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Abstract: A high incidence of hypersensitivity reactions (HSRs) largely limits the use of paclitaxel
injection. Currently, these reactions are considered to be mediated by histamine release and
complement activation. However, the evidence is insufficient and the molecular mechanism involved
in paclitaxel injection-induced HSRs is still incompletely understood. In this study, a mice model
mimicking vascular hyperpermeability was applied. The vascular leakage induced merely by
excipients (polyoxyl 35 castor oil) was equivalent to the reactions evoked by paclitaxel injection
under the same conditions. Treatment with paclitaxel injection could cause rapid histamine release.
The vascular exudation was dramatically inhibited by pretreatment with a histamine antagonist.
No significant change in paclitaxel injection-induced HSRs was observed in complement-deficient
and complement-depleted mice. The RhoA/ROCK signaling pathway was activated by paclitaxel
injection. Moreover, the ROCK inhibitor showed a protective effect on vascular leakage in the
ears and on inflammation in the lungs. In conclusion, this study provided a suitable mice model
for investigating the HSRs characterized by vascular hyperpermeability and confirmed the main
sensitization of excipients in paclitaxel injection. Histamine release and RhoA/ROCK pathway
activation, rather than complement activation, played an important role in paclitaxel injection-induced
HSRs. Furthermore, the ROCK inhibitor may provide a potential preventive approach for paclitaxel
injection side effects.

Keywords: paclitaxel injection; hypersensitivity reactions; vascular permeability; histamine release;
complement activation; RhoA/ROCK signaling pathway

1. Introduction

Paclitaxel injection, a microtubule-stabilizing agent causing cancer cell death or inducing
apoptosis [1], is widely used for the treatment of several malignancies, including ovarian, breast,
and non-small cell lung cancers [2]. However, the use of paclitaxel is sometimes limited due to the high
incidence of severe hypersensitivity reactions (HSRs) [3] characterized by a rapid onset of generalized
urticaria, angioedema, pulmonary edema, dyspnea, hypotension, and tachycardia [4], which are similar
to type I hypersensitivity. Approximately 16% to 40% of patients receiving paclitaxel infusions suffer
from HSRs, even on the first exposure [5]. Some studies also claim that taxane-induced acute HSRs
are not mediated by specific immunoglobulin E (IgE) [6] and have a non-allergic nature [7]. Mast cell
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degranulation has been consistently confirmed to be one of the causes of paclitaxel injection-induced
HSRs [8,9].

Recent studies have shown that polyoxyl 35 castor oil (Cremophor EL), one of the excipients
of paclitaxel injection, is partly responsible for paclitaxel injection-induced HSRs by evoking
the complement system [10] and histamine release [11] in in vitro studies. The glucocorticoid
dexamethasone, at therapeutic concentrations, decreases complement component 3 (C3) and has
anti-inflammatory properties [12]. Despite premedication with a combination of corticosteroid and
anti-histamine agents, HSRs still occur during paclitaxel infusion in the treatment of solid tumors in 4%
of patients, and severe HSRs (≥grade 3) happen in 1% of patients [13]. Hence, we hypothesized that
other mechanisms resulting in paclitaxel injection-induced HSRs besides complement activation and
histamine release may be present. Due to the lack of in vivo data, novel models mimicking paclitaxel
injection HSRs that closely resemble the clinical symptoms are urgently needed.

The symptoms of paclitaxel injection-induced HSRs, including angioedema, generalized urticaria,
and pulmonary edema, are related to vascular hyperpermeability. Previous studies suggested that
RhoA/ROCK signaling pathway activation is involved in vascular endothelial hyperpermeability in
response to various inflammatory factors, such as histamine [14], cytokines [15], or vascular endothelial
growth factor [16] by upregulation of active state small GTPase RhoA [17]. Thus, we hypothesized
that the RhoA/ROCK signaling pathway might be associated with paclitaxel injection-induced HSRs.

