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Background and aims: New data has emerged regarding higher risk of coronavirus disease 2019 (COVID-
19), and its severity and complications in patients with type 2 diabetes mellitus (T2DM). However, there
is a dearth of evidence regarding type 1 diabetes mellitus (T1DM). This article explores the possibility of
COVID 19 induced diabetes and highlights a potential bidirectional link between COVID 19 and T1DM.
Methods: A literature search was performed with Medline (PubMed), Scopus, and Google Scholar elec-
tronic databases till October 2020, using relevant keywords (COVID-19 induced diabetes; COVID-19 and
type 1 diabetes; COVID-19 induced DKA; new-onset diabetes after SARS-CoV-2 infection) to extract
relevant studies describing relationship between COVID-19 and T1DM.
Results: Past lessons and new data teach us that severe acute respiratory syndrome coronaviruses (SARS-
CoV and SARS-CoV-2) can enter islet cells via angiotensin converting enzyme-2 (ACE-2) receptors and
cause reversible b-cell damage and transient hyperglycemia. There have been postulations regarding the
potential new-onset T1DM triggered by COVID-19. This article reviews the available evidence regarding
the impact and interlink between COVID-19 and Τ1DM. We also explore the mechanisms behind the viral
etiology of Τ1DM.
Conclusions: SARS-CoV-2 can trigger severe diabetic ketoacidosis at presentation in individuals with
new-onset diabetes. However, at present, there is no hard evidence that SARS-CoV-2 induces T1DM on
it’s own accord. Long term follow-up of children and adults presenting with new-onset diabetes during
this pandemic is required to fully understand the type of diabetes induced by COVID-19.

© 2020 Diabetes India. Published by Elsevier Ltd. All rights reserved.
1. Introduction

Since the onset of COVID 19 pandemic, a great deal of evidence
has emerged regarding its relationship with T2DM. However, re-
ports on effects of SARS-CoV-2 infection on people with T1DM have
been more recent and relatively sparse. T1DM constitutes about 5%
of all diagnosed cases of diabetes and its global incidence is
increasing at an alarming rate of about 3% every year [1]. Pre-
existing diabetes mellitus is purported to be one of the high-risk
factors for developing COVID-19 and related complications [2].
Indeed, there have been reports of COVID-19 induced severe
metabolic decompensation of pre-existing or new-onset diabetes
such as diabetic ketoacidosis (DKA) and hyperglycemic hyper-
osmolar state (HHS) [3e7]. More characteristically, SARS-CoV-2 has
been suggested as a potential inducer of new-onset T1DM [8].
adkar).
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Coronavirus mediated islet cell damage does not seem to be a novel
phenomenon, as evidenced by the experience from previous
coronavirus (SARS and MERS) epidemics [9]. However, in this re-
view, we explore the mechanisms of hyperglycemia particularly in
relation to COVID 19 illness and also examine the Covid-19 related
morbidity and mortality in people with T1DM.

2. Etiology of T1DM e the viral paradigm

T1DM is a genetic autoimmune condition where b-cells are
destroyed by the auto-reactive CD4þ and CD8þ T cells. Although
>50 candidate genes were identified, poor concordance of T1DM
(<50%) in monozygotic twins suggests players beyond genetics.
Regional differences in prevalence with incidence in migrants
conforming to the incidence of the region of destination, and the
North-South gradient with higher figures in northern latitudes
indicate non-genetic environmental influences. Well established
seasonality of new-onset T1DM led to exploration of viral etiology
[10]. The relationship between viral infections and T1DM is
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complex. Mouse models have demonstrated that while certain vi-
ruses could be detrimental to the b-cells and initiate autoimmunity,
others can be protective and have preventive effects. However, one
needs to exercise caution when extrapolating these findings to
human subjects [11].
2.1. Pathogenesis of viral induced b-cell damage: acute vs chronic

Conceptually, virus induced b-cell damage is due to either 1)
direct lytic effects of viral replication and/or, 2) host inflammatory
response mediated damage by autoreactive CD þ T cells, leading to
autoimmunity (Fig. 1). While destruction of >90% of b-cells by
direct viral mediated damage leads to non-autoimmune diabetes,
limited lysis releases islet cell antigens, which in conjunction with
enhanced immune response pavesway for autoimmunity. Evidence
for the earlier instance is most notable from the cases of fulminant
T1DM, reported almost exclusively from Japan and predominantly
in adults, preceded by minor upper respiratory or gastrointestinal
infections, Mumps, HHV6, Coxsackie B3, B4, HSV, Hepatitis A,
Influenza B and parainfluenza. Described as type 1B diabetes,
fulminant T1DM is characterized by acute onset of hyperglycemic
ketoacidosis, very short (1 week) duration of diabetes symptoms
(polyuria, thirst, and body weight loss), absence of islet-related
autoantibodies, extremely low C-peptide levels, elevated serum
pancreatic enzyme levels, and a HbA1c less than 8.5% on the first
visit [12e17].

