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Abstract

In cancer patients pervasive systemic suppression of Dendritic Cell (DC) differentiation and maturation can hinder
vaccination efficacy. In this study we have extensively characterized migratory DC subsets from human skin and studied
how their migration and T cell-stimulatory abilities were affected by conditioning of the dermal microenvironment through
cancer-related suppressive cytokines. To assess effects in the context of a complex tissue structure, we made use of a near-
physiological skin explant model. By 4-color flow cytometry, we identified migrated Langerhans Cells (LC) and five dermis-
derived DC populations in differential states of maturation. From a panel of known tumor-associated suppressive cytokines,
IL-10 showed a unique ability to induce predominant migration of an immature CD14+CD141+DC-SIGN+ DC subset with low
levels of co-stimulatory molecules, up-regulated expression of the co-inhibitory molecule PD-L1 and the M2-associated
macrophage marker CD163. A similarly immature subset composition was observed for DC migrating from explants taken
from skin overlying breast tumors. Whereas predominant migration of mature CD1a+ subsets was associated with release of
IL-12p70, efficient Th cell expansion with a Th1 profile, and expansion of functional MART-1-specific CD8+ T cells, migration
of immature CD14+ DDC was accompanied by increased release of IL-10, poor expansion of CD4+ and CD8+ T cells, and
skewing of Th responses to favor coordinated FoxP3 and IL-10 expression and regulatory T cell differentiation and
outgrowth. Thus, high levels of IL-10 impact the composition of skin-emigrated DC subsets and appear to favor migration of
M2-like immature DC with functional qualities conducive to T cell tolerance.
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Introduction

Dendritic cells (DC) are the major class of antigen presenting

cells (APCs) regulating adaptive immunity. In the steady state,

migratory immature DC from peripheral tissues take up antigen

but lack the capacity to promote functional T cell-mediated

immune responses. In response to activation signals, DC migrate

to draining Lymph Nodes (LNs) and mature into potent immune-

stimulatory APC that can drive T cell expansion and differenti-

ation [1,2]. As it is lined by a dense network of DC with ready

access to lymph vessels, skin is a preferred site for the delivery of

tumor vaccines [3]. Unfortunately, tumors exert powerful systemic

immune suppression, resulting in impaired differentiation and

activation of DC, possibly also impacting DC functionality in the

skin.

Skin DC consist of two major migratory subsets: epidermis-

derived Langerhans Cells (LC) and Dermal DC (DDC). The latter

can be roughly divided into CD1a+ and CD14+ subsets [4]. All

these subsets migrate to draining LN, even in the steady state, and

so maintain peripheral tolerance [4]. Upon activation their

migration rate increases and they acquire a mature phenotype,

allowing the activation and expansion of specific T cells [4,5]. LC

have been suggested to preferentially activate Cytotoxic T

Lymphocytes (CTL), whereas CD14+ DDC have been implicated

in the priming of B cell responses [6]. However, these assertions

are mostly based on findings from murine studies or from in vitro

studies with LC or CD14+ DDC-like cells derived from CD34+

precursor cells. Functional studies with primary DC from human

skin are complicated by their low numbers and therefore sparse.

Nevertheless, some valuable information about the ability of

human skin-associated DC subsets to direct T cell responses has

been obtained.

Peiser et al. showed low-level release of IL-12p70 by LC, freshly

isolated from epidermal sheets, as compared to monocyte-derived

DC (MoDC) [7]. In line with this observation, others have

suggested that the LC’s supposed superior CTL activating ability
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might derive from its release of IL-15 or CD70 expression rather

than IL-12p70 secretion [8–10]. One study demonstrated a

superior ability of LC over DDC to induce both Th1 and Th2

responses [11], whereas others have shown primary human LC to

skew Th cell responses (including conventional variant ab-T cells

restricted through CD1a) to a Th22-type response, characterized

by IL-22 release in the absence of IL-17 [12,13]. The T cell

skewing abilities of DDC appear to be determined by a balance of

factors in the microenvironment. Larregina and co-workers have

shown in a number of reports that human DDC can skew Th cells

to either a Th1, a Th2, or a Th17 profile, depending on their

conditioning, number and activation state [14–16]. In the steady

state LC are primarily responsible for the homeostatic prolifera-

tion of skin-resident memory T cells, most notably CD4+

regulatory T cells (Tregs) [17]. Recently, CD14+ DDC from

human skin have been shown to induce Tregs [18]. As yet, it is

unclear how tumor-mediated conditioning of the skin will impact

the ability of the DC located there to skew and direct T cell

responses. In this regard, modulation of the cutaneous cytokine

balance may prove crucial to the efficacy of intradermally (i.d.) or

epicutaneously applied cancer vaccines.

T cell activation by mature DC is a carefully coordinated

process, involving a regulated sequence of events leading to DC

migration, activation, cytokine release, and antigen presentation.

For optimal immune activation to occur, these events need to be

tightly controlled, both spatially and chronologically. In view of

these considerations, we employed an organotypic human skin

explant culture system to characterize migratory DC subsets and

to study cytokine-related modulation of their phenotype and

function and how this impacts CD4+ and CD8+ T cell activation

and differentiation. Our results point to IL-10 as a major

candidate effector of tumor-related modulation of DC subset

migration from human skin, resulting in prevailing migration of

CD14+BDCA3/CD141+ DC that acquire an immunoregulatory

phenotype and cytokine release profile with detrimental effects on

cell-mediated immunity.

Materials and Methods

Skin explant preparation and culture
Healthy human skin specimens were obtained after verbal

informed consent at the time of hospital admission from patients

undergoing corrective breast or abdominal plastic surgery at the

VU University medical center (VUmc, Amsterdam, The Nether-

lands) or at the Tergooi hospital (Hilversum, The Netherlands)

and used in an anonymous fashion. As this does not entail

additional interventional procedures and applies to biological

materials that would otherwise be disposed of, verbal consent

sufficed according to Dutch national guidelines; patients that

objected to this procedure signed a statement to this effect, in

accordance with the ‘‘Code for Proper Use of Human Tissues’’ as

formulated by the Dutch Federation of Medical Scientific

Organizations (www.fmwv.nl) and following procedures approved

by the IRB [19]. Materials from patients with breast cancer

participating in clinical trials were collected after written informed

consent according to protocols approved by the VUmc IRB

(IRB00002991; IORG number 0002436).