In this study, we developed a mice model to investigate the HSRs of paclitaxel injection,
and evaluated the roles of histamine release, complement activation, and RhoA/ROCK signaling
pathway activation on paclitaxel injection-induced HSRs

2. Results

2.1. First Exposure of Paclitaxel Injection Could Cause Hypersensitivity Reactions, Which Are Mainly Induced
by Cremophor EL

According to the manufacturer’s instructions, the clinical doses of paclitaxel injection
recommended for breast cancer treatment are an infusion of 135–175 mg/m2 at final concentrations of
0.3 to 1.2 mg/mL. The doses of paclitaxel injection used in the present study in mice (4, 8, and 16 mg/kg)
were about 1/8, 1/4, and 1/2 of clinical dosages, according to the conversion between animal doses
and human equivalent doses [18]. In the preliminary experiments in mice, we found that paclitaxel
injection at doses higher than 20 mg/kg could cause death in most mice.

Paclitaxel was slowly intravenous injected (iv) into Institute of Cancer Research (ICR) mice and
immediately followed by one 0.8% Evans blue (EB) injection (iv). EB, which binds plasma albumin to
form a complex of albumin–EB, has been widely used as a marker for evaluating vascular leakage,
and makes vascular permeability visible and measurable [19]. We scored “0” to “5” according to the
size of blue area in the ear to evaluate the degree of vascular leakage (Figure 1).
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Figure 1. The scoring standard (from “0” to “5”) for evaluating the areas of blue color in ear exudation.

No visual blue-staining was observed in mice treated with normal saline/EB. Positive substance
compound 48/80 (COM 48/80), a mast cell degranulation inducer caused strong ear-bluing reactions.
The result showed that the blue color in ears was observed in a dose-dependent manner about 10 min
after paclitaxel dosing (Figure 2A). The mean score of blue areas in the ear was 0, 0.95, and 2.75 in
the 4, 8, and 16 mg/kg paclitaxel injection groups, respectively (Figure 2B). Vascular leakage in the
ear was also assessed by the quantity of EB exudation at 30 min after the administration of drugs.
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EB exudations in 4, 8, and 16 mg/kg paclitaxel groups were 14.2%, 89.9%, and 91.4% higher than the
negative control group, respectively (Figure 2C). Paclitaxel injection-induced ear vascular leakage in
male mice was stronger than that in females (Figure 2D,E). Thus, male mice were employed in further
experiments. Male mice were more sensitive than females. This may be associated with mast cell
secretion regulated by progesterone [20], however, gender difference in human has yet to be clarified.
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16 mg/kg PTX injection (five male and five female mice per group). (D,E) Gender difference in scores 
and EB extravasation. (F,G) Vascular leakage of PTX injection and the excipient (CrEL) treatment (n 
= 8 male mice per group). Low dose, 4 mg/kg PTX injection or 3.33% CrEL, medium dose, 8 mg/kg 
PTX injection or 6.67% CrEL, and high dose, 16 mg/kg PTX injection or 13.33% CrEL, respectively. 
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Figure 2. Paclitaxel injection induces vascular leakage in mice ears. (A) Blue color was observed in
mice ears which received different treatments of normal saline (NS), compound 48/80 (COM 48/80)
(1.0 mg/kg), or paclitaxel (PTX) injection (4, 8, or 16 mg/kg) plus Evans blue (EB). (B,C) The scores of
blue colors and EB extravasation in mice ears with the administration of NS, COM 48/80, and 4, 8,
or 16 mg/kg PTX injection (five male and five female mice per group). (D,E) Gender difference in scores
and EB extravasation. (F,G) Vascular leakage of PTX injection and the excipient (CrEL) treatment (n = 8
male mice per group). Low dose, 4 mg/kg PTX injection or 3.33% CrEL, medium dose, 8 mg/kg PTX
injection or 6.67% CrEL, and high dose, 16 mg/kg PTX injection or 13.33% CrEL, respectively. ND,
the main score was 0 in the group. * p < 0.05 and ** p < 0.01 compared with the NS-treated group.
## p < 0.01 and #### p < 0.0001, comparison between male and female mice.