Nevertheless, it is the limited b-cell destruction with release of
sequestered islet cell antigens and activation of autoreactive T-cells
that result in long-term autoimmune damage and subsequent
T1DM. In children with recently diagnosed diabetes, hyper-
expression of major histocompatibility complex �1 (MHC-1) and
interferon-a was observed within the islets that are otherwise
completely devoid of these markers [18]. These markers charac-
teristically increase antigen mediated activation of CD8þT Cells,
and it is most likely that their enhanced production is viral
mediated.
2.2. Mediators of chronic b-cell destruction

The pathological processes mediating chronic b-cell damage are
varied. The foremost contender is molecular mimicry, where viral
Fig. 1. Immuno-pathogenesis of beta cell destruction and type 1 diabetes.
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epitope shares a resemblance with host islet protein causing cross-
reactivity and autoimmune T cell response against host tissue in
susceptible individuals. However, studies aiming to demonstrate
molecular mimicry are inconclusive. It is likely that molecular
mimicry can accelerate the autoimmune process once it is already
started, rather than initiate it on its own [18]. Other proposed
mechanisms are bystander T-cell activation, the activation of a Tcell
independent of an antigen specific T-cell receptor stimulation, and
bystander damage, where destruction of b-cells is accelerated by
the proinflammatory cytokines released due to infection of adja-
cent pancreatic cells like alpha, exocrine, endothelial and neuronal
cells [19e21]. In addition to the decreased insulin release due to b-
cell loss, proinflammatory mediators can result in functional de-
fects like defective glucose mediated insulin release and delay in
the conversion of proinsulin to insulin.

Another crucial element is the seeming inability of b-cells to
clear viral infections, when compared with alpha cells. Chronicity
of b-cell infection was apparent from postmortem studies where
expression of viral capsid protein VP1 was detected in the islets of
>60% T1DM organ donors while only 8% of non-T1DM samples
showed its presence [21]. Chronic b-cell infection results in
persistent overexpression of MHC-1 leading to continuous pre-
sentation of beta cell epitopes to the immune system, facilitating
autoimmunity.

2.3. Putative viruses causing b-cell damage

Thoughmany viruses came to be associated with T1DМ, namely,
enteroviruses (especially Coxsackie B1, B4), mumps, rubella and
CMV; so far the most robust evidence for viral induced T1DM is
seen with enterovirus, an ssRNA virus of picornavirus family, when
enteroviral RNA was detected in the blood of recently diagnosed
patients with T1DM (Table 1). A systematic review and meta-
analysis showed a significant association between enterovirus
infection and T1DM-related autoimmunity (OR: 3.7, 95%CI: 2.1e6.8)
and clinical T1DM (OR: 9.8, 95%CI: 5.5e17.4) [33]. The Epidemio-
logical Determinants of Diabetes in Young (TEDDY) study that fol-
lowed 8676 newborn babies with increased genetic risk for T1DM,
conferred by a specific HLA genotype, over 15 years, observed that
number of respiratory infections occurring in a 9-month period was
associated with the subsequent risk of autoimmunity (p < 0.001).
For each 1/year increase in infections, the hazard of islet autoim-
munity increased by 5.6%. Autoantibodies were more commonly
detected in patients with severe respiratory disease, and interest-
ingly, coronaviruses were identified among the different pathogens
involved [34]. In the latest update of the TEDDY study, persistent
presence of enterovirus B species in a child’s stool appears to pre-
dict development of islet autoimmunity, especially antibodies
against Insulin [35].

Nonetheless, there is substantial epidemiological data contra-
dicting the viral origins of b-cell autoimmunity. Viral data from
non-obese diabetic (NOD) mice has shown that coxsackie B3 (CB3)
and lymphocytic choriomeningitic virus (LCMV) can offer protec-
tion from T1DM by promoting immune tolerance. Early exposure to
infections was also deemed to educate the immune system leading
to reduced incidence of autoimmune diseases like T1DM as seen in
countries with low SES where the incidence of infections is high
[33].