Cytokines were i.d. injected in surgical healthy skin specimens

with a Micro-Fine Insulin syringe (0.33 mm (29 G)612.7 mm

needle, BD, Franklin Lakes, NJ) in a total volume of 20 ml serum-

free medium. The following amounts of cytokines were injected

per explant: 100 ng GM-CSF (Berlex Laboratories Inc. Montville,

NJ), 1000 IU IL-4, and 10 ng IL-10 (Strathmann Biotec,

Hamburg, Germany). These amounts were based either on

optimal effects or on maximal sub-toxic doses found upon titration

[19]. At the site of injection a 5 mm-diameter urtica appeared and

an exact punch biopsy of 6 mm was taken. The biopsy was lifted

from the specimen with a sterile forceps and with sterile scissors

the dermis was cut at a depth of 2–3 mm to obtain skin explants.

Biopsies were placed in 1 ml culture medium (i.e. IMDM

containing 5% Human Pooled Serum (Sanquin Blood Supply,

Amsterdam, The Netherlands), supplemented with 100 IU/ml

sodium penicillin (Yamanouchi Pharma), 100 mg/ml streptomycin

sulfate (Radiumfarma-Fisiopharma), 2 mM L-glutamine (Invitro-

gen Life Technologies), and 0.01 mM 2-ME (Merck). Per

experimental condition 10–20 explants were cultured. After a

culture period of 48 h the skin explants were discarded. Migrated

cells were harvested at these or later time points and used for

further analyses –no additional cytokines were added to the

cultures. Between 1998 and 2002, skin from mastectomy material

was excised by an experienced pathologist from patients with

breast cancer at the VUmc in Amsterdam, The Netherlands

[20,21]. Skin was i.d. injected with 20 ml serum-free medium.

Explants were taken and cultured as described above, after which

migrated cells were harvested and analyzed by flow cytometry.

From four patients with Locally Advanced Breast Cancer (LABC,

i.e. stage IIB with a primary breast tumor larger then 5 cm, IIIA

or IIIB according to AJCC criteria), skin was collected and

cultured subsequent to neoadjuvant chemotherapy with doxoru-

bicin and cyclophosphamide [20,21]. Partial tumor responses

according to RECIST criteria were observed in all four patients; in

three patients only microscopic evidence of disease remained

whereas in one patient the tumor shrunk from a volume of

23617 cm to a diameter of 1.5 cm.

HLA-A2 typing of the skin explants
Medium-injected 6 mm biopsies (10 per condition) were placed

in 10 cm diameter culture dishes containing 15 ml 0.05% trypsin

(Invitrogen GIBCO, Paisley, Scotland) for 4–5 hr at 37uC, 5%

CO2. The epidermis was separated with tweezers, washed with

IMDM 10% FCS and pushed through a 100 uM-pore nylon

strainer (Falcon-BD biosciences, San Jose, CA) with the plunger of

a 2 ml syringe to obtain a single-cell suspension. The cell

suspensions were used for HLA-A2 typing by flowcytometric

analysis as described below, by use of HLA-A2 specific monoclo-

nal antibodies (mAb); used clones were BB7.2 and MA 2.1 from

the American Tissue Culture Collection (ATCC, Rockville, MD).

Flow cytometry
Phenotypic analyses were performed by flow cytometry. Cells

were washed in PBS supplemented with 1% BSA and 0.02%

NaN3 (PBA) and incubated for 30 min. at room temperature in

the presence of appropriate dilutions in PBA of FITC, PE, PerCP

or APC fluorochrome-conjugated specific mAbs to CD3, CD4,

CD11c, CD14, CD25, CD1a, B7–H1 (i.e. Programmed Cell

Death-Ligand 1, PD–L1), DC-SIGN, CD80, CCR7, CD163 (BD,

San Jose, CA), BDCA3 (Miltenyi, Bergisch Gladbach, Germany),

E-cadherin, Langerin, or CD83 (Beckman Coulter Immunotech),

FoxP3 (eBioscience, San Diego, CA) or corresponding isotype-

matched control mAbs (BD, San Jose, CA). For intracellular

staining of Langerin, E-Cadherin and DC-SIGN, surface markers

CD14, CD1a and CD11c were first stained as described above.

Subsequently, cells were fixed and permeabilized using the BD

Fix-Perm kit, following manufacturer’s guidelines. Intracellular

staining with PE-labeled DC-SIGN, Langerin, E-Cadherin or

control IgG1 was performed for 30 minutes at 4uC in 16
permeabilization buffer. Cells were washed once with 16
permeabilization buffer and once with FACS buffer before
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analysis. The cells were subsequently analyzed, using a FACSCa-

libur and Cellquest-Pro FACS analysis software (BD, San Jose, CA).

IL-10 and IL-12p70 release
DC migrated from human skin were harvested at the indicated

time points and analyzed for functional IL-12p70 and IL-10

release as described [22]. Briefly, 16104 DC were incubated with

16104 J558-CD40L cells in the presence of 1000 U rhIFNc/ml

(Sanquin Blood Supply, Amsterdam, The Netherlands) in 100 ml

IMDM with 10% FCS. After 24 h, the supernatants were

collected and stored at 220uC until further analysis. IL-12p70

and IL-10 concentrations were determined by capture ELISA as

previously described [23].

Th and Treg differentiation assays
40,000 skin-emigrated DC were incubated with 0.5 mg/ml anti-

CD3 (OKT-3, eBioscience, San Diego, CA) in 200 ml complete

medium (i.e. IMDM supplemented with 10% fetal bovine serum

(FBS; HyClone), 100 IU/ml sodium penicillin, 100 mg/ml strep-

tomycin sulfate, 2 mM L-glutamine, and 0.01 mM 2-ME for 15

minutes at 4uC. After incubation, the DC were co-cultured with

20,000 CD4+CD252 T cells (isolated by magnetic bead separation

using the untouched CD4 isolation kit and anti-CD25 beads from

Miltenyi, Bergisch Gladbach, Germany, according to the manu-

facturer’s instructions) for 14 days. At day 7, 10 U/ml IL-2

(Strathmann Biotec, Hamburg, Germany) was added to the

cultures. On day 14, T cells were harvested and analyzed by

flowcytometry for CD3, CD4, CD25 and FoxP3 expression as

previously described [24] or 50,000–100,000 T cells were

stimulated with 0.5 mg/ml anti-CD3 (OKT-3) and 0.5 mg/ml

anti-CD28 (clone 15E8) overnight. Supernatants were collected

and were analyzed for cytokines secreted by the Th cells using a

Th1/Th2/Th17 CBA kit (BD Biosciences, San Jose, CA) and an

IL-22 ELISA kit (R&D systems, Minnesota, USA), following the

manufacturer’s instructions. At that time stimulated Th cells were

harvested and RNA isolated to also assess transcript levels of Th1-,

Th2-, Th17-, Th22-, or Treg-associated transcription factors and

cytokines. In an alternative protocol 10,000 migrated and OKT3-

loaded DC were cultured for 7 days with 16105 peripheral blood

lymphocytes and analyzed by flowcytometry for CD3, CD4, CD25

and FoxP3 expression. In addition, at that time the cells were

incubated for 4 hours with 50 ng/ml PMA and 500 ng/ml

ionomycin in the presence of 0.5 ml/ml brefeldin A (GolgiPlug, BD

Biosciences), stained for CD3 and CD4, and for FoxP3 and IFNc
(BD, San Jose, CA) after permeabilisation using the eBioscience Treg

staining kit and subsequently analyzed, using a FACSCalibur and

Cellquest-Pro FACS analysis software (BD, San Jose, CA).