Int. J. Mol. Sci. 2019, 20, 4988 4 of 14

Next, paclitaxel injection and the excipients in paclitaxel injection (polyoxyl 35 castor oil and
anhydrous ethanol, 1:1 v/v) were tested. When the concentration of paclitaxel in the injection was 4, 8,
and 16 kg/mg, the relevant volume fractions of excipients were 3.33%, 6.67%, and 13.33%, respectively.
The vascular leakage induced by merely excipients is equivalent to that evoked by paclitaxel injection
under the same conditions (Figure 2F,G). It is suggested that in this study, the HSRs of paclitaxel
injection was mainly caused by the excipients.

The above results indicate that the first exposure of paclitaxel injection could induce HSRs with
manifestations on skin. These vascular leakage reactions were in a dose-dependence manner and
mainly caused by relevant excipients in paclitaxel injection. Although polyoxyl 35 castor oil plays
a crucial role in the occurrence of HSRs, this type of paclitaxel injection is still the most commonly
used in China. Our research focused on the adverse effects caused by paclitaxel injection and hopes to
provide a possible way to prevent HSRs in clinical practice, so the following experiments were carried
out using paclitaxel injection rather than polyoxyl 35 castor oil.

2.2. Histamine Release Contributes to Paclitaxel-Induced Hypersensitivity Reactions

To verify the effect of paclitaxel injection on histamine release, plasma was collected 5 min after
the intravenous injection of normal saline, COM 48/80, or a high concentration of paclitaxel injection in
ICR mice. COM 48/80 is a G protein activator which induces mast cell degranulation and promotes
histamine release. The histamine level in the positive control group (COM 48/80) increased significantly
(p < 0.05) and was 45% higher than that in the negative group (normal saline). Paclitaxel injection also
caused rapid histamine release and the increased concentration of blood histamine reached 2.4-fold
compared with the normal saline group (p < 0.001, Figure 3A). These data suggest that histamine
release was an early event involved in paclitaxel injection-induced HSRs.

Next, we evaluated the vascular leakage by treatment with 3 mg/kg of the anti-histamine drug,
loratadine (an H1 receptor antagonist) prior to the administration of paclitaxel injected into ICR mice.
The reaction rate of ear vascular leakage decreased from 100% to 20% by pretreatment with loratadine
in the COM 48/80 and paclitaxel groups. A significant reduction of the average score of blue area in
the ears could be observed as well (Figure 3B). In addition, EB exudation was dramatically inhibited
by anti-histamine treatment; 82% and 69% lower than that without loratadine in the COM 48/80 and
paclitaxel group, respectively (Figure 3C).

In summary, histamine released rapidly in mice plasma after COM 48/80 and paclitaxel injection
treatment. On the other hand, the vascular leakage was markedly inhibited by pretreatment with
anti-histamine reagent, confirming that histamine release was involved in paclitaxel injection-induced
HSRs in mice.



Int. J. Mol. Sci. 2019, 20, 4988 5 of 14

Int. J. Mol. Sci. 2019, 20, x FOR PEER REVIEW 6 of 15 

 

 
Figure 3. Effects of histamine release and complement activation on PTX injection-induced 
hypersensitivity reactions. (A) Histamine release in Institute of Cancer Research (ICR) mice serum (n 
= 5 male mice per group). (B,C) Vascular permeability in ICR mice after PTX injection administration 
with or without pretreatment with loratadine (n = 10). (D,E) PTX injection-induced vascular 
hyperpermeability in complement factor 5 (C5)-deficient mice (DBA) and ICR mice (n = 10). (F,G) 
With or without complement depletion pretreated by a Cobra venom factor (n = 10). ND indicted ear 
bluing score = 0. *p < 0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001, comparisons were made in the 
treatment group vs. the NS group; ###p < 0.001, and ####p < 0.0001, with vs. without loratadine. 

