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Abstract

Background: The folding of genetic information into chromatin plays important regulatory roles in many nuclear processes
and particularly in gene transcription. Post translational histone modifications are associated with specific chromatin
condensation states and with distinct transcriptional activities. The peculiar chromatin organization of rod photoreceptor
nuclei, with a large central domain of condensed chromatin surrounded by a thin border of extended chromatin was used
as a model to correlate in vivo chromatin structure, histone modifications and transcriptional activity.

Methodology: We investigated the functional relationships between chromatin compaction, distribution of histone
modifications and location of RNA polymerase II in intact murine rod photoreceptors using cryo-preparation methods,
electron tomography and immunogold labeling. Our results show that the characteristic central heterochromatin of rod
nuclei is organized into concentric domains characterized by a progressive loosening of the chromatin architecture from
inside towards outside and by specific combinations of silencing histone marks. The peripheral heterochromatin is formed
by closely packed 30nm fibers as revealed by a characteristic optical diffraction signal. Unexpectedly, the still highly
condensed most external heterochromatin domain contains acetylated histones, which are usually associated with active
transcription and decondensed chromatin. Histone acetylation is thus not sufficient in vivo for complete chromatin
decondensation. The euchromatin domain contains several degrees of chromatin compaction and the histone tails are
hyperacetylated, enriched in H3K4 monomethylation and hypo trimethylated on H3K9, H3K27 and H4K20. The
transcriptionally active RNA polymerases II molecules are confined in the euchromatin domain and are preferentially
located at the vicinity of the interface with heterochromatin.

Conclusions: Our results show that transcription is located in the most decondensed and highly acetylated chromatin
regions, but since acetylation is found associated with compact chromatin it is not sufficient to decondense chromatin in
vivo. We also show that a combination of histone marks defines distinct concentric heterochromatin domains.
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Introduction

Gene expression is regulated at the transcriptional level by a

variety of trans-acting factors that bind to specific promoter

elements to elicit transcription initiation in response to intra-

and extra-cellular signals. Only a fraction of the genome is

competent for factor binding and the way DNA is wrapped into

chromatin regulates its accessibility thus participating actively in

the regulation of gene expression [1]. In eukaryotes, DNA is

packaged through a hierarchy of folding events. In the first level

146 bp of DNA are wrapped in a negative supercoil around an

octamer of four pairs of the core histones H2A, H2B, H3 and

H4 to form the core nucleosome whose structure is defined at

the atomic level [2]. The fundamental repeated element of

chromatin, the nucleosome, is composed of the core particle,

linker DNA whose species-dependant average length varies

between 11 to 94 bp and the linker histone H1. In low ionic

strength purified chromatin appears as an extended 11 nm fiber

formed by a linear beads-on-a-string nucleosomal array that

compacts into 30 nm fibers in physiological ionic strength and in

the presence of histone H1 [3,4,5]. In vitro reconstituted or

purified 30 nm fibers are flexible and organized into imperfect

helical structures [6]. Direct electron microscopy imaging of

nuclear sections described highly compact electron dense

heterochromatin (HC) compartments and more extended eu-

chromatin (EC) territories but has provided little information on

the organisation of chromatin beyond the nucleosomal level and

in particular has not confirmed the 30 nm fibers as the

fundamental secondary structure of chromatin in intact nuclei

[7] [8].
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This structural definition partially overlaps the biochemical and

functional description of chromatin, which is separated into EC and

HC on the basis of nuclease accessibility, histone modifications and

transcriptional activity [9]. Transcribed genes are found associated

with accessible and more readily digested EC whereas nuclease

resistant HC is believed to be more compact and associated with

transcriptional repressed states [10,11], [12]. The structural origin

of this increased accessibility is not fully understood and was

recently challenged by the finding that coding sequences in general

are more nuclease sensitive regardless of their transcriptional

activity [13]. Moreover, specific post translational modifications of

the core histones are associated with characteristic transcriptional

states of the genome a finding which has led to the histone code

concept [14]. Lysine acetylation almost always correlates with active

transcription and is believed to act by neutralizing the repulsive

charge interaction between DNA and the histone tails [15] and by

recruiting specific chromatin associated proteins such as the

nucleosome remodeling complex SWI/SNF [16], histone acetyl

transferases [17] or the general transcription factor TFIID [18].