RNA Isolation and cDNA Synthesis
Total RNA was isolated using the RNeasy Plus Micro kit

(Qiagen, Hilden, Germany). Contaminating genomic DNA was

removed by using the gDNA Eliminator spin colums from the kit.

The concentration and purity of the RNA was analyzed using the

NanoDrop ND-1000 (Thermo Scientific, Wilmington, DE 19810

USA). cDNA was synthesized using oligo(dT)20 primers and the

SuperScript III First-Strand Synthesis System for RT-PCR

(Invitrogen, Carlsbad CA) according to the manufacturer’s

instructions. Input of RNA was 240 ng. After cDNA synthesis

nuclease-free water was added up to a final volume of 80 ml.

Real-time qRT-PCR
Transcripts were quantified by real-time quantitative polymer-

ase chain reaction (qPCR) using an ABIPRISM 7900 Sequence

Detector and pre-designed TaqMan Gene Expression Assays and

reagents according to manufacturer’s instructions (Applied Bio-

systems, Foster City, CA), as described previously [24]. Probes

with the following Applied Biosystems assay identification

numbers were also used: TBX21 (Tbet), Hs00203436_m1;

GATA3, Hs00231122_m1; FOXP3, Hs00203958_m1; RORC1-

2, Hs00172858_m1; RORC10-11, Hs01076112_m1, IL17A,

Hs00174383_m1; human HPRT1 Endogenous Control

(4333768T; Applied Biosystems) served as reference housekeeping

gene. We validated all primers according to protocol. Mean

relative mRNA expression was calculated using Pfaffl method

[25].

CD8+ T cell induction
To determine the capacity of skin explant-emigrated DC to

prime specific CD8+ T cells, 2-day migrated DC were loaded with

1 mg/ml Mart-126–35L peptide (ALGIGILTV, obtained from

LUMC, Leiden The Netherlands) in the presence of 3 mg/ml

b2-microglobulin (Sigma-Aldrich) for 4–5 h at room temperature.

Multiple bulk cultures of 16106 HLA-A2-matched CD8b+ T cell

precursors were subsequently cultured with 56104 MART-126L–35

peptide-loaded allogeneic skin-emigrated DC and with 16106

irradiated (80 Gy) CD8b–depleted autologous PBMC in Yssels

medium supplemented with 1% human AB serum (ICN

Biochemicals), 10 ng/ml IL-6, and 10 ng/ml IL-12 (R&D systems

Inc,) in a 24-well tissue-culture plate. At day 1, 10 ng/ml IL-10

was added. After 10 days, CD8+ T cell cultures were analyzed for

the presence of MART-126L–35-specific CD8+ T cells by tetramer

(Tm) staining as described previously [26]; cultures with Tm

percentages exceeding 0.1% were considered positive. At this time,

CD8+ T cells were restimulated with 1*10E5 JY cells, loaded with

10 ng/ml MART-126L235 peptide, and cultured for an additional

seven days in the presence of 5 ng/ml IL-7 (Strathmann Biotec).

After this additional round of restimulation, Tm positive cultures

were pooled per experimental condition and the functional avidity

of the Mart-1 primed CD8+ T cells was determined.

CD8+ T cell functional avidity analysis
CD8+ T cells were cultured with titered peptide-loaded JY cells

at an effector: target ratio of 2:1 in 96-well round-bottom plate in

the presence of 0.5 ml of GolgiPlug (BD Biosciences). After 5 h,

cells were harvested, washed, and stained with allophycocyanin

(APC)-labeled tetramer, and PE-labeled antiCD8 mAb. After

fixation with Cytofix/Cytoperm solution and permeabilization

with Perm/Wash solution (both from BD Biosciences), cells were

labeled with FITC-conjugated anti-IFNc mAb (BD Biosciences).

Stained cells were analyzed on a FACSCalibur with Cellquest-Pro

software (Becton Dickinson, San Jose, CA). Functional avidity was

expressed as peptide concentration at which half maximal

percentage of IFNc-expressing CD8+ T cells was detected, as

described previously [26].

Statistical analysis
DC subset frequencies and marker expression levels, cytokine

release levels, transcript levels, and specific T cell frequencies were

compared between conditions using either the (paired) T test or

the (repeated measures) one-way ANOVA or Friedman test with

respective post-hoc Tukey or Dunn’s multiple comparison

analyses. Fractions of tetramer positive cultures were compared

by the Fisher’s Exact test and Pearson correlations between

transcript levels of T cell transcription factors and cytokines were

calculated. Prism 4.0 statistical software (GraphPad Software Inc.,

La Jolla, CA) was used. Differences and correlations were

considered significant when P,0.05 in two-sided analyses.
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Results

Predominant CD14+ DC migration from IL-10-
conditioned or breast cancer-associated skin

We previously reported that i.d. cytokine levels influenced the

subset composition of migratory DC from human skin, with DC-

stimulatory cytokines (GM-CSF and IL-4) inducing predominant

migration of CD1a+ LC and/or DDC with a mature phenotype,

and IL-10 inducing predominant migration of CD14+ DDC with

an immature phenotype [19]. Here we confirm these findings (see

Fig. 1A, n = 13–19) and additionally show that 48 h-migrated DC

from skin explants taken from breast tumor-overlying skin, showed

similar low frequencies of mature CD1a+ migratory DC and high

frequencies of immature CD14+ subsets as observed subsequent to

IL-10 conditioning (n = 6, Fig. 1A, 1B). CD1a+, CD1a+CD14+,

and CD14+ DDC are subsets that range from more to less mature

respectively [19]; we found a clear shift to a predominance of

immature CD14+ subsets among DC migrated from breast tumor-

overlying skin (Fig. 1C). Importantly, the migrated DC subset

distribution appeared to be normalized subsequent to neo-

adjuvant chemotherapy, confirming a relation to tumor load of

the observed aberrant subset distribution (n = 4, Fig. 1A; for

information on tumor response we refer to the Materials and

Methods section). Representative CD1a vs CD14 FACS dot plots

from breast cancer patients with and without neoadjuvant

chemotherapy, illustrating the shifting DC subset distributions,

are shown in Fig. 1C and 1D, respectively. Accompanying the

tumor-associated shifts in the CD1a/CD14 frequencies, CD83

frequencies also shifted in concordance with a mature state of the

CD1a+ DC and an immature state of the CD14+ DC (Fig. 1E).

