 Count of nucleotide
positions with mutation in each gene.
Total global mutations were grouped for
each coding gene including sixteen non-
structural protein genes and ten structural
protein genes. The x-axis shows the name
of each gene, and y-axis indicates the
number of nucleotide positions that have
substitutions

T insertion result in an extra amino acid (F) synthesized. All these
deletions/insertions show a globally distributed pattern.

Non-synonymous mutations sometimes result in immediate stop
of translation and thus protein truncation. As is shown in Table 3,
SNP A12050T in two Denmark strains leads to amino acid change
from K to stop codon and a 14aa truncation of nsp7. Forty-nine
Belgium strains and 2 Denmark strains have T13402G mutation re-
sulting in 14aa truncation of nsp10. Another SNP T13408A in nsp10
truncated 12aa. A much shorter length of nsp13 (217aa versus
601aa) was generated due to a A16888T mutation in three Denmark
strains. A19513T in two Denmark strains results in 36aa truncated
in nsp14 C terminal. For structural proteins, two Iceland strains have
SNP C27661T resulting in 32aa shorter compared to the original
one. Finally, three strains from China have G28041T mutation in
ORF8 and also end up with a 72aa deletion in its C terminal. Instead
of a change in stop codon, two Germany strains have start codon
changed with G25395T and four amino acids are missed in ORF3a.
In addition, SNPs in transcriptional regulatory sequence (TRS) may
lead to impairment of 3’ end structural protein synthesis. Change
of protein length could potentially damage its key function in viral
replication/assembly/immune system antagonism. However, these
may represent quasispecies of SARS-CoV-2 and with those critical
mutations, the virus may not get replication advantages. Therefore,
further studies are needed for exploring the role of those mutations
in the virus replication.

3.3 | Mutations on key viral proteins

S: SARS-CoV-2 S protein is a major target of neutralizing antibodies
and contributes to ACE2 binding and entry into host cells. SNPs on
S gene potentially impact protein antigenicity and cellular tropism.
In this study, there are total 75 non-synonymous mutations found
on Spike protein (Table 4), spanning from signal peptide (SP) to cy-
toplasmic domain (CP). C21575T (L5F) mutation with 70 counts of
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FIGURE 3 Landscape of mutations across the genome for (a) Asian countries, (b) North America, South America, and Oceania countries,
and (c) European countries. Sequences up to 13 May were aligned and analysed by UGENE software. Referred to Wuhan-Hu-1 parental
strain, each SNP across the genome was recorded. Mutational profiling of whole genome was analysed for both global strains and strains
of a specific country/region. Country/region name was indicated with a total number of viral genomes in brackets. A schematic diagram

is shown on the top of each figure. Alphabetical letters from A to P indicate corresponding mutations described in Table 1. The y-axis
represents counts of strains on each mutation; x-axis denotes the whole-genome landscape of SARS-CoV-2

multiple countries lies in signal peptide region. This SNP was also
recorded in Table S1 using a threshold above 0.3% globally. Signal
peptides function to translocate spike protein to the membrane.
It remains to be determined whether L5F mutation affects S pro-
tein translocation or not. A series of mutations with few counts in
multiple countries was found in N terminal domain (NTD) of S pro-

tein. There are five SNPs found in receptor-binding domain (RBD),

among which V483A with 21 counts in USA only, N439K with 31
counts in UK only locate in receptor-binding motif (RBM) and the
rest of 3 SNPs (A344S with two counts in Saudi Arabia, N354D
with two counts in China, V367F with eight counts in France and
Netherland) locate in RBD. The well-known D614G mutation lies in
C terminal domain (CTD) of S1 and is close to S2. It has 7,544 counts

with a geographic distribution of 27 countries. An increasing trend
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of D614G was observed globally, and it was reported that strains
with this mutation lead to reduced S1 shedding and increased viral
infectivity (Zhang et al., 2020). G614 became the global dominant

variant and provided a boost of transmission ability of the virus since
outbreaks out of China. However, its impact on therapeutic and

vaccine design is limited (Korber et al., 2020). Instead of presence
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FIGURE 4 Count of the number of nucleotide positions across
the genome for countries with more than 300 sequences. The total
SNPs across the whole genome were analysed for each country.
Y-axis shows countries with more than 300 sequences including
Belgium, Denmark, Netherland, Iceland, Australia, UK, USA and the
whole world as comparison; x-axis shows the number of nucleotide
substitutions across the genome

