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Abstract: Distal arthrogryposis type 5D (DA5D), a rare autosomal recessive disorder, is caused
by mutations in ECEL1. We describe two consanguineous families (three patients) with novel
ECEL1 gene mutations detected by next-generation sequencing (NGS). A 12-year-old boy (patient 1)
presented with birth asphyxia, motor developmental delay, multiple joint contractures, pes planus,
kyphoscoliosis, undescended testis, hypophonic speech with a nasal twang, asymmetric ptosis, facial
weakness, absent abductor pollicis brevis, bifacial, and distal lower limb weakness. Muscle MRI
revealed asymmetric fatty infiltration of tensor fascia lata, hamstring, lateral compartment of the leg,
and gastrocnemius. In addition, 17-year-old monozygotic twins (patients 2 and 3) presented with
motor development delay, white hairlock, hypertelorism, tented upper lip, bulbous nose, tongue
furrowing, small low set ears, multiple contractures, pes cavus, prominent hyperextensibility at the
knee, hypotonia of lower limbs, wasting and weakness of all limbs (distal > proximal), areflexia, and
high steppage gait. One had perinatal insult, seizures, mild intellectual disability, unconjugated eye
movements, and primary optic atrophy. In the twins, MRI revealed extensive fatty infiltration of
the gluteus maximus, quadriceps, hamstrings, and anterior and posterior compartment of the leg.
Electrophysiology showed prominent motor axonopathy. NGS revealed rare homozygous missense
variants c.602T > C (p.Met201Thr) in patient 1 and c.83C > T (p.Ala28Val) in patients 2 and 3, both
localized in exon 2 of ECEL1 gene. Our three cases expand the clinical, imaging, and molecular
spectrum of the ECEL1-mutation-related DA5D.

Keywords: distal arthrogryposis; AMC; ECEL1; contractures; muscle MRI

1. Introduction

Arthrogryposis multiplex congenita (AMC) is a heterogeneous group of disorders
characterized by multiple nonprogressive congenital joint contractures involving at least
two different body parts [1]. Distal arthrogryposis (DAs) is diagnosed when contractures
mainly involve distal joints of hands, feet, wrist, and ankle [1,2]. DAs are caused by
mutations in genes encoding contractile proteins of skeletal myofibers and are further
subdivided into 10 different phenotypic and genetic forms caused by TPM2, TNNI2, TNNT3,
MYH3, MYBPC1, MYH8, FBN2, PIEZO2, and ECEL1 [2,3]. Distal arthrogryposis type 5D
(DA5D; OMIM 108145) is described as a rare autosomal recessive DA unlike other dominant
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forms and has a wide phenotypic spectrum including joint contractures, camptodactyly,
hip dislocation, scoliosis, lower limb atrophy, clubfoot, dysmorphic features, furrowed
tongue, and asymmetric or unilateral ptosis. Typically, there is normal intelligence and
an absence of ophthalmoplegia [3,4]. DA5D is caused due to compound heterozygous
or homozygous mutations in membrane-bound metalloprotease endothelin-converting
enzyme-like 1 (ECEL1 (OMIM 605896), also termed DINE in rodents) [3,5]. ECEL1 is
predominantly expressed in neuronal cells and plays an important role in the final axonal
arborization of motor nerves to the endplate of skeletal muscles, resulting in the poor
formation of the neuromuscular junction [3,5]. We describe two families with three affected
individuals with novel ECEL1 gene mutations with additional features, which thus expands
the clinical and imaging spectrum of DA5D.

2. Materials and Methods
2.1. Patients

The patients were identified and thoroughly investigated with standard clinical and
electrophysiological examinations at the specialized neurology and neuromuscular clinic,
Department of Neurology, National Institute of Mental Health and Neurosciences, India.
Institutional Ethics committee approval (NIMHANS/IEC/2020-21) was obtained to collect
all clinical, electrophysiological, and genetic data from the medical records. Patients and
parents provided written informed consent to publish the patient’s details, along with face
recognition in the clinical photographs and videos. All evaluated patients underwent a
thorough clinical examination, and details were recorded in a pre-designed proforma.