While it proved technically unfeasible to determine the responsible

factor for the observed CD14+ subset skewing in cancer-

conditioned explants (due to the limited size of mastectomy-

derived skin samples), testing of a panel of six well-known cancer-

associated suppressive cytokines (as well as PGE2, data not shown)

clearly pointed to a unique role for IL-10 in this respect (see

Fig. 1F).

DC migrating from human skin comprise at least six
phenotypically distinct subsets

We next set out to further delineate the various migratory skin

DC subsets and how dermal cytokine conditioning affected their

phenotype and migration rates. Based on CD1a, CD14, and

CD11c expression (Fig. 2A) as well as subset-specific markers

(Fig. 2B–F), six different populations or subsets were identified

among DC that had migrated from 48 h-cultured full-thickness

human skin explants. As shown in Fig. 2B and 2C, near-exclusive

expression of intracellular Langerin and E-Cadherin on the small

CD1ahi population (with notably lower CD11c expression levels

than the other subsets –Fig. 2A) clearly identified it as epidermis-

derived LC (subset 1). Of note, Langerin expression was also

observed on a small subpopulation of the more frequent CD1a+

DDC (subset 2). Intracellular DC-SIGN expression (up-regulated

by i.d. administration of GM-CSF+IL-4) was observed in all five

DDC subsets, but reached highest frequencies in the CD14+

subsets (subsets 3 and 4) and the CD1a2CD142 (double negative,

DN) subset with high CD11c expression levels (subset 5) (see

Fig. 2A and 2D). Of note, these subsets also displayed the highest

expression levels of the C-type Lectin BDCA3/CD141 (a.k.a.

Thrombomodulin, Fig. 2E), a marker recently linked to DC

subsets with particularly powerful cross-priming abilities [27,28].

CD163, a macrophage marker associated with the M2 regulatory

phenotype [29], was selectively expressed on the CD14+ subsets

and up- and down-regulated by i.d. conditioning with IL-10 or

GM-CSF+IL-4, respectively (see Fig. 2F).

Cytokine conditioning affects migration rates of skin DC
subsets and overall immune stimulatory versus inhibitory
DC phenotype

The various DC subsets displayed different states of maturation

as evidenced by differential expression levels of maturation and co-

stimulatory markers (see Fig. 3A). Based on the expression of

CD83, LC and CD1a+ DDC (subsets 1 and 2) clearly displayed a

superior maturation state over the other subsets. Conversely, the

CD14+ DDC subsets and the DN CD11chi DDC subset (subsets

3–5) were the least mature. Similar expression patterns were

observed for CD80 (Fig. 3A) and CD40 and CD86 (not shown).

Remarkably, the over-all maturation state of the various subsets, as

judged by the maturation–associated markers CD83 and CD80,

was hardly affected by the i.d. delivery of either the stimulatory

cytokine cocktail GM-CSF+IL-4 or the inhibitory cytokine IL-10,

both in terms of percentage positive cells and in mean fluorescence

intensity, see Fig. 3A and Fig. 4 respectively. Interestingly, a highly

significant reverse correlation between CD83 expression and

expression of either DC-SIGN or BDCA3 on all six DC subsets

migrated under steady state (i.e. medium control) conditions

(Fig. 3B) identified the latter two as reliable markers for an

immature state of migratory skin DC. In contrast to co-stimulatory

markers, the co-inhibitory molecule PD-L1 (B7–H1) was up-

regulated on all DDC subsets by both GM-CSF+IL-4 and IL-10

(see Fig. 3A and 4). Remarkably, this was not the case for LC;

indeed upon i.d. delivery of GM-CSF+IL-4 migratory LC

significantly down-regulated PD-L1 levels (Fig. 4). In addition,

intensity levels of intracellularly stained DC-SIGN were strongly

up-regulated on all migrated DDC subsets upon dermal GM-

CSF+IL-4 conditioning. High CD163 levels that were further up-

regulated by IL-10, were detected specifically on both CD14+

DDC subsets, consistent with a regulatory macrophage-like

phenotype (Fig. 4).

While i.d. delivery of cytokines did not alter the maturation state

of the individual DC subsets -as judged on the basis of CD83 and

CD80 expression, it did alter their relative contribution to the total

migrated DC population (Fig. 5A). As compared to medium

controls, i.d. conditioning by GM-CSF+IL-4 resulted in increased

frequencies of the more mature LC and CD1a+ DDC subsets,

while i.d. conditioning by IL-10 led to increased frequencies of the

immature CD1a+CD14+ and CD14+ DDC subsets (see high-

lighted areas in Fig. 5A). In Fig. 5B cytokine-modulated levels of

the co-stimulatory markers CD83 and CD80 are shown side by

side with corresponding levels of the co-inhibitory molecule PD-L1

and the regulatory M2-associated macrophage marker CD163 for

each of the individual LC and CD1a and/or CD14+ DDC subsets.

The combination of consistently low levels of co-stimulatory

markers (CD83 and CD80) and up-regulated PD-L1 and CD163

levels most likely signify a T cell-suppressive make-up of the

CD14+ DDC subsets, in particular upon i.d. IL-10 modulation.