2.3. Complement Is Not the Main Mediator of Paclitaxel Injection-Induced Hypersensitivity Reactions in 
Mice 

We used two complement-deficient mice models, complement factor 5 (C5)-deficient mice 
(DBA/2N) and Cobra venom factor (CVF) complement-depleted mice, to further investigate the role 
of the complement pathway in paclitaxel injection-induced HSRs. 

No obvious difference in vascular hyperpermeability was observed between DBA/2N and ICR 
mice, as assessed by the ear blue score and EB exudation (Figure 3D,E). Furthermore, CVF, a 

Figure 3. Effects of histamine release and complement activation on PTX injection-induced
hypersensitivity reactions. (A) Histamine release in Institute of Cancer Research (ICR) mice serum (n = 5
male mice per group). (B,C) Vascular permeability in ICR mice after PTX injection administration with or
without pretreatment with loratadine (n = 10). (D,E) PTX injection-induced vascular hyperpermeability
in complement factor 5 (C5)-deficient mice (DBA) and ICR mice (n = 10). (F,G) With or without
complement depletion pretreated by a Cobra venom factor (n = 10). ND indicted ear bluing score = 0.
* p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001, comparisons were made in the treatment group
vs. the NS group; ### p < 0.001, and #### p < 0.0001, with vs. without loratadine.

2.3. Complement Is Not the Main Mediator of Paclitaxel Injection-Induced Hypersensitivity Reactions in Mice

We used two complement-deficient mice models, complement factor 5 (C5)-deficient mice
(DBA/2N) and Cobra venom factor (CVF) complement-depleted mice, to further investigate the role of
the complement pathway in paclitaxel injection-induced HSRs.
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No obvious difference in vascular hyperpermeability was observed between DBA/2N
and ICR mice, as assessed by the ear blue score and EB exudation (Figure 3D,E).
Furthermore, CVF, a complement-activating protein which was shown to be a structural and
functional analog of complement C3, was intraperitoneally injected into ICR mice to deplete total
complement. Total complement could not be detected in CVF-treated mice and be detectable
in control (non-CVF-treated) mice, which shows that CVF abolished total complement activity.
However, vascular reactions induced by paclitaxel injection were nearly equal in CVF- and
non-CVF-treated mice (Figure 3F,G). These results indicate that complement might not be a major
factor of paclitaxel injection-induced HSRs in mice.

2.4. Paclitaxel Injection-Induced Hypersensitivity Reactions Were Associated with RhoA/ROCK Signaling
Pathway Activation

Vascular leakage and edema induced by paclitaxel injection are related to vascular permeability.
It has been reported that the RhoA/ROCK signaling pathway is associated with endothelial
hyperpermeability [21]. The upregulated small GTPase RhoA leads to increased activity of
Rho-associated kinase (ROCK) [22]. The activation of ROCK could increase the phosphorylation of
the myosin light chain (MLC) and suppress the activity of myosin light chain phosphatase (MLCP)
by phosphorylating the myosin binding subunit (MYPT). This could subsequently induce actin
cytoskeleton reorganization and vascular endothelial hyperpermeability [23]. Therefore, we next
verified the possible contribution of this pathway in paclitaxel injection-induced vascular leakage.

The results show that 16 mg/kg paclitaxel injection could obviously activate the RhoA/ROCK
signaling pathway. The expressions of GTP-RhoA, phospho-myosin light chain (p-MLC), and
phospho-myosin phosphatase targeting subunit 1 (p-MYPT) were significantly increased in the ears
and lungs of mice (Figure 4A–H).

We next analyzed whether the specific inhibition of the RhoA/ROCK signaling pathway
would attenuate paclitaxel injection-induced RhoA/ROCK activation. The data indicate that fasudil
hydrochloride, a broadly used inhibitor of ROCK [24], inhibited augmentation of key proteins in the
RhoA/ROCK pathway mentioned above. Pretreatment of intraperitoneal injected (ip) 30 mg/kg fasudil
significantly reduced paclitaxel injection-induced upregulation of GTP-RhoA, p-MLC, and p-MYPT in
the ears and lungs of mice (Figure 4A–H).