2.2. Genetic Analysis

The DNA was extracted from blood samples using the QIAamp DNA Blood Mini
Kit (QIAGEN, Hilden, Germany). We analyzed both families by Trios next-generation
sequencing (NGS) for identification of a genetic cause. Patient 1, along with parents in
family 1, underwent whole-exome sequencing (exome research panel by integrated DNA
technologies (Coralville, IA, USA) having 39 mb probe span of the human genome and
covering coding regions of 19,396 genes) with a mean sequencing coverage of >50–60 X on
Illumina (San Diego, CA, USA) sequencing platform. Patients 2 and 3, along with parents
in family 2, underwent clinical exome sequencing (custom panel by Agilent technologies
(Santa Clara, CA, USA) having 29 mb probe span covering coding regions of 8332 known
disease-associated genes) with a mean sequencing coverage of >80–100 X on Illumina
sequencing platform. Bioinformatic analysis was concentrated on the analysis of significant
variants in 48 known hereditary arthrogryposes and congenital myasthenic syndrome
genes for patient 1 and 123 known genes associated with hereditary neuropathies and
arthrogryposis/congenital myasthenic syndromes for patients 2 and 3 (Tables S1 and S2).
Germ-line variants were identified by aligning the obtained sequences to the human
reference genome (GRCh37/hg19) using the BWA program and analyzed using the Genome
Analysis Toolkit best-practices variant-calling pipeline [6,7]. The variants were annotated
using the Ensemble (release 89) human gene model, with disease annotations ClinVar,
SwissVar, and the licensed Human Gene Mutation Database; population frequencies from
the 1000 Genome Phase 3, ExAC, gnomAD, and dbSNP databases, and the internal Indian-
specific database, as well as in silico prediction algorithms in PolyPhen-2, SIFT, Mutation
Taster 2, and LRT. The pathogenicity of the variants was assessed based on 2015 American
College of Medical Genetics (ACMG) guidelines [8].

3. Results

Family 1: patient 1 was a 12-year-old boy evaluated in the year 2016. He was born
to consanguineous parents at term by forceps delivery following an uneventful antenatal
period and birth weight of 2.25 kg. There was a history of birth asphyxia (delayed cry at
birth and neonatal intensive care unit (NICU) stay for one week). He had foot deformities
(pes planus, right eqinovarus) at birth. There was a motor developmental delay, normal
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mental functions, progressive ptosis, limitation of movement at elbow and hip, and altered
gait. He had phimosis, undescended testis, and recurrent urinary tract infection. On
examination, he had long eyelashes, low set ears, trismus, high arched palate, asymmetrical
ptosis, left eye proptosis with normal fundus, complete extraocular muscle movements,
bifacial weakness, hypophonic speech with a nasal twang, taut skin of fingers and face,
ulnar deviation of the wrist, absent abductor pollicis brevis, severe contractures of fingers
with flexion deformity, contractures at elbows, hip, knee and ankle, pes planus, right side
equinovarus deformity, kyphoscoliosis, and calf atrophy with mild distal limb weakness
(Medical Research Council grade (MRC) 4) and preserved tendon reflexes (Figure 1).
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Figure 1. Pedigree and clinical images of patient 1 with DA5D: (A) pedigree of family 1; (B,C) kyphoscoliosis with bilateral
hip and knee contracture; (D) asymmetric ptosis; (E) calf atrophy, contracture at the knee, pes planus, prominent calcaneum;
(F,G) contractures of fingers with absent abductor pollicis brevis.

He was able to walk independently with a limp and mild waddling. Diagnosis of
arthrogryposis multiplex congenita (AMC) was considered. Muscle MRI revealed asym-
metric fatty infiltration (right > left) in tensor fascia lata, hamstring, lateral compartment of
the right leg, and gastrocnemius (Figure 2). Brain MRI was normal. At the last follow-up
(17 years of age) during July 2021, the clinical condition was stationary.