The preponderance of the CD14+ DDC subsets among skin-

emigrated DC subsequent to i.d. IL-10 delivery would thus predict

poor overall T cell activation. In contrast, high levels of co-

stimulatory levels on the LC and CD1a+ DDC subsets might

ensure T cell activation, despite up-regulated PD-L1 levels upon

cytokine modulation. To ascertain the actual effects of the

observed cytokine-induced shifts in DC subset composition and

phenotype on subsequently induced T cell responses, we next

investigated the ability of the skin-emigrated DC to support and

skew Th cell differentiation and to prime and expand specific

CD8+ effector T cells.
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Figure 1. Dermal cytokine conditioning modulates subset distribution among skin-emigrated DC. A) Pie charts present the distribution
of 2-day skin-emigrated CD1a+, CD14+ (including CD1a+CD14+) and double negative (DN) DC subsets for the indicated test conditions. Breast cancer
explants were taken from tumor-overlying skin from chemonaive patients undergoing mastectomy. Post-chemo skin explants were similarly obtained
from neoadjuvant chemotherapy-treated breast cancer patients. B) Distribution of Langerhans cells (LC) or CD1a+ and/or CD14+ dermal DC (DDC)
among DC migrated from healthy donor explants or from explants taken from skin overlying breast tumors. Representative CD1a/CD14 FACS
analyses of DC migrated from C) breast cancer patients and D) from breast cancer patients treated with neoadjuvant chemotherapy (percentages of
the different subsets are indicated). D) Frequencies of CD1a/CD14/CD83 positive DC among the indicated test groups. Indicated statistical
significance levels were relative to medium controls in repeated measures 1-way ANOVA (cytokine experiments) or unpaired Student T tests (breast
cancer experiments). E) Known tumor-associated suppressive cytokines were i.d. injected and migrated DC subsequently harvested from skin explant
cultures 2 days later; n = 3–9. CD14+ DC frequencies were significantly upregulated by IL-10 only (P,0.01, denoted by asterisks).
doi:10.1371/journal.pone.0070237.g001
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Figure 2. Human skin explant-emigrated DC consist of at least six subsets. A) DC, migrated from 2-day cultured skin explants, were gated
by high Forward and Side Scatter properties and by differential CD1a, CD14 and CD11c expression levels (displayed by dot plots) to distinguish six
separate subsets as listed at the bottom of the figure. Prior to culture, explants were i.d. injected with plain medium, GM-CSF+IL-4, or IL-10 as
indicated. Percentages of the DC subsets corresponding to the depicted gates are shown. B–F) Expression levels of the indicated markers (in %
positive cells, mean6s.e.m.) are shown within each of the DC subsets and for all three test conditions; n = 4.
doi:10.1371/journal.pone.0070237.g002

Figure 3. Human skin-emigrated DC subsets display different maturation states. A) DC subsets (designated 1–6, phenotypic definitions
listed), migrated from 2-day cultured skin explants, display varying levels of the maturation-associated markers CD83, CD80, and PD-L1 n = 4 (in %
positive cells, mean6s.e.m.). B) Significant reverse correlations between subset expression levels of DC-SIGN and BDCA3/CD141 on the one hand and
CD83 on the other, demonstrate DC-SIGN and BDCA3 to be valid markers for immature skin-derived DC subsets under steady-state conditions (i.e.
migrated from serum-free medium injected explants); n = 4.
doi:10.1371/journal.pone.0070237.g003
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Modulation of IL-10 and IL-12p70 release
As an indication of their ability to support durable T cell

differentiation, migrated (and thoroughly washed) DC were tested

for CD40L-stimulated release of IL-12p70 and IL-10 at two and

seven days after start of migration (Fig. 6A). High levels of IL-10

(around 400 pg/ml) were only released by DC emigrated from IL-

10-conditioned explants and exclusively in early stages of

migration (day 2). Lower levels of IL-10 production (#100 pg/

ml) were observed for the other test conditions at this time

(Fig. 6A). IL-10 release in any of the tested conditions had dropped

below the detection limit of the employed ELISA by day 4 (data

not shown). Of note, IL-12p70 release followed reverse kinetics

with highest levels at day 7, which were significantly elevated upon

i.d. delivery of GM-CSF+IL-4 (see Fig. 5A). Lower, but still

elevated, levels for the latter condition were detected at day 2

(mean 125 pg/ml (range 15–305) vs. 6.5 pg/ml (range 0–29) for

medium controls, P,0.05) and 7.0 pg/ml (range 0–27) in the IL-

10 condition. In order for the observed IL-12p70 release to result

in proper type-1 T cell activation, the skin-emigrated DC need to

preserve their mature T cell-stimulatory phenotype as well as their

ability to home to the paracortical T cell areas of the lymph node

(mediated by the CCR7 chemokine receptor). We therefore

related expression of CD83 and CCR7 at day 7 to the IL-12:IL-10

ratio. As shown in Fig. 6B, significantly higher IL-12:IL-10 release

Figure 5. T cell-stimulatory or –inhibitory phenotypic features of the CD1a+ and/or CD14+ skin-emigrated LC and DDC subsets and
their relative distribution upon cytokine modulation. A) DC subset frequencies among 2-day skin-emigrated DC from skin explants i.d.
injected with medium, GM-CSF+IL-4 or IL-10, prior to migration; n = 4 (mean6s.e.m.). High-lighted areas contain results for the CD1a and/or CD14
positive LC and DC subsets shown in (B). B) Side-by-side comparison of the mean fluorescence intensity levels of the co-stimulatory markers CD83
and CD80 and the inhibitory marker PD-L1 and the M2 regulatory macrophage-related marker CD163 per LC and DDC subset with and without
cytokine modulation; n = 4, *P,0.05, **P,0.01 by paired t-test, medium versus cytokine conditions.
doi:10.1371/journal.pone.0070237.g005

Figure 4. Expression (fluorescence intensity) levels of co-stimulatory, co-inhibitory or subset-defining markers on skin-emigrated
DC subsets upon stimulatory or inhibitory cytokine modulation. DC subsets (phenotypic definitions listed), migrated from 2-day cultured
skin explants i.d. injected with either medium (open bars) or GM-CSF+IL-4 or IL-10 (closed bars), display varying levels of the maturation-associated
markers CD83, CD80, and PD-L1 or the subset defining markers DC-SIGN, BDCA3 and CD163; n = 4 (in mean fluorescence intensity [MFI], mean6s.e.m;
NB: isotype control fluorescence levels of all subsets never exceed MFI of 5). *P,0.05, **P,0.01 by paired t-test, medium versus cytokine conditions.
doi:10.1371/journal.pone.0070237.g004

Migration of a Tolerogenic Skin DC Subset by IL-10

PLOS ONE | www.plosone.org 9 July 2013 | Volume 8 | Issue 7 | e70237



ratios favorable to immune activation were observed at day 2 and

7 for DC migrated from explants conditioned by GM-CSF+IL-4

(predominantly CD1a+), and were related to a preserved

expression at day 7 of CD83 and CCR7. In contrast, DC

migrated from IL-10-conditioned skin (predominantly CD14+)

displayed low IL-12:IL-10 ratios and expressed neither CD83 nor

CCR7.