These results suggest that the activation of the RhoA/ROCK signaling pathway was involved in
paclitaxel injection-induced HSRs.
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Figure 4. The inhibitory effect of fasudil hydrochloride (FH) on upregulation of key proteins in
RhoA/ROCK pathway induced by PTX injection in mice ear (A–D) and lung (E–H) (n = 3 per group).
(A,E) GTP-RhoA/total RhoA in mice ear or lung with PTX injection (16 mg/kg, iv) in the presence
or absence of FH (30 mg/kg, ip). (B,F) p-MLC/MLC expression. (C,G) p-MYTP/MYPT value. (D,H)
ROCK/GAPDH. * p < 0.05, and ** p < 0.01, compared with the NS-treated group, # p < 0.05 and
## p < 0.01 represented a significant difference between with and without FH pretreatment.
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2.5. Fasudil Inhibits Paclitaxel Injection Hypersensitivity Reactions in Mice

We further confirmed the effect of fasudil hydrochloride on paclitaxel injection-induced HSRs.
The results showed that pretreatment with fasudil significantly attenuated vascular leakage in mice
ears, by which the ear-bluing score was downregulated by 73.0% and the EB exudation was significantly
decreased compared with the paclitaxel injection group (Figure 5A–C). Histological observations
were performed to evaluate whether pretreatment with fasudil mitigated edema and inflammatory
exudation in mice lung caused by paclitaxel injection. Histological changes, including congestion,
edema with alveolar septal broadening, perivascular, and peribronchial monocyte infiltration were
observed in the lungs of the 16mg/kg paclitaxel group. Consistently with ear vascular leakage results,
pathological abnormalities were largely eliminated in the fasudil pretreatment group (Figure 5D–F).
These results indicate that pretreatment with fasudil could notably inhibit paclitaxel injection-induced
HSRs in the mice model.
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Figure 5. The inhibitory effect of FH on PTX injection-induced vascular leakage in mice ear and on
lung inflammation. (A) The blue color in mice ears that received treatment of NS, PTX (16 mg/kg),
and FH (30 mg/kg) plus PTX (16 mg/kg) injection. (B) Score of EB extravasation in the ear (n = 10).
(C) EB extravasation in the ear (n = 10). ** p < 0.01, compared with the NS-treated group. # p < 0.05
and ## p < 0.01 represented the significant difference between the PTX injection single treatment and
the concomitant FH pretreatment. (D–F) Microscopic examination of lungs, 200×. (D) NS, (E) PTX
(16 mg/kg), and (F) FH (30 mg/kg) plus PTX (16 mg/kg) injection.

3. Discussion

A high incidence of severe HSRs induced by paclitaxel infusion leads to the discontinuation of
cancer chemotherapy [25]. These reactions occur immediately at the first exposure without prior
sensitization [4]. Previous studies reported that the major effects of HSRs during paclitaxel infusion
were attributed to histamine release and complement activation [10], yet this explanation is not
sufficient to account for premedication failure with a combination of H1, H2 antagonist anti-histamines,
and high-dose corticosteroids [13]. To date, the mechanism of paclitaxel injection-induced HSRs is
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still not completely understood. Developing more effective approaches to prevent HSRs remains
a big challenge.

The skin and respiratory manifestations, such as angioedema, generalized urticaria, and dyspnea,
are the common symptoms of paclitaxel injection-induced HSRs and are correlated with vascular
hyperpermeability. In the present study, we developed a mice model which could mimic the symptoms
of vascular leakage to support the in vivo data of paclitaxel injection-induced HSRs and investigate the
underlying mechanisms. We confirmed that this mice model clearly reacted in response to paclitaxel
injection stimuli in a dose-dependent manner in the first exposure. In addition, this animal model
was suitable to study allergic reactions induced by penicillin [26] and Shuanghuanglian injection [27]
and has the possibility to become a practical method predicting other injections’ HSRs during the
preclinical studies.