Family 2: patient 2 was a 17-year-old-boy evaluated during June 2018. He is the first
of the twins, born to consanguineous parents at term by normal vaginal delivery following
an uneventful antenatal period, and had a birth weight of 1.75 kg (<5th percentile). Fetal
movements were normal. He did not cry at birth and had recurrent seizures from day 3 of
life and was kept in NICU for 1 week. Subsequently, the child was noticed to have delayed
acquisition of all milestones, mild intellectual disability, and recurrent seizures since 8 years
of age. He has never been able to walk independently, has altered high stepping gait with
slowly progressive weakness of all limbs. Examination revealed flat occiput, hypertelorism,
tented upper lip, bushy eyebrows, small low set ears, bulbous nose, a central deep fur-
row of the tongue, white hairlock, unconjugated eye movements, nonparalytic squint,
primary optic atrophy, normal extraocular movements, bifacial weakness, small hands
and fingers, asymmetric contractures at fingers (metacarpophalangeal and interphalangeal
joints), wrist in extension, and elbow with prominent hyperextensibility at the knees and
pes cavus (Figure 3).
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Figure 2. Muscle MRI images of patients with DA5D: (A–F) muscle MRI images of patient 1: axial T1-weighted sections at
the level of the (A) pelvis, (B) midthigh, and (C) midleg reveal volume loss with fatty replacement, most pronounced in
bilateral tensor fascia lata (Mercuri Grade 3), right semimembranosus (Grade 3), semitendinosus (Grade 3), bilateral biceps
femoris (Grade 2b). Grade 2a fatty replacement is seen in the lateral compartment of the right leg and gastrocnemius. Axial
fat-saturated T2-weighted sections at the level of the (D) pelvis, (E) midthigh, and (F) midleg reveal no edema; (G–L) MRI
images of patient 2 and (M–R) of patient 3: axial T1-weighted sections at the level of the (G,M) pelvis, (H,N) midthigh,
and (I,O) midleg reveal volume loss with fatty replacement, most pronounced in bilateral gluteus maximus (Mercuri
Grade 3), vasti (Grade3), rectus femoris (Grade 2a), semimembranosus (Grade 2b), semitendinosus (Grade 2b), biceps
femoris (Grade 2b). Grade 2b fatty replacement is seen in the anterior, lateral, and deep posterior compartments of the legs.
The superficial posterior compartment of both legs reveals Grade 4 atrophy with fatty replacement. Axial fat-saturated
T2-weighted sections at the level of the (J,P) pelvis, (K,Q) midthigh, and (L,R) midleg reveal no fluid signal.
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Figure 3. Pedigree and clinical images of patients 2 and 3 with DA5D: (A) pedigree of family 2; (B) clinical photograph of
patients 2 and 3 showing contractures at elbows, fingers, hyperlordosis, and hyperextension at the knee; (C–H) patient 2:
(C) facial weakness, hypertelorism, bulbous nose; (D–G) Left > Right contracture at elbows, wrist in extension and fingers at
metacarpophalangeal (MCP) and interphalangeal joint (IPJ), and (H) furrowed tongue; (I–N) patient 3: (I) facial weakness,
hypertelorism, bulbous nose; (J–M) Right > Left contracture at elbows, wrist in extension, and fingers at MCP and IPJ, and
(N) atrophy of tongue.

There was diffuse atrophy of limb muscles with hypotonia, weakness of all limbs
(distal > proximal, MRC grade: shoulder (4), elbow (3), wrist (3), fingers (3), hip (4),
knee (4), ankle (0)), and absent tendon reflexes. A clinical diagnosis of hereditary motor
neuropathy with unusual contractures was considered. At the last follow-up (20 years
of age) during July 2021, seizure frequency had reduced, and the patient needed more
support to ambulate.

Patient 3 is the monozygotic twin of patient 2. He was born at term by normal delivery
with a birth weight of 1.75 kg (<5th percentile) and had normal perinatal history. He
presented with delay in motor milestones, started walking independently at 6 years of
age with altered high stepping gait, and had slowly progressive weakness and wasting of
limbs. There was no history of seizures or intellectual disability. On examination, he had
hypertelorism, tented upper lip, white hairlock, bulbous nose, mild tongue furrowing, nor-
mal fundus, and extraocular movements, mild bifacial weakness, asymmetric contractures
at fingers (metacarpophalangeal and interphalangeal joints), wrist in extension, and elbow
with knee hyperextensibility and pes cavus (Figure 3). There was diffuse atrophy of limb
muscles with hypotonia, weakness of limbs (distal > proximal MRC grade: shoulder (4),
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elbow (4), wrist (4), fingers (3), hip (4), knee (3), ankle (3)), and absent tendon reflexes. At
the last follow-up (20 years of age) during July 2021, the clinical condition was stationary.