Cytokine-mediated conditioning of the dermis: effects on
Th cell differentiation

We next studied the ability of IL-10-modulated skin DC to skew

differentiation of allogeneic Th cells. To this end migrated DC

were pre-loaded with anti-CD3 and cultured with CD252 Th cells

over a period of 14 days. Next, the Th cells were restimulated with

anti-CD3 and anti-CD28 for 24 h and supernatants and mRNA

were subsequently obtained to determine cytokine release and Th

cytokine and transcription factor transcript levels. DC that had

migrated from IL-10 conditioned explants induced poor Th cell

expansion rates (Fig. 7A) with an apparent Th2 switch and

decreased release of IL-22 (Fig. 7B). Moreover, they induced

significant increases in IL-10 release and transcription, concom-

itant with increased FoxP3 mRNA expression levels (Fig. 7C).

Indeed, IL-10 and FoxP3 transcript levels were significantly

correlated (r2 0.748, P,0.006, data not shown). These data are

consistent with the induction of potentially suppressive Tr1-like

cells by CD14+ DDC emigrated from IL-10 conditioned skin. This

notion was further supported by a significant correlation between

both FoxP3 and IL-10 transcript levels and frequencies of

migrated CD1a+CD14+ DDC, i.e. subset 3, which also expressed

CD141 (Fig. 2, Fig. 4) and the PD-L1 expression levels and

migration rate of which were both notably increased by IL-10

modulation (Fig. 5A,B). In contrast, an inverse trend was observed

for CD1a+ DDC that lacked CD14 expression and displayed high

co-stimulatory levels, see Fig. 7D. Of note, in 7-day co-cultures of

Figure 6. Dermal cytokine conditioning modulates IL-10 and IL-12p70 release by skin-emigrated DC. Skin explants were i.d. injected
with medium or the indicated cytokines and cultured for 2 days at which time explants were discarded. Migrated cells were harvested at day 2 or 7,
thoroughly washed, and stimulated by CD40L-expressing J558 cells in the presence of IFNc (1000 IU/ml). Supernatants were harvested 24 hr later
and IL-10 and IL-12p70 concentrations determined by ELISA. A) Cytokine release is shown in pg/ml per 10,000 cells per 24 h for the indicated
conditions and time points. Means 6s.e.m. from 6–7 experiments are shown. B) Mean IL-12p70 and IL-10 concentrations were divided to obtain IL-
12:IL-10 ratios for the indicated cytokine conditions and time points (N = 6–7). The obtained ratios are displayed in relation to CD83 and CCR7
expression on the skin explant-emigrated DC at day 7 after the start of explant culture (mean fluorescence intensities are listed and corresponding
isotype control levels marked). Asterisks denote significant differences (*P,0.05, **P,0.01).
doi:10.1371/journal.pone.0070237.g006
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skin emigrated and anti-CD3 loaded DC with unsorted allogeneic

peripheral blood lymphocytes, highest frequencies of CD25hi-

FoxP3+ Tregs were observed in cultures with DC emigrated from

IL-10 conditioned skin explants (Fig. 7E, n = 3 open symbols).

Whereas intracellular IFNc expression upon activation with PMA

and ionomycin was observed in FoxP32 Th cells in these cultures,

this was not the case for the CD25hiFoxP3+ cells (Fig. 7F),

providing further functional evidence of their Tr1/Treg identity.

To confirm the actual induction/conversion of Tr1/Tregs from

conventional CD4+ T cells, cells from 14-day co-cultures with

sorted allogeneic CD252 Th cells were also stained for CD25 and

intracellular FoxP3 expression. As demonstrated by Fig. 7G,

CD25hiFoxP3+ Tr1/Tregs were induced only by DC emigrated

from IL-10 conditioned skin (n = 2, closed symbols in Fig. 7E).

Cytokine-mediated conditioning of the dermis: effects on
CD8+ effector T cell priming

To assess the effects of cytokine-modulated DC subset migration

on CD8+ effector T cell priming, migrated DC from HLA-A2+

explants were loaded with the immune-dominant Mart-1-derived

epitope Mart-1aa26L235 and cultured with HLA-A2-matched

allogeneic CD8b+ T cells. Multiple parallel bulk cultures per

condition (n = 3–6) were set up with DC from three different skin

donors. After 10 days specific expansion of Mart-1aa26L235

reactive CD8+ T cells was checked by HLA-tetramer staining.

Combined data from the three priming experiments are shown in

Fig. 8A. After this one round of stimulation, tetramer positive

cultures were exclusively found after stimulation by DC from GM-

CSF+IL-4-conditioned skin for all 3 donors tested (1/4, 4/6, and

2/5 positive cultures, respectively). In one donor massive T cell

death in the IL-10-modulated DC cultures precluded reliable

tetramer analysis. T cells were subsequently re-stimulated with

peptide-loaded JY cells and seven days later re-analyzed for

tetramer binding (Fig. 8B). Even then no tetramer positive cultures

were observed for the IL-10 conditions, whereas in one donor a T

cell bulk primed by medium control DC did bind tetramers, albeit

at a low intensity, suggestive of low T cell receptor binding affinity.

This was borne out by functional avidity analysis, showing half-

maximal IFNc release by these tetramer positive T cells at

approximately 100-fold higher peptide concentrations than T cells

primed by DC from GM-CSF+IL-4-conditioned skin (see Fig. 8C).

Discussion

Most of our knowledge of the functionality of skin DC subsets

has been gleaned from mouse studies. In human skin, functional

studies have been hampered by low DC numbers and by the

inability to manipulate them in a targeted fashion, as has been

achieved in mice through conditional knock-out of specific DC

subsets [30]. Much of what we do know of human skin subsets has

been the result of research on the dermal delivery of cancer

vaccines, in which new avenues have been explored to specifically

target cutaneous DC subsets with the ability to efficiently prime

Th1 and CTL responses [31]. Tumor-induced systemic suppres-

sion of DC development and maturation may well interfere with

these functions. We previously showed the effects of the cancer-

associated suppressive cytokine IL-10 on the phenotype and

allogeneic T cell priming ability of human skin-emigrated DC

[19]. In the current study we more extensively profiled various

DDC subsets and studied the effects of cancer-related and

cytokine-mediated conditioning of the human dermis on the

subset composition and phenotype of the skin-emigrating DC

population in relation to the induction and skewing of CD4+ and

CD8+ T cell differentiation. Although the numbers of migrated

cells were too low to allow for sorting of the different subsets, our

findings show dramatic shifts in the relative migration rates of the

DC subsets with clear impact on the induction of both functional

Th and CD8+ T cells.

In keeping with findings by others (reviewed by Teunissen et al.