TABLE 2 Deletions and insertions found across the whole genome
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in the receptor-binding domain (RBD), D614G is located in the in-
terface between the spike protomers and was proposed to cause
loss of hydrogen bonds between protomers, thus altering virus
infectivity. Antibodies from D614 variant infected patients could
cross-neutralize G614 variant, indicating changes in this position
have no impacts on antibody-mediated B cell immunity (Grubaugh
et al., 2020; Hu et al., 2020; Ozono et al., 2020). Beyond D614G,
there are 8 SNPs with few counts in multiple countries located in
CTD, followed by 5 SNPs before fusion peptide (FP) in S2 subunit.
Taiwan region has six counts of sequences with T791l mutation in
FP region. Twenty-three counts of A829T mutation were found only
in Thailand. Also, A831V was found only in Iceland samples with 24
counts. D839Y was found in three countries with 11 counts of se-
quences. Heptad repeat 1 (HR1) and heptad repeat 2 (HR2) interact
with each other to form six-helical bundle and facilitate cellular and
viral membrane fusion. Six SNPs (D936V, D936Y, S940F, T941A,
S943R and S943T) in HR1 and 2 in HR2 (D1163G and V1176F) were
found. Interestingly, D936Y was found in 4 countries with total 73
counts of sequences, and S943R (22 counts) and S943T (23 counts)
were found only in Belgium samples. Because of the special func-

tion in membrane fusion, researchers have been developing potent

Nucleotide position in Average Total

Type whole genome Amino acid Gene Entropy counts  Geographic distribution

Deletion 1605-1607 267 N NSP2 0.12121 282 UK (153), Netherland (80), Australia (9), Belgium (10),
Denmark (4), Iceland (7), USA (4), Portugal (3), France
(2), Spain (2), Canada (1), Finland (1), New Zealand
(1), Russia (1), Sweden (1), Taiwan (1), Latvia (1)

Deletion 686-694 129 KSF 131  NSP1 0.01895 29 USA (16), UK (8), Swedan (1), Iceland (1), Saudi Arabia
(1), France (1), Canada (1)

Deletion 515-520 72VM 73 NSP1 0.01402 22 USA (13), Australia (3), UK (2), Denmark (1), France (1),
Greece (1), Netherland (1)

Deletion 21991-21993 144Y spike 0.00779 11 USA (3), Slovenia (2), Saudi Arabia (2), Netherland (2),
India (1), Belgium (1)

Insertion TTT inserted between 35F nspé 0.00654 10 Australia (5), England (4), Switzerland (1)

11,074 and 11075nt inserted
TABLE 3 Key mutations relating to protein expression change
Gene/ Nucleotide Length Length after

Country Position  Count region Entropy change Amino acid change Wuhan-hu-1 mutation

Denmark 12050 2 NSP7 0.00320 A/T K/Stop codon 249nt/83aa 210nt/6%aa

Belgium 13402 49 NSP10 0.03333 T/G Y/Stop codon 417nt/13%aa 378nt/125aa

Denmark 13402 2 NSP10 0.03333 T/G Y/Stop codon 417nt/13%aa 378nt/125aa

Belgium 13408 2 NSP10 0.01049 T/A C/Stop codon 417nt/13%aa 384nt/127aa

Denmark 16888 3 NSP13 0.00247 A/T K/Stop codon 1803nt/601aa 654nt/217aa

Denmark 19513 2 NSP14 0.00092 A/T R/stop codon 1581nt/527aa 1476nt/491aa

Germany 25395 2 ORF3a 0.00172 G/T Start codon changed 828nt/275aa 816nt/271aa

Iceland 27661 2 ORF7a 0.00172 C/T Q/stop codon 366nt/121aa 270nt/89%aa

Austria 27393 2 TRS 0.00172 C/T NA acgaac acgaat

France 27893 2 TRS 0.00172 C/T NA acgaac acgaat

China 28041 3 ORF8 0.00247 G/T G/ Stop codon 366nt/ 121aa 150nt/49aa
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(Continued)