Investigations in the twins revealed normal creatine kinase, hepatic, renal, and thyroid
function tests. Serum lactate was 41.2 (patient 2) and 26.3 (patient 3) (reference range: 4.5 to
20 mg/dl), while ammonia, HbA1c, homocysteine, plasma amino acids, and acylcarnitine
profile were normal in both. Nerve conduction studies (NCS) in both revealed normal
sensory nerve conductions (right median, ulnar and sural), impaired motor conduction
studies of the right median, and ulnar with reduced amplitude, normal latency, and con-
duction velocities (Table 1). The right common peroneal nerve was inexcitable. EMG of the
tibialis anterior showed fibrillations, positive sharp waves with high amplitude polyphasic
motor unit action potentials (MUAPs) with mildly reduced recruitment. Similarly, abductor
digiti minimi (ADM) showed evidence of high amplitude polyphasic MUAPs, suggestive
of a neurogenic pattern. Repetitive nerve stimulation at 3Hz did not reveal a significant
decrement response from orbicularis oculi, trapezius, and ADM muscles.

Table 1. Nerve conduction studies of patients 2 and 3.

Parameters Patient 2 Patient 3

Motor conduction study

Distal Latency(ms)/CMAP(mV)/MNCV (m/s)

Median 3.84/1.73/49.3 3.5/1.32/60.6

Ulnar 3.86/0.8/49.7 2.25/2.61/61.8

CPN absent absent

Sensory conduction study

Onset Latency(ms)/SNAP(uV)/SNCV (m/s)

Median 3.04/12.8/52.6 2.86/20.1/55.9

Ulnar 2.84/10.76/50 2.12/15.4/56.9

Sural 3.02/8.79/53 3.06/11/45.8

ADM: abductor digiti minimi, CMAP: compound motor action potential, CPN: common peroneal nerve, MNCV: motor nerve conduction
velocity, NA: not available, SNCV: sensory nerve conduction velocity.

Muscle MRI in both revealed volume loss with fatty replacement, most pronounced
in bilateral gluteus maximus, vasti, rectus femoris, hamstrings, and all muscles of the
anterior, lateral, and posterior compartments of legs. Hip adductors and sartorius were
spared (Figure 2).

Brain MRI in patient 2 revealed focal encephalomalacia with adjacent gliosis in bilateral
parieto-occipital regions with a paucity of white matter, thinning of body, and splenium of
corpus callosum suggestive of hypoxic-ischemic injury. Brain MRI in patient 3 revealed
symmetric T2/FLAIR hyperintensities in bilateral parieto-occipital and corticospinal tracts.

Genetic Results

Trios NGS performed in both families identified ECEL1 homozygous disease-causing
variants in patients 1, 2, and 3 from families 1 and 2, respectively. Patient 1 had a novel ho-
mozygous missense variant in exon 2 of ECEL1 (NM_004826.4): c.602T > C (p.Met201Thr),
in the extracellular Peptidase M13 domain (Uniprot). The variant is present in heterozygous
form in both parents and is not reported in the general population (Gnomad frequency: 0).
In silico predictions determined the variant as damaging/pathogenic, and it is classified as
“likely pathogenic” as per ACMG criteria (PM1, PM2, PP2, PP3).

Patients 2 and 3 were identified to have a novel homozygous missense variant in
exon 2 of ECEL1: c.83C > T (p.Ala28Val), which is located in the proximal cytoplasmic
domain. While the variant is segregated as heterozygous in both parents, it is present
with low frequency in the general population (Gnomad MAF: 0.005%; Heterozygotes
−3; Homozygotes-nil). The in silico predictions were pathogenic by SIFT and additional
analysis by human splicing finder (HSF—https://hsf.genomnis.com/home, accessed on
15 April 2021) [9] showed “Potential alteration of splicing due to activation of a cryptic

https://hsf.genomnis.com/home
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donor site”. Based on ACMG criteria, c.83C > T (p.Ala28Val) has been classified as “likely
pathogenic” (PM1, PM2, PP2, PP3).