2.4. SARS-CoV-1 and diabetes e lessons from the past

Angiotensin converting enzyme (ACE) is the key enzyme in
mediating the effects of renin angiotensin aldosterone system
(RAAS) by converting angiotensin-I to II. The more recently iden-
tified ACE2, a novel homolog of ACE that degrades angiotensin-II to



Table 1
Recent evidence on role of virus in islet cell autoimmunity and T1D.

Author & year
(reference)

Type of study (case/control) Test and Sample Virus Findings

Schulte BM
et al.

2010 [21]

Case control (10/20) RT PCR/plama, PBMC, throat,
stool

Enterovirus (EV) All controls are negative. 4/10 PBMC samples, only 1/10 stool samples positive for EV PCR. None of the
throat samples are positive, which argues against acute infection, but probably delayed clearance of EV

Laitinen OH
et al.

2013 [22]

Nested case control
Study samples from the DIPP cohort (183/
366)

Antibodies Coxsackie B1
(CB1)

CB1 is associated with increased risk of beta cell autoimmunity, strongest when infection occurred few
months before Islet AA appeared (OR: 1.5, 95% CI: 1.0e2.2)
CB3, CB6 appear to reduce risk of autoimmunity

Oikarinen S
et al.

2013 [23]

Case control (249/249) Antibodies Coxsackie B1
(CB1)

CB1 antibodies are more frequently seen in those with T1D (OR: 1.7, 95% CI: 1.0e2.9)

Stene LC et al.
2010 [24]

Prospective study in 140 cases seroconverted
for IAA from DAISY cohort

RT PCR
Blood, rectal swab

EV Risk of progression from islet cell autoimmunity to clinical T1D is significantly higher following detection of
EV RNA.

Salminen KK
et al.

2004 [25]

Case control
From DIPP cohort (12/53)

Antibodies, RT PCR stool &
serum

EV 83% cases had at least one EV infection before developing Islet AA, while only 42% controls had EV by the
same age (p ¼ 0.006)

Dahlquist GG
et al.

2004 [26]

Case control (542/542) RT PCR of postnatal Day2e4
blood spot samples

EV Early (fetal, neonatal) EV infection may play a role in T1D pathogenesis (OR: 1.98, 95% CI; 1.04e3.77). No
difference seen with CMV, Parvo-B19

Sadeharju K
et al. 2003
[27]

Case control (19/84)
From TRIGR cohort

Antibodies and RT PCR EV AA-positive children had more enterovirus infections than AA-negative children before the appearance of
AA (0$83 versus 0$29 infection per child, P ¼ 0$01)

Hiemstra HS
et al. 2001
[28]

Clonal CD4þ T cells reactive to GAD65 - from
a prediabetic stiff-man syndrome patient.

Synthetic peptide libraries that
bind to HLA-DR3, are screened

Cytomegalovirus
(CMV)

GAR-65 specific T-cells cross-react with a peptide of hCMVmajor DNA binding protein, resulting in possible
loss of T cell tolerance to GAD65.

Honeyman MC
et al. 2010
[29]

Comparative Rotavirus (RV) Peptides in VP7, immunogenic protein of RV have significant similarity to T cell epitope peptides in IA2 and
GAD65.
Molecular mimicry with RV could promote autoimmunity to islet antigens.

Bian X et al.
2016 [30]

Case control
Case/control; 42/42

Antibodies Epstein-Barr
virus (EBV)

Positive EBV antibody response is associated with significantly higher cases of T1D (OR: 6.6, 95% CI: 2.0
e25.7)

Nilsson AL et al.
2015 [31]

Case control
Case: control: 69/294

Antibodies Parechovirus
(PV)

Ljungan virus antibodies correlated with insulin AA, especially in young HLA-DQ8 subjects, suggesting a
possible role in T1D.

Tapia G et al.
2011 [32]

Nested case control
Case/control: 27/53
The MIDIA study cohort

PCR
Fecal samples

Parechovirus
(PV)

Weak association, if PV infection in 3 months prior to development of autoimmunity, warranting further
investigation