TABLE 4

Amino acid

Nucleotide

Amino acid

Nucleotide

Geographic
distribution

Geographic
distribution

Region

Position Change Position  Change Count Entropy

Region

Change Position Change Count Entropy

Position

China, Denmark HR2

25088 G/T 1176 V/ F 4 0.00458

RBD

T/C 483 V/A 21 0.01366 USA

23010

(RBM)
C

™

0.00524  France

3
4
2
2
2
8

56

\%

G/
E

1219
1229
1236
1237
1243
1260
1263

G/T
G/T
G/T
G/T
G/T
G/A
C/T

25218
25249
25269
25273

D

0.00504 China
0.00524

3
3
3
4
3

7,544

A/NV
T/

570
572
583
611
613
614
672
676

C/T
C/T
G/T
C/T
G/T
A/G
G/T
A/C

23271
23277
23311
23393
23401

Belgium, Iceland

0.00320

M/

CTD
C

India

™
™
CP

Austria

0.00247

c/

D

India

0.00590

E/D
L/F

0.00492  Portugal

F

M/

CTD
CTD

0.00320 Belgium

0.00320

India

0.00247

C/

25290

Japan

QM
D/G
A/S
T/P

CP

0.00320 Australia

0.03799

D/ N

P/L

25340
25350

CTD
C

0.63444 27 countries

0.00000 Denmark

23403
23576
23588

CP

4 countries

TD

2
2

CTD

0.00092 Denmark
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FIGURE 5 Non-synonymous mutations on (a) spike, (b) RdRp,
(c) 3CLP™ and (d) PLP™. Protein structures for RdRp, S and 3CLP™
were obtained from the Protein Data Bank (PDB) accession 6M71,
6vyb and 6M2Q, respectively. Homology modelling of SARS-
CoV-2 PLP™ structure was carried out by using I-TASSER (Yang

et al., 2015) based on SARS-CoV PLP™ structure. PyMOL was used
for visualization of protein structure. Sphere with different colours
including red, green, blue, yellow, magentas, cyans, oranges, tints
and greys indicates corresponding non-sysnonymous mutations
on each protein. Amino acid mutations were also coloured in

blue after the position number

fusion inhibitors targeting HR1/HR2 of SARS-CoV and MERS-CoV
(Xia et al., 2020). Mutations found in these two regions may poten-
tially affect efficacy of fusion inhibitors. Followed by HR2, four and
three non-synonymous SNPs were found in transmembrane domain
(TM) and cytoplasmic domain (CP), respectively. Notably, P1263L
mutation in CP region has 56 counts of sequences from multiple
countries. Critical mutations on RBD and mutations with top counts
were also denoted through structural analysis (Figure 5a). No muta-
tions were found on the N-linked glycosylation sites, key amino acids
for ACE2 binding and SPRRARJ SV cleavage sites in S protein. Highly
genetic variation and diversity observed in S protein poses poten-
tial challenge to anti-viral vaccine and therapeutics development.
Further studies are needed to determine the functional impacts of
key S mutations found in this study.

RdRp: The core component of replication-transcription complex
is the catalytic subunit, RdRp (nsp12). In this study, multiple non-
synonymous SNPs were found in all regions of RdRp, such as beta-
hairpin (2 SNPs), nidovirus RdRp-associated nucleotidyltransferase
domain (NiRAN) (4 SNPs), interface domain (8 SNPs), fingers (10
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TABLE 6 Summarized non-synonymous mutations within 3CLpro gene

Nucleotide Amino acid
Position Change Position Change
10097 G/A 15 G/S
10188 C/T 45 T/1
10208 C/T 52 P/S
10265 G/A 71 G/S
10277 C/T 75 L/F
10319 C/T 89 L/F
10323 A/G 90 K/R
10376 C/T 108 P/S
10377 C/T 108 P/L
10449 C/T 132 P/L
10478 A/C 142 N/H
10479 A/T 142 N/I
10508 A/G 152 VA%
10604 C/T 184 P/S
10631 G/A 193 A/T
10641 C/T 196 /M
10712 C/T 220 L/F
10761 A/G 236 K/R
10798 C/A 248 D/E
10851 C/T 266 A/V
10874 A/G 274 N/D
10889 C/T 279 R/C
TABLE 7 Summarized non- N
synonymous mutations within PLP region
Position Change
5062 G/T
5084 A/G
5142 c/T
5223 c/T
5322 T/A
5457 C/T
5694 c/T
5730 c/T
5784 c/T
5845 A/T