4. Discussion

Arthrogryposis multiplex congenita is a heterogeneous condition caused by a myriad
of disorders including aneuploidy syndromes, skeletal dysplasias, multiple congenital
anomaly syndromes, and neuromuscular diseases [1,2]. Among these, a group of disorders
characterized mainly, but not exclusively, by abnormalities of the distal limbs were de-
scribed as distal arthrogryposes (DAs) in 1982, by Hall et al. [2]. Subsequently, DA has been
defined as an inherited primary limb malformation disorder characterized by congenital
contractures of two or more different body areas and without primary neurologic and/or
muscle disease that affects limb function [2]. Major diagnostic criteria include ulnar devia-
tion, camptodactyly (or pseudocamptodactyly), hypoplastic and/or absent flexion creases,
and or overriding fingers, talipes equinovarus, calcaneo-valgus deformities, vertical talus,
and/or metatarsus varus [2].

Most DAs are autosomal dominant disorders caused by genes encoding proteins
related to the muscle contraction apparatus [2,3]. However, distal arthrogryposis type 5D
is autosomal recessive and is usually caused by biallelic mutations in ECEL1 [3].

Distal arthrogryposis type 5 D is characterized by a wide array of clinical features
including (i) musculoskeletal with foot deformities, finger contractures, and limited move-
ment of proximal joints, recurrent hip dislocation, webbing of fingers and neck, scol-
iosis, kyphosis, muscle atrophy, and weakness; (ii) ophthalmological with asymmetric
ptosis, strabismus, refractive errors, and ophthalmoplegia; (iii) facial with arched eye-
brows, bulbous upturned nose, micrognathia, small mouth, reduced facial expression,
cleft palate and tongue atrophy; (iv) others including speech difficulties, nasal voice, short
stature, short neck, cryptorchidism, pterygia, faint palmar creases, and respiratory dys-
function [3–5,10–19]. Progressive scoliosis and weakness of limbs have been reported on
long-term follow-up of these patients [11]. Consanguineous parentage with a history of re-
duced fetal movements may give an additional clue to the diagnosis. The fetal movements
were normal in our patients. Characteristics of patients reported in the literature and our
patients with DA5D are summarized in Table 2.

In addition to features described earlier, our patients had additional features of white
hairlock, proptosis, prominent knee hyperextensibility, and areflexia, thus further expand-
ing the clinical spectrum of this disorder. However, distal interphalangeal joint hyperlaxity
and areflexia have been reported in a few patients [4]. Global development delay, recurrent
seizures, and mental subnormality in patient 2 can possibly be attributed to birth asphyxia
and brain injury.

ECEL1 encodes endothelin-converting enzyme-like 1, a type II integral transmembrane
zinc metalloprotease, similar to the endothelin-converting enzyme (ECE) structurally but
functionally different, as ECEL1 does not cleave ECE substrates [5,10]. Mouse studies
have shown that damage-induced neuronal endopeptidase (DINE; rodent homolog of
ECEL1) is significantly upregulated in both the peripheral and central nervous systems.
ECEL1 is essential for the final axonal arborization of motor nerves in the diaphragm,
limb skeletal muscles, and for the formation of proper neuromuscular junctions (NMJs)
during prenatal development [10]. Failure of formation and maturation of the embryonic
neuromuscular end plate and NMJs leads to early and sustained lack of movement in utero
causing pterygia, webs, and contractures [10]. Further, the twins had prominent foot drop
mimicking a progressive motor neuropathy, which was also corroborated the severe motor
axonopathy. These features have not been reported earlier in English literature.
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Table 2. Comparison of clinical features of this study with previous studies.

Clinical Features McMillin
et al.

Dieterich
et al.

Shaheen
et al.

Shaaban
et al.

Patil
et al.

Barnett
et al.

Bayram
et al.

Hamzeh
et al.

Ullmann
et al.

Stattin
et al.