In this study, a rapid release of histamine was detected in mice serum after paclitaxel first exposure.
The anti-histamine drug loratadine ameliorated paclitaxel injection-induced HSRs, indicating that
these reactions were associated with histamine release.

Due to poor solubility, paclitaxel was formulated in a special vehicle, polyoxyl 35 castor oil and
anhydrous ethanol. We indicated that HSRs were mainly induced by the excipients in paclitaxel
injection, which was in accordance with other researchers [9]. Complement activation can generate
the anaphylatoxins C3a and C5a, which can interact with the G protein-coupled receptors C3aR
and C5aR to mediate HSRs [28]. Based on the mechanism described above, paclitaxel injection
would scarcely or rarely produce such anaphylatoxins under conditions of complement deficiency.
However, in our results, C5-deficiency or total complement depletion could not alleviate HSRs.
Vascular hyperpermeability in both of the complement-deficiency mouse models was comparable with
that that occurred in normal mice. Our study revealed that complement activation might not be the
primary mechanism of paclitaxel injection-induced HSRs. These findings conflict with the results of
in vitro data [29] and further studies are required for validation in the future.

The RhoA/ROCK signaling pathway has been implicated in immunoinflammatory diseases,
such as systemic lupus erythematosus [30], myasthenia gravis [31], inflammatory cardiovascular
diseases [32], and inflammatory airways diseases [33]. In addition, the RhoA/ROCK pathway also
involves endothelial hyperpermeability [26] and mediates histamine-induced vascular leakage [14].
Therefore, we hypothesized that the RhoA/ROCK signaling pathway might be associated with
paclitaxel injection-induced HSRs. Our results demonstrate that paclitaxel infusion upregulated the
expression of GTP-RhoA (active state RhoA) and p-MYPT (a hallmark of ROCK activity), resulting in an
increase of p-MLC expression. The phosphorylation of MLC induces actin cytoskeleton reorganization
and contraction, which leads to widening of endothelial intercellular space and increased vascular
permeability [21,34]. As a result, plasma and blood cells effuse outside the blood vessels, causing tissue
edema and exudative inflammation. Some research reported that paclitaxel could enhance the
expression and activity of Rho-kinase in human coronary artery smooth muscle cells [35], which is
consistent with our results. ROCK inhibitor fasudil has a significantly protective effect on paclitaxel
injection-induced vascular leakage and pathological change in the ears and lungs of mice by decreasing
GTP-RhoA, p-MYPT, and p-MLC expression. Our study indicated that activation of the RhoA/ROCK
signaling pathway played an important role in paclitaxel injection induced-HSRs.

The inhibitory role of nitric oxide (NO) via cGMP in the RhoA/ROCK pathway has been
reported [36,37]. On the other hand, some NO donors such as the antiretroviral protease inhibitors
lopinavir-NO [38,39] and ritonavir-NO [40] are emerging as the potential candidates for an anticancer
drug with a more potent chemotherapeutic effect. These present findings may open new investigations
on the concomitant medication of NO-donor chemotherapeutic agents and paclitaxel to prevent
RhoA/ROCK-dependent HSRs while possibly synergizing chemotherapeutic efficacy.

In conclusion, a suitable and practical in vivo mice model, characterized by vascular
hyperpermeability and exudative inflammation and mimicking HSRs was developed in our study.
Polyoxyl 35 castor oil, the main excipient in paclitaxel injection, was associated with severe vascular
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leakage. Histamine release and RhoA/ROCK pathway activation, rather than complement activation,
play an important role in paclitaxel injection-induced HSRs. Furthermore, the ROCK inhibitor may
provide a potential preventive approach for paclitaxel injection side effects.