Lysine methylation is associated with distinct transcriptional states

depending on which residue is modified [19]. Methylation of

histone H3 lysine 4 (H3K4) or lysine 36 (H3K36) is related to

transcribed chromatin whereas H3K9, H3K27 and H4K20

trimethylation generally correlate with transcriptional repression.

Methylated H3K9 and H3K27 are bound by HP1 and Polycomb,

respectively, which mediate chromatin compaction [20].

Sedimentation studies on recombinant nucleosomal arrays were

performed to explore the link between chromatin condensation

and histone modifications and showed that acetylation of H4K16

inhibits the formation of 30 nm fibers [21]. This observation is

consistent with the concept that acetylation of the N-terminal tails

of core histones may affect inter-nucleosomal interactions.

However direct electron microscopic inspection of reconstituted

chromatin fragments reveals that core histone acetylation is not

sufficient to generate an open chromatin structure and that histone

H1 plays a key role in this process [22]. A correlation between

chromatin compaction and histone tail modifications has not been

demonstrated in vivo at the ultrastructural level.

The aim of this study was to correlate the packing of chromatin,

the transcriptional activity and the distribution of histone tail

modifications in sections of cell nuclei. Here murine rod

photoreceptors were investigated by electron tomography and

immunolabelling to study these correlations. Mouse rod cells have

an extremely dense HC domain located at the centre of the

nucleus and a small EC territory placed at its periphery, close to

the nuclear envelope [23]. These highly differentiated cells have

packaged most of their DNA into HC but still express all house-

keeping genes and undergo robust transcription of specific genes

involved in the visual signal transduction pathway [24] [25]. Our

findings show that nucleosomes are hyperacetylated, show higher

levels of monomethylation on H3K4 and are hypomethylated on

H3K9, H3K27 and H4K20 in euchromatin, and that fully

extended and partially condensed chromatin fibres are associated

with these modifications. The RNA polymerase II molecules are

detected only in the EC territory and frequently at a fixed distance

from the EC/HC interface which plays a role in the organization

of transcription units. The HC compartment contains tightly

packed chromatin which is organized into 30nm fibers at the

periphery and into an amorphous phase in the central part.

Heterochromatin nucleosomes are generally hypoacetylated and

hypermethylated on H3K9, H3K27 and H4K20 however a

densely packed HC territory was found hyperacetylated at the

EC/HC interface thus challenging the view that acetylation is

associated with an open chromatin structure. Moreover the

distribution of the H4K20 and H3K9 trimethylation marks in

the HC domain were different than the H3K27 mark thus

defining a core and a peripheral HC compartment.

Results

1-Chromatin territories in photoreceptor nuclei
Retinas of freshly sacrificed mice were dissected according to an

optimized protocol that preserves the electrophysiological activity

of the tissue and were instantly cryo-immobilized by high pressure

freezing to prevent chemical fixation and changes in physico-

chemical conditions that could reorganize the cellular ultrastruc-

ture. The retinas were then freeze-substituted, epon embedded

and sectioned at room temperature. Toluı̈din blue stained sections

displayed the multilayered structure of the retina in which the

nucleus, inner segment and outer segment of the photoreceptor

were recognized (Figure 1A). After post staining with uranyl

acetate and lead citrate, 100 nm thick retina sections observed by

transmission electron microscopy revealed the characteristic

appearance of rod nuclei which show a large electron dense HC

domain located in their center (Figure 1B). Most nuclei had a

nearly round shape with a maximal radius of 1.9+/20.2 mm

giving a volume of 29+/27 mm3. Chromatin appeared arranged

in concentric layers; the center of the nucleus being composed

exclusively of HC whereas a 500–600 nm wide rim adjacent to the

nuclear membrane contained a mixture of HC and less dense EC.

A fraction of HC was found in close contact with the nuclear

membrane thus forming a thin rim that was connected through

HC bridges to the central HC. In contrast to other cell types, the

EC compartment was markedly reduced in size and was confined

to the nuclear periphery close to the nuclear membrane.