DIPP: Diabetes Prediction and Prevention; DAISY: Diabetes and Autoimmunity Study in the Young; TRIGR: Trial to Reduce IDDM in Genetically at Risk; MIDIA: Norwegian acronym for “Environmental Triggers of Type 1 Diabetes”
study; AA: Autoantibodies; GAD65: Glutamic acid decarboxylase 65; IA2: Tyrosine phosphatase-like insulinoma Ag 2; PBMC: Peripheral blood mononuclear cells.
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angiotensin-I-VII, was found to be the functional receptor for SARS-
CoV-1 and -2 [36]. ACE2 is abundantly present in humans in the
epithelia of the lung and small intestine, which might provide
possible routes of entry for the SARS-CoV-1, and -2 [37]. Study of 72
human tissues confirmed ACE2 mRNA expression in tissues other
than the lung and gastrointestinal system, like testis, cardiovascu-
lar, renal, and pancreas [38,39]. Studies from 2003 SARS-CoV-1
epidemic evidenced that even milder SARS pneumonitis cases
who did not receive glucocorticoid medications, had higher fasting
blood glucose; and hyperglycemia in turn was an independent
predictor of higher mortality and morbidity [40]. A follow up study
in 2010 of the same cohort, investigating pathogenesis of pancre-
atic lesions, also found that pancreatic islets are strongly immune-
positive for ACE2 while exocrine tissues are only weakly positive.
Insulin dependent diabetes occurred during the hospitalization in
20 of the 39 patients (age: 47.2 ± 2.2 years) who received no cor-
ticosteroids during the course of SARS disease. Out of these, six had
diabetes at discharge. But after 3 years of follow-up, only two had
persistent diabetes, suggesting that the damage incurred by islet
cells is acute and mostly transient [9].

3. COVID-19 and T1DM: bidirectional link

Earlier reports from Italy and China noticed a curious lack of
people with T1DM in hospitalized cohorts of SARS-CoV-2, that
made the authors wonder if the immunological attributes of T1DM
are in some way protective [41,42]. However, it is more plausible
that lock-down measures with special directives of caution to
people with pre-existing conditions like diabetes, fear of infection,
more parental supervision while staying at home encouraged
young people to avoid crowded places as well as take better care of
their diabetes. Nonetheless, as we try to comprehend this unfolding
pandemic, new evidence is emerging that COVID-19 not only in-
creases the risk of DKA and mortality in those with T1DM & T2DM,
but also could potentially induce new-onset T1DM.

3.1. Does COVID-19 increase mortality/morbidity in T1DM?

Diabetes has long been associated with increased susceptibility
to and severity of infections. Hyperglycemia, by altering immune
response and causing cytokine dysregulation, is an inherently
proinflammatory and procoagulant state [43e47]. In an observa-
tional study on 59 hospitalized adult COVID-19 patients, patients
with hyperglycemia had higher IL-6 and D-dimer levels, which
reduced significantly with optimal glucose control, supporting the
permissive role hyperglycemia plays in enhancing inflammation
and creating procoagulant state independent of viral mediation [4].
Hence T1DM and T2DM, especially with poor glycemic control
become high-risk pre-existing conditions for many bacterial and
viral infections including SARS-CoV-2.

Multiple centers reported that COVID-19 induces DKA and in-
creases the length of hospital stay in those with diabetes [5]. Even
as evidence mounts on the increased COVID-19 related mortality
and morbidity in those with pre-existing diabetes, most of these
observations were in relation to people with T2DM, who typically
have a range of co-morbidities like hypertension, obesity, cardio-
vascular disease etc., unlike the relatively younger and otherwise fit
T1DM community [6,48].

In a preliminary report from a multicenter USA study, out of 64
adults with T1DM who have confirmed or suspected COVID-19,
more than 50% reported hyperglycemia, and nearly one-third had
DKA [49]. In a nationwide analysis in England, adjusted for age, sex,
deprivation, ethnicity, and geographical region, compared with
people without diabetes, the odds ratios for in-hospital COVID-19-
related death were 3$51 (95% CI 3$16e3$90) in people with T1DM
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and 2$03 (1$97e2$09) in people with T2DM. These effects were
attenuated to ORs of 2$86 for T1DM and 1$80 for T2DM when also
adjusted for underlying cardio/cerebrovascular disease, though
other potential confounders like BMI, hypertension, kidney disease,
and tobacco smoking were not adjusted for [50]. Moreover, people
younger than 40 years with either type of diabetes were at very low
absolute risk of in-hospital death with COVID-19, further indicating
that comorbidities might have contributed significantly to the
increased mortality. Moreover, evidence hitherto points towards a
milder covid-19 in children with better prognosis when compared
with adults [51].