4. Materials and Methods

4.1. Animals

All the animal studies were carried out in accordance with the recommendations of the ethical
guidelines and regulations for the use of laboratory animals issued by the Laboratory Animal
Welfare Ethics Committee in the Institute of Chinese Materia Medica, China Academy of Chinese
Medical Sciences. All animal-related procedures (the project identification code is 20162004, date is
15 February 2016) adhered to the protocol were approved by the same committee mentioned above.

ICR mice (male and female) and DBA/2N mice (male) were purchased from Vital River Laboratories
Animal Technology (Beijing, CHN) at 8–10 weeks of age and randomly divided into experimental
groups according to body weights. Animals were kept under specific pathogen-free conditions.

4.2. Reagents and Antibodies

The following reagents were obtained from the indicated suppliers: Paclitaxel injection (5 mL:
30 mg, the excipients in the paclitaxel injection are polyoxyl 35 castor oil, anhydrous citric acid and
anhydrous ethanol, Beijing Union Pharmaceutical Factory, Beijing, CHN), relevant vehicle (polyoxyl
35 castor oil and anhydrous ethanol, 1:1 v/v, Beijing Union Pharmaceutical Factory, Beijing, CHN),
compound 48/80 (Sigma-Aldrich, Louis, MO, USA), Evans blue (Sinopharm Chemical Reagent Co.,
Ltd., Shanghai, CHN), and Cobra venom factor (Shanxi Powerdone Pharmaceutics Co., Shanxi, CHN).

The following antibodies were used in this study: anti-p-MYPT1 (Thr 696) (rabbit polyclonal, 5163,
Cell Signaling Technology (CST), MA, USA); anti-MYPT1 (rabbit polyclonal, 2634, CST, MA, USA),
anti-p-MLC2 (Thr18/Ser19) (rabbit polyclonal, 3674, CST, MA, USA), anti-MLC2 (rabbit polyclonal,
3672, CST, MA, USA), Anti-RhoA (67B9) (rabbit monoclonal, 2117, CST, MA, USA), anti-ROCK1
(rabbit monoclonal, EP786Y, Abcam, Cambridge, UK), anti-GAPDH (rabbit polyclonal, FL-335, Santa
Cruz Biotechnology, CA, USA) and the secondary goat anti-rabbit IgG (H + L) antibody (ZSGB-BIO,
Beijing, CHN).

4.3. Assessment of Vascular Leakage in ICR Mice

ICR mice were randomly divided into different groups on a body weight-stratified basis. Mice were
treated by slow intravenous injection of normal saline, COM 48/80 (1.0 mg/kg), paclitaxel injection (4,
8, and 16 mg/kg) or relevant vehicle (polyoxyl 35 castor oil and anhydrous ethanol, 1:1 v/v) (3.33%,
6.67%, and 13.33%) through the tail vein (0.1 mL/10g), and successively injected (iv) an equal volume
of 0.8% EB dissolved in normal saline. The concentration of the relevant vehicle corresponded to the
low, medium, and high dose of paclitaxel injection. EB performance was to visualize the ear blue color
and quantify the extent of vascular leakage in ears, so as to assess the skin manifestation of paclitaxel
injection-induced HSRs.

Thirty minutes after drug/EB treatment, vascular leakage was assessed by observation of the
blue color in mice ears and evaluated by giving a score of 0 to 5 according to the blue color areas
in the ear, where “0” represented no visible blue area, and “1 to 5” denoted visible blue area ratio
of < 1/8, 1/8 to 1/4, 1/4 to 1/2, 1/2–3/4, and >3/4, respectively. In order to ensure the reliability and reduce
the subjective difference, the same researcher was appointed to score the blue color area, blinded to
the treatment of mice as well. Subsequently, the ears of each mouse were shredded and preserved
in 2 mL of formamide for EB extraction. The lungs of each mouse were maintained in formalin for
histopathological examination.
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4.4. Histamine Assays and Anti-Histamine Treatment in ICR Mice

ICR mice were randomly divided into normal saline, COM 48/80, and paclitaxel groups
and each group had five male ICR mice. One heparin-anticoagulative blood sample from
each mouse was collected 5 min post-injection. Plasma was prepared by centrifugation for
15 min at 3500 rpm. Histamine concentrations were assayed by enzyme-linked immunosorbent
assays (ELISA, Immuno-Biological Laboratories Inc., Minneapolis, MN, USA) according to the
manufacturer’s instruction.