Stereological measurements performed on 20 different nuclei

showed that the HC compartment represents 71% of the surface

when the nucleus is sectioned through its centre which, assuming

spherical symmetry corresponds to about 17 mm3. The thin layer

of HC in close contact to the nuclear membrane (within 150 nm

from the nuclear membrane) was estimated to 3 mm3 or 15% of

Figure 1. Ultrastructure of the rod photoreceptor nuclei. (A)
General organization of the photoreceptor within the retina viewed by
light microscopy after toluidin blue staining. ONL: Outer nuclear layer,
IS: inner segments, OS: outer segments. (B) Overall view of high
pressure frozen, cryo substituted rod photoreceptor nucleus observed
by electron microscopy. C: Cytoplasm, EC: euchromatin, HCc: central
Heterochromatin, HCp: nuclear envelope associated heterochromatin,
NM nuclear envelope.
doi:10.1371/journal.pone.0011039.g001
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the entire HC compartment. The EC compartment contacts the

nuclear membrane and projects into the central HC through

multiple invaginations thus forming cavities with an extended

HC/EC interface. The staining of the EC compartment showed

substantial variations indicating that variable degrees of chromatin

condensation coexist in this area.

2-Nucleosome distribution in chromatin territories
To gain a better insight into the 3-D organisation of chromatin

a 370 nm wide square area of a representative EC cavity was

recorded under different viewing directions and its volume was

reconstructed by electron tomography (Figure 2A–B). Digital

sections through the reconstructed tomogram clearly revealed

isolated electron dense particles whose size corresponds to isolated

nucleosomes (black particles marked by arrows in Figure 2B).

According to the abundance of these particles, the tomogram was

divided into 3 distinct EC domains (areas 1–3 in Figure 2C) and a

dense HC compartment (area 4 in Figure 2C). The least stained

area 1 does not enclose any dense particles and probably

corresponds to a nucleosome-free region at the centre of the

cavity. The intensity of this area was used to set a threshold in the

tomogram (4.5 s values over the average intensity) suitable to

detect of the individual electron dense particles whose number was

estimated by fitting 12 nm wide spheres.

Euchromatin area 2 contains well separated particles most of

which are 10 to 12 nm in size. With an average density of 58 103

particles/mm3 they occupy about 6.7% of the volume. The

particles are often connected by 2–4 nm wide threads and form

extended fibers with an average spacing between particles of

22 nm (n = 49, s= 5) (Figure 2D). This beads-on-a-string

appearance is consistent with the structure of an extended

chromatin fibre formed by core nucleosomes connected by a

linker DNA filament. The estimated repeated distance of 179+/

215 bp (146 bp wrapped around the core nucleosomes and 33 bp

or 11nm of linker DNA) is comparable to the 190 bp nucleosomal

repeat length found in mouse spleen cells [26]. Altogether these

observations show that individual nucleosomes and even connect-

ing DNA can be resolved in the tomograms of stained nuclear

sections and that individual, highly extended, chromatin fibers can

be depicted in these EC domains.

Area 3 corresponds to an EC compartment which contains

more densely packed particles and a nucleosome density of 145

103 nucleosomes/mm3 was determined. Nucleosome–sized parti-

cles are distinguished at the periphery of this domain but

individual chromatin fibres cannot be traced. The nucleosomes

occupy about 16% of this nuclear domain which is penetrated by

solvent accessible channels.

Finally, area 4 corresponds to a characteristic HC domain

where the boundaries of individual particles cannot be distin-

guished. A total of 61% of the volume has an intensity above the

threshold assigned for the nucleosomes which, assuming a similar

staining than for the EC territories, yields a concentration of about

540 103 nucleosomes per mm3. Considering the volumes of each

chromatin compartment and their estimated nucleosomal densi-

ties, a total of 12 106 nucleosomes are predicted to be present in

the nucleus. Such an amount of chromatin would package roughly

2.3 Gbp of DNA which is only slightly lower than the sequenced

mouse genome (2.5 Gbp) thus validating the estimated chromatin

compaction.