SNPs), palm (7 SNPs) and thumb (4 SNPs) (Table 5). Notably, SNP
C14408T (P323L) with 7,517 counts locates in interface domain
and was distributed in 27 countries globally. Interface domain is still
poorly studied and presumably interacts with other proteins reg-
ulating catalytic activity of RdRp. In most cases, spike D614G was
accompanied by RdRp P323L. Structural analysis shows that P323L

mutation results in considerable changes in secondary structure at

Count Entropy Geographic distribution
138 0.06897 Austria, Denmark, Iceland,
Netherland, Russia, UK
17 0.01138 USA
2 0.00172 Russia
2 0.00962 Denmark
15 0.01080 USA
32 0.02106 USA
76 0.04422 China, Iceland
12 0.00779 Iceland, UK
2 0.00482 France
2 0.00340 Russia
2 0.00172 India
2 0.00265 India
2 0.00172 China
4 0.00458 China
3 0.00247 Australia
2 0.00172 Iceland
22 0.01422 USA
13 0.00902 USA
43 0.02522 UK
35 0.02169 Australia, USA
13 0.01113 UK
3 0.00390 Australia
Amino acid
Geographic
Position Change Count Entropy distribution
36 L/F 7 0.01366 China
44 VA% 4 0.00524 Canada
63 T/1 40 0.02372 Iceland
90 T/ 2 0.00172 Australia
123 I/K 2 0.00172 Belgium
168 T/1 2 0.00172 Luxembourg
247 P/L 2 0.00265 Belgium
259 T/ 2 0.00962 Iceland
277 T/1 15 0.01138 USA
297 K/N 2 0.00247 Japan

this site and the substitution from proline to leucine could cause
damage of structural integrity conferred by proline (Figure 5).
Similarly, substitution of valine with a larger side chain at position
97 changes secondary structure of RdRp. It has been reported
that A97V and P323L result in alteration of protein stability and
intramolecular interactions, thus affecting RdRp functions (Chand

et al., 2020). Studies have put more efforts on spike D614G impacts,
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whereas RdRp P323L may also play a role in viral genome replication
and transcription. Other more frequent mutations include A97L with
124 counts in 7 countries, T1411 in NiRAN domain with 63 sequence
counts in three countries, A449V in fingers with 58 counts in 6 coun-
tries around the world. Some mutations only exist in specific coun-
tries, such as A43V in beta-hairpin domain with 17 counts in Sweden
only, E436G (fingers, 20 counts) and M601l (Palm, 18 counts) and
G774S (Palm, 16 counts) in USA only, G228C (NiRAN, 11 counts) in
Saudi Arabia only, S434F (Fingers, 11 counts) and Mé66l (Fingers,
19 counts) in UK only. Mutations with top counts were also shown
on RdRp structure (Figure 5b). RdRp has been proposed to be the
target of many anti-viral drugs with nucleotide analogs. So many
SNPs in RdRp, especially the high-frequency mutation P323L could
potentially reduce effectiveness of anti-viral treatments. Due to the
participation of RdRp in viral genome transcription, mutations such
as P323L may potentially affect viral replicative ability and transmis-
sion. In addition, more knowledge is urgently needed to understand
the impacts of RdRp P323L and A97L on polymerase activity and
thus viral replication.

3CLP™: 3CLP™ serve as a potential target by anti-viral inhibitors
due to its crucial cleavage activity and functions in viral replication.
As shown in Table 6 and Figure 5c, most frequent mutations found
in 3CLP™ are G15S (138 counts, globe), T481 (17 counts, USA only),
L75F (15 counts, USA only), L89F (32 counts, USA only), K90R (76
counts, China and Iceland), P108S (12 counts, Iceland and UK),
L220F (22 counts, USA only), K236R (13 counts, USA only), D248E
(43 counts, UK only), A266V (35 counts, Australia and USA) and
N274D (13 counts, UK only). Key residues of 3CLP™ responsible
for SARS-CoV catalytic activity, substrate binding and dimeriza-
tion were checked, and none get changed in SARS-CoV-2. Anti-viral
drugs targeting 3CLP™ typically dock within the Cys-His catalytic
dyad (Cys145 and His41) which contains active catalytic binding
site (Chitranshi et al., 2020). Mutations were not found in these
two sites, suggesting that pharmacological inhibitors of 3CLP™ may
still serve as therapeutics for SARS-CoV-2. However, with multiple
high-frequent mutations found in 3CLP™ especially G15S, K90R and
D248E, more studies about their impacts on cleavage activity and
3CLP™ drug efficacies are needed.