Parallel groups were used for anti-histamine experiments. Five male ICR mice in each group
received normal saline, COM 48/80, or a paclitaxel injection combined with EB as before, while another
five male ICR mice received oral 3 mg/kg loratadine twice at 0.5 and 5.5 h prior to administration [41].
Ear vascular permeability was assessed as described in the Section entitled “Assessment of Vascular
Leakage in ICR mice”.

4.5. Vascular Permeability Assay in Complement-Depleted Mice

Two models were used for complement depletion. 1) Complement-depletion model: CVF was
given to ICR mice and total serum hemolytic complement activity was assayed to confirm complement
depletion [42]. ICR mice were randomly divided into normal saline and paclitaxel groups. Half of the
mice in each group received two times of CVF (ip, 0.1 mL/10g, 37.5 U/mL CVF in saline). The first
injection was administered 24 h before drug administration, and the second injection was given 5 h
after the first CVF injection [43]. The mice in the other half of each group without CVF treatment were
intraperitoneally administered the same volume of normal saline. The time frame for total serum
hemolytic complement activity detection was coincident with paclitaxel infusion in relation to CVF
treatment. 2) Complement-deficiency model: In DBA/2N mice, parallel groups that were not pretreated
with CVF were used. These were deficient for C5. EB was intravenously injected into mice to assess
ear vascular permeability as described above.

4.6. Paclitaxel Injection Induced RhoA/ROCK Signaling Pathway Activation

Mice were treated (iv) with normal saline, 16 mg/kg paclitaxel injection or pretreated with 30 mg/kg
fasudil (ip) and then received (iv) 16 mg/kg paclitaxel injection. Ears and lungs were removed 30 min
after dosing and were homogenized with RIPA lysis buffer. Supernatants of lysates were collected
after centrifugation and stored at −80 ◦C for western blot assays. Samples were separated by SDS
polyacrylamide gel electrophoresis. Proteins in the gels were transferred onto PVDF membranes
and then blocked with skimmed milk at room temperature for 2 h. Membranes were incubated with
primary antibodies of anti-p-MYPT1, anti-MYPT1, anti-p-MLC2, anti-MLC2, anti- RhoA, anti-ROCK1,
or anti-GAPDH at 4 ◦C overnight. After being washed by TBST, membranes were incubated in
secondary goat anti-rabbit IgG antibody at room temperature for 2 h and visualized by enhanced
chemiluminescence detection substrate. GTP-RhoA was assessed by a pull-down assay (Cytoskeleton,
Denver, CO, USA) according to the manufacturer’s instructions. We used ImageJ software to analyze
blots Images.

4.7. Effect of ROCK Inhibitor on Paclitaxel Injection-Induced Hypersensitive Reactions

Mice were intraperitoneal injected with 30 mg/kg fasudil once daily for three consecutive days.
At 30 min after the last dosing of fasudil, mice received (iv) 16 mg/kg paclitaxel injection/EB. In the
parallel group, mice were treated (iv) with only 16 mg/kg injection and EB solution consecutively.
After thirty minutes, the ear score was evaluated. The ears of each mice were immersed in 2mL of
formamide for EB extraction and the lungs were preserved for histopathology analysis.
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4.8. Statistical Analyses

Data were expressed as mean (M) ± standard error of the mean (SEM). Quantitative data were
analyzed using a one-way analysis of variance method. The score of vascular leakage of the ear was
analyzed with a rank test. Statistical analysis was performed with SPSS 16.0 software. A p-value of less
than 0.05 was considered significant.
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