In a population-based cohort study of all the people with T1DM
and T2DM who were registered to general practice in England,
COVID-19 related mortality is higher (Hazard ratio 2.23 in T1DM,
1.61 in T2DM) in those with prior higher HbA1c of 10% (86 mmol/
mol) versus in those with a HbA1c of 6.5e7.0% (48e53 mmol/mol).
In addition, older age (>70 years), non-white ethnicity, co-
morbidities like previous stroke or cardiac failure or renal
compromise and socio-economic deprivation are associated with
increased mortality, in both T1DM and T2DM [52].

These studies indicate that COVID-19 increasesmortality even in
people with T1DM, especially in older age groups with co-existing
renal or cardiac disease. In patients with diabetes, it is important to
maintain optimal glycemic control by frequent blood glucose and
ketone measurements, and adjusting insulin regime accordingly.

3.2. Challenges in the management of individuals with T1DM

As it is becoming more evident that the length of hospital-stay,
risk of complications and overall mortality from COVID-19 are
higher with poor glycemic control, this could be partly due to the
adverse effects of certain therapies currently under trials to treat
severe cOVID-19 [52,53].

Hydroxychloroquine, an immunomodulatory agent that was
extensively used during the initial phases of the pandemic, can
decrease insulin degradation at the cellular level and stimulate
insulin-mediated glucose transport, resulting in potential hypo-
glycemia [54,55]. On the other hand, antiviral drugs such as lopi-
navir and ritonavir could lead to hyperglycemia and worsen
glycemic control [56]. Glucocorticoids, which were seen to improve
outcomes in COVID-19 related severe acute respiratory distress
syndrome and hence became an integral part of treatment regime
for hospitalized patients, can lead to marked hyperglycemia by
reducing insulin sensitivity as well as by interfering with the ac-
tions of glucagon like peptide-1 and stimulating production of
glucagon [57]. Some of the challenges in managing individuals with
T1DM during COVID-19 pandemic are given in Table 2.

3.3. COVID-19, pancreatitis, and new onset diabetes

Recent virologic data fromGermany (Hoffmann et al.) and China
(Zhou et al.) reveal important commonalities between SARS-CoV-2
and SARS-CoV-1 infections, and demonstrate that SARS-CoV-2 uses
the same ACE2 receptor as SARS-CoV-1 for host cell entry [58,59].
As the substantially high transmissibility of SARS-CoV-2 relative to
SARS-CoV-1 is becoming evident, one may speculate that the new
virus might exploit cellular attachment factors with higher effi-
ciency than SARS-CoV-1, causing more robust infection of ACE2þ
cells.

3.3.1. COVID-19 and pancreatitis
Despite the findings of islet cell infection, new onset hypergly-

cemia and diabetes, there have been no reports of acute pancrea-
titis with the SARS-CoV-1 epidemic of 2003. However, the effects of
SARS-CoV-2 seem to differ in this perspective, with many cases of



Table 2
Challenges in managing individuals with TIDM.

COVID-19 induced Challenges Effects on individuals with T1DM

Use of drugs, such as chloroquine and hydroxychloroquine Higher risk of glycemic fluctuations and hypoglycemia
Effect of ‘lock down’ Lack of physical interaction with peers

Reduced physical activity
Increased screen time
Intake of less healthy food
Psychological stress
Irregular sleep pattern

Increased risk of DKA Fear of contracting COVID-19 in a hospital and delay in seeking medical attention in case of an illness
Difficulties accessing medical supplies
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COVID-19 related acute pancreatitis being reported during the last
few months [60e64]. In a case series of 52 patients with acute
COVID-19, eight patients experienced pancreatic injury in the form
of abnormal elevation in lipase or amylase [65]. Whether this
pancreatic injury is due to the direct cytopathic effect of the virus,
or the indirect result of severe systemic inflammatory response and
multiorgan dysfunction in the context of severe COVID-19 illness is
yet to be established.

A distinct subset of moderate pancreatitis with a benign course
was described by researchers at Liverpool, UK. Out of 35 patients
presenting with acute pancreatitis over a period of 6 weeks during
March/April 2020, 10 were positive for SARS-CoV-2, and 5 of these
were excluded as they had a clearly defined etiology. The remaining
five patients were male, overweight or obese, had abdominal pain,
mildly elevated amylase, and pancreatico-duodenal inflammation
with hepatic steatosis on CT scan. Though all had persistenty
elevated inflammatory markers, none had either transient or
persistent multiorgan failure. Three of them had new onset dia-
betes requiring Insulin, with two going home on Insulin [66].
Though none of these reports prove causality, the role of direct viral
cytopathic damage of pancreas can not be discounted, and it seems
that endocrine islet cells are particularly more vulnerable to the
viral insult.