Umair
et al. Jin et al. Alei

et al. Total Present
Study

Year of study 2013 2013 2014 2014 2014 2014 2016 2017 2018 2018 2019 2020 2021 2021

Number of patients 9 10 9 2 1 2 4 1 7 1 2 1 2 51 3

Consanguinity 2/9 9/10 9/9 2/2 1/1 0/2 4/4 1/1 4/7 1/1 2/2 0/1 1/2 36/51 3/3

Male:Female 5:4 5:5 3:6 1:1 0:1 1:1 3:1 1:0 2:5 1:0 2:0 1:0 0:2 25:26 3:0

Contractures

Foot or toe contractures and/or deformity 9/9 9/10 4/9 2/2 1/1 2/2 3/3 1/1 6/7 1/1 2/2 0/1 2/2 42/50 3/3

Ankle 9/9 NA NA 0/2 NA 2/2 NA NA 6/7 1/1 2/2 NA NA 20/23 1/3

Knee 8/9 10/10 5/5 2/2 1/1 2/2 1/1 1/1 7/7 1/1 2/2 1/1 2/2 43/44 1/3

Hip dislocation and/or limitation of
movement 9/9 9/9 6/9 0/2 1/1 2/2 3/3 1/1 5/7 1/1 NA NA 1/2 38/46 1/3

Hand and/or finger 9/9 10/10 9/9 2/2 1/1 2/2 4/4 1/1 7/7 1/1 2/2 1/1 2/2 51/51 3/3

Wrist 9/9 NA 1/1 2/2 NA 2/2 NA NA 2/7 1/1 NA 1/1 2/2 20/25 2/3

Elbow 5/5 3/7 1/1 0/2 1/1 2/2 1/1 1/1 3/7 1/1 2/2 1/1 1/2 22/33 3/3

Shoulder 6/6 2/8 1/1 1/2 0/1 0/2 NA 1/1 4/7 1/1 NA NA 2/2 18/31 0/3

Neck 4/4 NA NA 2/2 NA 1/2 NA NA NA NA NA NA 2/2 9/10 0/3

Webbed neck 3/8 NA NA 2/2 NA NA NA 1/1 2/7 1/1 0/2 NA NA 9/21 0/3

Ptosis 8/9 7/10 6/9 1
2 1/1 2/2 1/1 1/1 5/7 1/1 2/2 1/1 1/2 37/48 1/3

Strabismus 1/1 1/10 3/9 2/2 0/1 NA NA NA 1/7 NA 2/2 1/1 1/2 12/35 1/3

Ophthalmoplegia 0/9 1/10 NA 2/2 0/1 NA NA NA 0/7 NA 0/2 NA 1/2 4/33 0/3

Bulbous nose 9/9 NA 2/2 2/2 1/1 NA 2/2 NA NA 1/1 NA NA NA 17/17 2/3

Reduced facial movements 1/9 3/7 NA 2/2 NA NA NA NA 5/7 1/1 NA 1/1 1/2 14/29 3/3

Micrognathia/small mouth 8/9 3/10 1/1 2/2 1/1 1/1 2/2 1/1 4/7 1/1 0/2 NA 2/2 26/39 1/3

Cleft palate 1/1 1/1 NA NA 1/1 NA NA NA 2/7 1/1 0/2 1/1 0/2 7/16 0/3

Tongue atrophy/furrowing NA 7/7 NA NA 1/1 0/2 NA 1/1 4/5 1/1 0/2 NA 1/2 15/21 2/3

Short neck 4/7 10/10 NA 2/2 1/1 NA NA NA NA NA NA NA 2/2 19/22 0/3

Speech Abnormalities NA 5/5 NA NA NA NA NA NA NA NA 2/2 NA 1/2 8/9 1/3

Scoliosis 2/9 7/10 2/9 2/2 1/1 NA 1/1 1/1 3/7 NA 0/2 NA 2/2 21/44 1/3

Hyperlordosis NA 9/9 NA 1/2 0/1 NA NA NA NA NA NA NA 2/2 12/14 0/3

Muscle atrophy NA 10/10 NA 2/2 1/1 NA NA 1/1 4/7 1/1 1/2 NA 1/2 21/26 3/3
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DA5D is caused by recessive mutations in the ECEL1 gene [3,4]. We identified ho-
mozygous novel missense variants c.602T > C (p.Met201Thr) and c.83C > T (p.Ala28Val)
in exon 2 of ECEL1 gene in families 1 and 2, respectively. The c.602T > C (p.Met201Thr)
variant affects the crucial Peptidase M13 extracellular domain where all the previous
disease-causing missense mutations have been reported. Two missense mutations affecting
a nearby codon 197 (p.Gly197Asp and p.Gly197Ser) have been reported in DA5D patients
of European ancestry by McMillin et al. and Ullmann et al., respectively [3,11] (Figure 4).