[32]), intracellular staining for Langerin and E-Cadherin positively

identified the CD1ahi subset among the human skin explant-

emigrated DC as LC, while intracellular expression of DC-SIGN

identified the five remaining subsets as DDC (either CD1a+ and/

or CD14+, or DN). DC-SIGN was upregulated by i.d. adminis-

tration of GM-CSF and IL-4 in all five DDC subsets. This up-

regulation was most likely dependent on IL-4, previously shown to

be primarily responsible for the induction of DC-SIGN [33].

Interestingly, cytokine conditioning mostly affected the migratory

balance between the CD1a+ and CD14+ skin DC subsets, more so

than their general maturation state, and apparently left the

migration rates of both DN DDC subsets relatively unaffected.

Importantly, the CD14+ DDC subsets were phenotypically

immature, characterized by high levels of BDCA3/CD141, a

marker recently associated with DC subsets with cross-presenta-

tion abilities [27], and their relative migration rates were increased

by dermal IL-10 conditioning. In a comparative analysis with

CD142 DDC, CD14+ DDC were previously shown to be poor

inducers of allogeneic T cells and to require high DC:T cell ratios

for Th1 induction [14]. Here we show that dermal conditioning by

IL-10 increased their PD-L1 expression levels, while maintaining

low levels of co-stimulatory molecules, and led to high IL-10

release levels upon CD40L-mediated stimulation. This resulted in

Th2 and Tr1/Treg induction, accompanied by IL-10 transcrip-

tion and release upon co-culture with CD4+CD252 T cells, and an

inability to prime CD8+ effector T cells. In keeping with these

observations, Banchereau et al. have recently shown that IL-10

released by CD14+ DDC into the immune synaps is mainly

responsible for their inability to prime functional CTL [8], while

interference with Immunoglobulin-like transcript inhibitory recep-

tors (ILT) inhibits their type-2 cytokine skewing ability [34].

Figure 7. Effects of dermal cytokine conditioning on the induction of Th cell differentiation by skin-emigrated DC. Two days after
injection of medium with or without cytokines, skin-emigrated DC were harvested, pulsed with anti-CD3 and co-cultured for 2 weeks with
CD4+CD252 allogeneic T cells. A) Th cell expansion factors after 2 weeks of co-culture. B) Cytokine release levels (measured after 24 h stimulation
with anti-CD3/anti-CD28, n = 4; mean6s.e.m.) and C) IL-10 release and relative IL-10 and FoxP3 mRNA expression levels (n = 3, mean6s.e.m) of the
primed Th cells. Significant differences in appropriate paired statistical tests were determined versus medium controls (unless otherwise indicated)
and denoted by asterisks: *P,0.05, **P,0.01. D) Correlation between CD1a+CD14+ and CD1a+CD142 DDC frequencies among skin-emigrated DC (for
all tested conditions, n = 3) and FoxP3 and IL-10 transcript levels (statistical analysis by Pearson correlation). E) Superior expansion and/or induction of
CD25hiFoxP3+ Tregs by DC migrated from IL-10 conditioned skin explants; open symbols: skin-emigrated DC from three donors were co-cultured with
unsorted allogeneic lymphocytes; closed symbols: skin-emigrated DC from two donors were co-cultured with sorted CD4+CD252 T cells. *P,0.05,
**P,0.01 in a repeated measures ANOVA with Tukey post-hoc test. F) FoxP3 versus IFNc expression in allogeneic CD4+CD3+ T cells (both by
intracellular staining upon PMA/ionomycin stimulation for 4 hours), primed by DC migrated from conditioned human skin explants and G)
flowcytometric Treg analysis in 14-day co-cultures of migrated skin DC with allogeneic CD4+CD252 T cells; test conditions and percentages of FoxP3+

or IFNc+ CD4+ T cells or of CD25hiFoxP3+ Tregs are indicated.
doi:10.1371/journal.pone.0070237.g007
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Of note, our previous [19] and current findings, identifying

CD14+BDCA3/CD141+ DC as an immature migratory subset

with immune regulatory properties, are in line with a recent report

by Chu et al. showing IL-10 release and functional Treg induction

by the same subset with suppressive effects on skin inflammation

[18], suggesting a role in the maintenance of homeostatic

tolerance. In addition we now show an increased frequency of

the CD14+ DDC subset among DC migrating from IL-10- and

cancer-conditioned skin. Of particular interest in this context is the

IL-10-induced upregulation of the M2-macrophage associated

marker CD163 on CD14+ migratory DDC. This marker was

previously reported on skin-resident macrophages [35], which

were also found to express DC-SIGN. Although DC-SIGN and

CD163 are both expressed by the CD14+ DDC, which, moreover,

functionally and morphologically resemble macrophages [19], we

have nevertheless designated them DC, because 1) they are

migratory unlike dermal macrophages which are generally

regarded as sessile [36], 2) they express BDCA1/CD1c [19], a

typical feature of DDC [35] and 3) because they can develop from

migrated CD1a+ DC through a CD1a+CD14+ intermediate

(designated DDC subset 3 in this study –see Fig. 1 and 2) [19].

The latter observation raises an important issue that as yet remains

unresolved: are the observed sub-populations among the migrated

human DDC genuine subsets, or rather representations of the

same DDC in various states of (trans-)differentiation? Indeed, we

have previously found compelling evidence, both from cytokine-

conditioned and irritant-treated skin explants, that LC and CD1a+

DDC can trans-differentiate during migration to the CD14+

macrophage-like DDC subset in an IL-10-dependent fashion

[19,37]. Conversely, Larregina et al. reported the differentiation of

LC from dermal CD14+ precursors [38]. Finally, it has even been

suggested that an inflammatory environment in the dermis may

lead to the trans-differentiation of sessile macrophages to

migratory (CD14+) DDC, possibly accounting for the observed

reduced densities of macrophages in human skin explants upon

culture [31,38]. Altogether these studies paint a picture of an inter-

related population of dermal DC and macrophages in flux, trans-

differentiating into each other, as dictated by environmental

conditions. Indeed, the IL-10-conditioned CD14+ DDC with a

DC-SIGN+BDCA3+CD163+ phenotype are highly reminiscent of

both tumor-associated macrophages and DC, adopting similar

M2-like immunosuppressive traits [39–41]. As a model for cancer-

induced suppression of DC in the skin microenvironment, we also

studied the migration of DC from explants derived from skin

overlying breast tumors, for which a reduced LC density was

previously reported [42]. Similarly to the IL-10-modulated skin

explants, a remarkable shift to immature CD14+ DDC migration

was observed in these skin explants, taken from mastectomy

specimens from chemo-naive patients. The small size of the skin

specimens obtained from these patients precluded neutralization

experiments to identify the responsible suppressive factor. How-

ever, testing a panel of tumor-associated culprits pointed to IL-10

as the most likely candidate, since it was the only tested cytokine

that could affect the balance of migrating CD1a+ and CD14+

DDC. This is in keeping with other reports demonstrating the

unique ability of IL-10 among other suppressive factors to

modulate the maturation and migration of fully differentiated

DC [40,43,44]. Importantly, reduction of tumor load by

neoadjuvant chemotherapy led to normalization of the migratory

DDC subset distribution, providing evidence for tumor involve-

ment in the observed aberrant migration of predominantly CD14+

DDC.