PLP™: Same as 3CLP'™, proteolytic processing of polyprotein is
also mediated by PLP™. In this study, a total of 10 non-synonymous
SNPs were found in PLP™ region (Table 7, Figure 5d). All of them are
specific to a country. Seven sequence counts with L36F mutation
were only distributed in China. 144V with 4 counts were only found
in Canada. T631 with 40 sequence counts was found in Iceland only.
In addition, T2771 mutation was only distributed in USA with 15 se-
quences found. Spacious pockets for binding sites include residues
Aspl164, Val165, Arg166, Glu167, Met 208, Ala246, Pro247, Pro248,
Tyr 264, Gly266, Asn267, Tyr 268, GIn269, Cys217, Gly271, Tyr273,
Thr301 and Asp302 (Arya et al., 2020), among which only Proline in
positive 247 was substituted to Leucine in two strains from Belgium.
Essential properties like delSGylation and deubiquitination of PLP™
affect viral replication. Coronavirus PLP™ also serves as host innate

immune antagonism. All these functions make PLP™ to be a potential

target for anti-viral therapeutics. However, high-frequent mutations
in PLP™ such as T63| may have negative effects on anti-viral drug

efficacies.

4 | DISCUSSION

By analysis of 11,183 whole genomes of SARS-CoV-2, we dem-
onstrated a high genetic variability between different regions and
detailed mutational profiling across the genome and for key viral
proteins (S, RdRp, 3CLP™ and PLP™). In the present study, 60 out
of 119 SNPs are nucleotide substitutions from C to T, represent-
ing the most abundant transition. Consistent with previous studies,
this observation increases the frequency of codons for hydropho-
bic amino acids and provides evidence of potential anti-viral editing
mechanisms driven by host (Matyasek & Kovarik, 2020; Mercatelli
& Giorgi, 2020; Simmonds, 2020). On the other hand, more Cto T
transitions indicates less CpG abundancy, which is resulted from cy-
tosine methylation and deamination into T. This mutational pattern
was also observed in Bat RaTG13 and other coronaviruses, indicating
rapid adaptation and evolution of the virus in the host (Matyasek
& Kovarik, 2020; Simmonds, 2020). Among all known betacorona-
viruses, SARS-CoV-2 represents the most extreme CpG deficiency,
which contributes to evasion of host anti-viral defence mechanisms
(Xia, 2020).

SARS-CoV-2 mutational pattern in each region varies from each
other with North American and European countries more stability
and Asian countries more variability (Figure 3). In addition, we did
not observe a consistent mutational pattern contributing to the de-
gree of case mortality/morbidity rate although some countries such
as France, Belgium and UK do have a much higher fatality rate while
countries such as Singapore and Iceland have a much lower fatal-
ity rate (Figure S2). Multiple factors were reported to impact the
course of COVID-19 pandemic. Stringent measures such as quaran-
tine, social distancing and isolation of infected patients have been
implemented in China and result in successful containment of the
epidemic (Anderson et al., 2020). Different social and economic fac-
tors among different countries also influence spread and outcomes
of the disease (Qiu et al., 2020). In addition, according to WHO, the
mortality is higher in people older than 65 years and those with un-
derlying comorbidities, such as serious heart conditions, chronic lung
disease, high blood pressure, obesity and diabetes (Lai et al., 2020;
Ruan, 2020; Weiss & Murdoch, 2020).

SARS-CoV-2 strains from China demonstrate a high nucleo-
tide substitution rate for C (C8782T) and M (T28144C) while the
global strains feature substitutions on B (C3037T), E (C14408T)
and J (A23403G), indicating rapid viral adaptation and evolution
in other countries. The rapid spread to the world was reported to
be a result from A23403G (D614G) mutation, which is responsible
for increased viral infectivity, decreased neutralization sensitiv-
ity to individual convalescent serum and enhanced disease trans-
mission thereafter (Daniloski et al., 2020; Hu et al., 2020; Korber
et al., 2020; Ogawa et al., 2020; Yurkovetskiy et al., 2020; Zhang
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et al., 2020). Virus strains with D614G mutations represents the
dominant strains globally (). Also, the recent outbreaks in China
during June were due to transmission of viral strains with D614G
from Europe (Hu et al., 2020). However, whether or not other crit-
ical mutations with highest counts affects viral replicative ability
needs to be defined. Landscape of genome-wide mutations globally
and in different countries demonstrates high genetic diversity of
SARS-CoV-2. Recombination events were reported in some studies
(Gallaher, 2020; Korber et al., 2020; Paraskevis et al., 2020; Sashittal
et al., 2020).