These patients had a similar phenotype of fixed contractures at birth and progressive
weakness. However, Ullmann et al. reported a consanguineous family with two affected
siblings and another affected cousin who had identical p.Gly197Ser homozygous mutation
with long-term follow up and disease progression [11]. The elder female sibling in the fam-
ily did not have ptosis and had additional temporomandibular contractures not reported in
other patients [11]. Interestingly, our patient 1 also had trismus due to temporomandibular
joint contractures. Ullmann et al. also reported that ambulation is preserved in patients
even into the third decade with slowly progressive muscle weakness [11]. Mild learning
difficulties and exercise intolerance were some of the unusual findings identified in the
elder sibling on long-term follow-up [11]. However, brain MRI was not performed, and
there was no evidence of NMJ dysfunction in EMG study [11]. Likewise, our patients 1 and
3 had a stable nonprogressive course and were independently ambulant at 15 and 20 years,
respectively. However, patient 3 had a significant motor disability and remains status quo.

In patients 2 and 3 (twin siblings affected in family 2), the c.83C > T (p.Ala28Val)
variant was identified in the proximal cytoplasmic domain. Based on literature evidence
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and ClinVar-reported mutations, only two nonsense mutations c.69C > A (p.Cys23Ter) and
c.33C > G (p.Tyr11Ter) associated with DA5D phenotype have been reported previously in
the cytoplasmic domain of ECEL1 [10,20]. The phenotypic pattern of fixed contractures at
birth with slowly progressive weakness reported with proximal nonsense mutations was
not dissimilar to those with mutations in the downstream extracellular domain, suggesting
a common pathomechanism irrespective of location and type of mutation. The mutation
c.83C > T (p.Ala28Val) identified in our study is the first disease-causing missense variant
affecting the proximal cytoplasmic domain of ECEL1. Additional in silico analysis by
human splicing finder (HSF) predicted that c.83C > T can cause significant alteration of
wild type splicing mechanism by activating a cryptic donor splice site in exon 2 and also
altering the ratio of exonic-splicing enhancers and silencers (ESE/ESS). While this can
result in partial deletion of exon 2 and/or exon skipping, additional RNA analysis might
be required to confirm the impact on protein expression [9]. We admit that the lack of
functional validation for c.83C > T (p.Ala28Val) is a limitation for this study due to the
nonavailability of tissue samples from patients. Nevertheless, these in silico predictions
suggest a loss of function mechanism similar to previous nonsense mutations identified in
the proximal cytoplasmic domain [10,20].

There are only a few reports on muscle MRI in patients with DA5D [4,11]. Severe fatty
infiltration of thighs affecting the biceps femoris, sartorius and vastus lateralis, extensor
digitorum longus, and asymmetric involvement of distal leg muscles with sparing of
rectus femoris and gracilis has been reported [4,11]. All three patients in the current study
underwent muscle MRI. Diffuse fatty infiltration was observed involving hamstrings and
gastrocnemius in all, and extensive fatty infiltration of gluteus maximus, quadriceps, ante-
rior, lateral, and posterior compartments of legs was also observed in the two monozygotic
twins. This further implies a wider spectrum of disease involvement. It is interesting to
note that the severity of muscle weakness was different in patients 2 and 3, but the severity
of MRI findings was almost identical.

5. Conclusions

Distal arthrogryposis type 5D is a very rare autosomal recessive disorder caused
by mutations in ECEL1 characterized predominantly by distal contractures. Being an
autosomal recessive disorder, it has implications in genetic counseling. Here, we described
three patients with novel mutations, and additional clinical and imaging features compared
with earlier descriptions, thus expanding the clinical, imaging, and molecular spectrum of
the ECEL1 mutations and associated DA5D.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/children8100909/s1, Table S1: Coverage of arthrogryposis and congenital myasthenic syn-
drome panel genes in patient 1, Table S2: Coverage of Charcot-Marie-Tooth and other sensory
neuropathies and arthrogryposis & congenital myasthenic syndrome genes in patient 2 and 3.
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