3.3.2. COVID-19 and new onset diabetes
New-onset hyperglycemia is being increasingly described with

COVID-19 in adults without a previous history of diabetes, albeit
with significant mortality and morbidity. While infection induced
inflammation and cytokine activation and resultant insulin resis-
tance could lead to stress hyperglycemia, it is uncertain as to what
extent the direct viral destruction of islet cells with decreased in-
sulin production and release might be contributing [67] (Fig. 2).
COVID-19 can also act as an infectious trigger that could decom-
pensate and precipitate DKA in patients with new-onset T1DM and
Fig. 2. The bidirectional dynamic of SARS CoV2 and diabetes.
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T2DM. During early months of pandemic in Italy, 23% fewer annual
cases of new childhood diabetes were reported, though the ones
presenting had more severe DKA in 2020 than in 2019 (44.3% vs.
36%, respectively) [68]. A two-fold increase in DKA and severe
ketoacidosis at diabetes diagnosis in children and adolescents
during the COVID-19 pandemic was reported from Germany, while
an increase in referral of children with DKA was reported from the
UK when compared with previous years. However, the underlying
reasons for this phenomenon may be multifactorial and reflect
reduced access to primary care services, parental fear of
approaching the health care system during the pandemic period
resulting in delayed diagnosis of new cases of T1DM [69e71]. A
more recent multicenter study from the UK describes an apparent
increase in new-onset T1DM in children, with evidence of SARS-
CoV-2 infection or exposure in some of these. Seventy per cent
(21/30) children presented with DKA and 52% (11/21) had severe
DKA (pH 6.82e7.05). Of the five children with positive results (2 of
21 tested were SARS-CoV-2 PCR positive and 3 of 16 tested were
SARS-CoV-2 IgG positive), three presented with severe DKA and
refractory hypokalemia, and one PCR positive child suffered a
hypokalemia-related cardiac arrest but recovered fully. Interest-
ingly, majority had only a short duration of preceding symptoms of
diabetes, refuting the previous notion of delayed presentation as
the reason for increase in incidence of DKA at disease onset [8].
SARS-CoV-2 reduces ACE2 expression, leading to decreased
degradation of angiotensin II, which can cause increased secretion
of aldosterone and renal potassium loss. Whether this phenome-
non was the basis for severe hypokalemia seen in the PCR positive
child, needs further evidence. There are a few case reports of
COVID-19 inducing acute onset diabetes and DKA in several in-
dividuals, mimicking T1DM. However, on follow-up there was
reduced need for insulin and ultimately insulin could be dis-
continued in all the three patients. At last follow-up, these patients
had normoglycemia on oral antihyperglycemic medication [7,72].
4. Future directions

At this point, it would be mostly conjectural to say that SARS-
CoV-2 exposure contributed to the rise in DKA by precipitating or
accelerating onset of T1DM. Our understanding so far is uncertain if
this new-onset diabetes is classic T1DM or some new form of dia-
betes. Whether the severe COVID-19 induced hyperglycemia
noticed in some individuals would remit on a long run as seenwith
SARS-CoV-1 induced diabetes is also unclear. How COVID-19
changes the natural history of disease in those with pre-existing
diabetes is difficult to surmise.

To address some of these issues, an international group of dia-
betes researchers have established a global registry of patients with
COVID-19erelated diabetes (covidien.e-dendrite.com), as part of
CoviDIAB Project. The goal of the registry is to establish the extent
and phenotype of new-onset diabetes that is defined by

http://covidien.e-dendrite.com
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hyperglycemia, confirmed COVID-19, a negative history of diabetes,
and a history of a normal glycated hemoglobin level [73].

5. Conclusion

COVID-19 is an indiscriminate disease with unequal vulnera-
bility. While hyperglycemia is seen to increase mortality and
morbidity related to COVID-19, the virus itself can induce/worsen
hyperglycemia, culminating in a vicious cycle. While we compre-
hend the intriguing mechanism of COVID-19 inducing diabetes or
worsening the existing disease, we are still left with some unan-
swered questions. Is COVID-19 induced b-cell damage transient or
permanent? Can COVID-19 linger on in the beta b-cells, causing
chronic infection and new-onset T1DM? As this pandemic evolves,
coordinated global efforts might throw some light upon these
important concerns. Until that time, it is prudent to keep a diligent
and close long term follow up of children and adults presenting
with new-onset diabetes during this pandemic and also those with
hyperglycemia induced by severe COVID-19.
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