We also observed that N gene has 15 nucleotide positions mu-
tated, then nsp2 and nsp13 (13), S gene (10), nsp14 (8), nsp7 and
ORF3a (7), nsp13 (6) and nsp5 (5). This pattern is consistent with
previous results claiming that ORFla, ORF1b, S and N gene were
detected at high frequency (Kim et al., 2020). N represents the most
abundant protein expressed by viral genome and is able to induce
high level of antibody response which ease serological diagnosis
(Azkur et al., 2020; To et al., 2020). Non-synonymous mutations on
N gene (C28311T, C28854T, G28881A and G28883C), especially
G28881A and G28883C with vast majority of counts that contribute
to clade classification, may have impacts on antigenicity of N pro-
tein. Further studies are needed to determine the impacts. We also
observed here that nsp2 and nsp3 possess high mutation frequency
(Figure 2). SARS coronavirus nspl and nsp2 are the most variable
protein (Graham et al., 2005). However, previous research found that
nsp2 are dispensable for SARS viral replication, but attenuates viral
growth and genome synthesis (Graham et al., 2005). Nsp3 possesses
PLP™ domain with protease-cleavage activities and serves as a target
for anti-viral development (Rut et al., 2020). With high variability and
high-frequency mutations including G2891A, C3037T, C3177T and
C6312A, cautions and considerations should be taken for anti-viral
therapeutic development. Multiple single nucleotide mutations lead
to protein codon change to start/stop codons, which results in pro-
tein length change (Table 3). Mutations on TRS sites also may affect
viral RNA transcription, thus affecting protein expression. Amino
acids deletions and insertions were also observed (Table 2), and pro-
tein functions may get changed.

A detailed mutational profiling was performed for multiple key
viral proteins including S, RdRp, 3CLP™ and PLP™ (Tables 4-7 and
Figure 5). S protein mediates virus binding and entry to host cells, and
is able to elicit high level of neutralizing antibody response (BalcioGlu
et al., 2020; P. Liu, Cai, et al., 2020; Schmidt et al., 2020). Utilizing
monoclonal antibodies (mAbs) to target RBD region as therapeutics
have gained promising results and are currently under clinical trials
for COVID-19 patients (Alsoussi et al., 2020; Chi et al., 2020; Shi
et al., 2020). RdRp, 3CLP™ and PLP™ are conserved among all strains
and play critical roles in viral genome replication and polyprotein
cleavage to form functional viral proteins (Aftab et al., 2020; Chand
et al.,, 2020; Chitranshi et al., 2020; Gao et al., 2020; Rut et al., 2020;
Ul Qamar et al., 2020; Yin et al., 2020). Due to their critical feature
of polymerase and protease, structures for RdRp, 3CLP™ have been
decoded (Gao et al., 2020; Ul Qamar et al., 2020; Yin et al., 2020).

Anti-viral drugs targeting these proteins are currently under
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development. Here, we described a detailed mutational profile of
these four proteins. Critical mutations potentially impacting protein
functions were observed and shown on their structures (Figure 5).
Although counts for some of the mutations are not high, it provides
insights that SARS-CoV-2 may adapt to environmental changes and
gain replicative advantages/fitness to escape anti-viral treatment
and being drug-resistant. Thus, further studies are needed to de-
termine whether mutations on key sites affect viral replication and
infectivity or not.

In summary, a detailed mutational profiling was described in this
study. Landscape of genome-wide mutations across the countries
provides insights for SARS-CoV-2 transmission and adaptation as
different regions have different mutational patterns. Mutations with
high frequency contribute to clade classification of SARS-CoV-2
strains. This study provides more evidence for SARS-CoV-2 genomic
diversity around the globe and rapid evolution/adaptation of the
virus. Given the detailed mutational profiles of key viral proteins in-
cluding S, RdRp, 3CLP™ and PLP™, it also gives some guidance for
better design of anti-viral therapeutic to tackle the disease.
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