In contrast to IL-10, i.d. delivery of GM-CSF+IL-4 effected

predominant migration of CD1a+ DDC and LC and resulted in

Figure 8. Efficient priming of high-avidity CD8+ T effector cell
by skin-emigrated DC upon dermal conditioning with GM-
CSF+IL-4. A) Multiple parallel bulk cultures were set up of HLA-A2
matched allogeneic CD8b+ T cells from three different donors together
with Mart-126L235 peptide loaded DC, emigrated from skin explants that
were i.d. injected by medium or cytokines as indicated. Ten days later
Mart-126L2352specific T cell frequencies were determined in all bulk
cultures by HLA-tetramer (Tm) binding. Aggregate results from all 3
experiments are shown. *P,0.05, **P,0.01 in Fisher’s Exact test. B)
Seven days after restimulation with Mart-126L235 peptide loaded JY
cells, Tm positive cultures were pooled. Sufficient numbers were
obtained from one T cell donor to undertake functional avidity analyses
for the medium and GM-CSF+IL-4 conditions. Tm binding levels in these
two bulk cultures are shown (MFI: Mean Fluorescence Intensity). Note:
no Tm positive cultures were obtained for any of the IL-10 conditions.
C) Stimulation of the pooled bulk cultures with JY cells, loaded with
titrated amounts of the Mart-126L235 peptide, followed by intracellular
IFNc expression read-out, showed CD8+ effector T cells from the GM-
CSF+IL-4 condition to be of higher avidity than those from the medium
condition (half-maximal frequencies of IFNc producing Tm+ T cells for
both test conditions and the corresponding peptide concentrations
used for JY loading are indicated by arrows).
doi:10.1371/journal.pone.0070237.g008
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Th1 induction (evidenced by increased IFNc release levels). In

addition, GM-CSF+IL-4-modulated DDC and LC were superior

inducers of anti-melanoma CD8+ effector T cells, which were

shown to exhibit increased functional avidity. Klechevsky et al. first

reported a functional dichotomy between human LC and CD14+

DDC with the former preferentially activating CTL and the latter

B cell responses [45]. Our own genome-wide transcriptional

profiling studies of LC versus CD1a+ DDC, clearly showed the

latter to be more activated under steady state conditions [46]. In

keeping with findings by others, our studies show that LC only

make up a small minority of the ‘‘crawl-out’’ DC derived from

cultured full-thickness skin explants (typically between 1–5%) [32].

While i.d. delivery of GM-CSF and IL-4 prior to culture increased

this frequency to about 10%, their relative under-representation in

the tested conditions leaves the exact contribution of LC to the

observed effects on T cell induction in doubt. Nevertheless, our

current findings that IL-10-induced increases in CD14+ DDC

migration correspond to increased Th2/Treg skewing and that

GM-CSF+IL-4-induced increases in LC and CD1a+ DDC

migration correspond to efficient and high-avidity CD8+ T cell

priming, are in line with the observations made by Klechevsky et al

[8,45].

Whereas default Th1 induction by skin DC was previously

shown to depend on IL-23 rather than IL-12p70 release [14], we

found evidence for a GM-CSF and IL-4-induced release of IL-

12p70 which most likely accounts for the increased induction and

expansion of Th1 and high-avidity CD8+ effector T cells. Several

reports have indicated that in vitro generated LC as well as primary

LC and DDC, isolated from human skin, are poor IL-12p70

producers [7,9,47]. Our data indicate that LC and/or DDC are

capable of high-level IL-12p70 release upon intracutaneous

activation by GM-CSF and IL-4, but only at late time points

following migration, i.e. after 5 to 7 days. This is in sharp contrast

to previous findings for in vitro cultured MoDC, which reach a so-

called ‘‘exhausted’’ state 48 h post-stimulation, resulting in an

inability to release IL-12p70 and to induce Th1 cells and CTL

[48,49]. Preferred early IL-12p70 release is in keeping with the

proposed acute inflammatory role of MoDC in vivo [50]. In

contrast, skin-resident DC, with a very low turn-over and

migration rate [51], predominantly release IL-10 under steady

state conditions. Only in the presence of strong maturational

signals such as the pro-inflammatory cytokines GM-CSF and IL-4,

which induce a mature phenotype that can be sustained for up to 7

days following the initiation of migration, do skin-emigrated DC

release high levels of IL-12p70 in response to CD40L stimulation,

and then contribute to the induction of type-1 T cell-mediated

immunity. IL-10/IL-12p70 release kinetics thus indicate a

powerful default tolerance maintained by migrating skin DC that

can only be lifted by strong activating signals resulting in durable

DC maturation.

Finally, and remarkably, i.d. delivery of either IL-10 or GM-

CSF/IL-4 resulted in down-regulated transcription and release

of IL-22. In view of the respective inhibitory and stimulatory

effects of IL-10 and GM-CSF+IL-4 on type-1 T cell activation,

this observation is in keeping with the recognized role of IL-22

in skin homeostasis and inflammation as well as its apparent

minor role in cell-mediated immunity against viruses and/or

cancer [52].

In conclusion, IL-10 conditioning of human skin leads to

predominant migration of immature CD14+BDCA3/CD141+

DDC subsets, which display a suppressive M2-like phenotype,

i.e. low co-stimulatory marker levels combined with up-regulated

PD-L1 and CD163, and dominant IL-10 release, and which do

not support CD8+ effector T cell expansion, but rather induce

type-2 and IL-10 producing Th cells as well as CD25hiFoxP3+

Tregs. In contrast, GM-CSF+IL-4 conditioning leads to predom-

inant migration of CD1a+ LC and DDC subsets in a sustained

mature state that predominantly release IL-12p70 and can induce

both Th1 and tumor-specific CD8+ high-avidity effector T cells.

Our data suggest overriding immune suppressive effects of IL-10

in tumor-conditioned skin and argue in favor of the incorporation

of GM-CSF and IL-4 in adjuvants for transcutaneously or

intradermally delivered cancer vaccines.
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