Despite its electron dense nature the HC compartment showed

at least two distinct textures indicative of different nucleosomal

arrangements. The periphery of the HC territory had generally a

granular appearance whereas the most central domain showed a

highly homogeneous and smooth texture (Figure 2E). In order to

characterize the average size of this granularity the Fourier

transform was calculated for the central and external parts of the

HC compartment (Inserts 1 and 2 in figure 2E, respectively). The

central HC showed a feature-less spectrum consistent with its

homogeneous texture. In sharp contrast, the peripheral granular

HC region is characterized by a strong ring in the Fourier

transform at 1/30.9 nm21. This observation indicates that the

periphery of the HC territory is formed by closely packed 30 nm

chromatin fibres whereas such fibres are not detected in the most

central domain.

3-Optimized immunolabelling of histones in condensed
chromatin

In order to correlate the degree of chromatin compaction with

the distribution of post translational histone marks we performed

Figure 2. Electron tomography of rod photoreceptor nuclei. (A)
Overall view of the nuclear domain in which the electron tomogram
was recorded (boxed area). The dark gold beads are fiducial markers
used for aligning the tilted views on a common origin (B) Four nm thick
section through the tomogram showing dark electron dense particles
(arrows). (C) Surface representation of the tomogram in which 4 distinct
chromatin domains were delineated. (D) Extraction of characteristic
11 nm fibers from different tomograms and beads on a string
representation. (E) Overall view of the heterochromatin domain
showing a distinct transition between a granular (gra) and a smooth
(smo) compartment. These compartments are characterized by their
optical diffraction pattern shown in insert 1 and 2 for the granular and
smooth territory respectively. Bar represents 300nm in (A), 100 nm in
(B–C), 54 nm in (D) and 230 nm in (E).
doi:10.1371/journal.pone.0011039.g002
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immunocytochemistry experiments using antibodies directed

against native or modified histones. In our hands, methods using

cell permeabilization failed to label the condensed central HC

probably because of reduced accessibility (data not shown). Ultra-

thin cryo sections of the retina were therefore produced to gain

equal access to all regions of the nucleus and to optimally preserve

the antigenicity of the epitopes [27]. An antibody directed against

the C-terminal part of histone H3 was first used to label all

nucleosomes. After immunofluorescent detection, this antibody

was found to bind strongly to the central part of the cell nucleus

where it overlapped with the DAPI staining thus indicating that

the condensed HC domains are unveiled by the sectioning process

and accessible for antibody binding (Figure 3A–C). In order to

quantify the labelling density and its variations in the different

nuclear domains, the primary antibody was immuno-gold labelled

and the sections were observed by electron microscopy to

determine the number of electron dense particles per surface area

(Figure 3D–F). For the anti H3 antibody the labelling density was

of 86 particles per mm2 (p/mm2) in HC and of 42 p/mm2 in EC

yielding a HC/EC labelling ratio of 2. This ratio is significantly

lower than the HC/EC nucleosome density ratio of at least 5

found by tomography suggesting that the accessibility of this

epitope is affected by the nucleosomal packing. To quantify the

radial variation of the labelling density within the nucleus, the HC

domain was contoured and the gold particles were counted in

concentric rings of decreasing size, each separated by 150 nm

(Figure 8). The labelling density is remarkably uniform for the

anti H3 antibody throughout the whole HC.

4-Different trimethylation states of silenced chromatin
The distribution of three histone trimethylation marks specific

for transcriptionally silenced chromatin were investigated by using

antibodies recognizing histone H3 modified on lys 9 (H3K9me3),

on lys 27 (H3K27me3) or histone H4 modified on lys 20

(H4K20me3).

The H3K9me3 mark is strongly underrepresented in the EC

regions since the labelling density is 15 times lower than the

average HC labelling. In addition, this mark is not homogeneously

distributed over the HC domain since the labelling density

increases towards the center of the HC (Figure 4A and B). The

gold particle density was 40 p/mm2 in the most external HC ring

(from 0 to 150 nm from the EC/HC interface) and increased

regularly to reach 255 p/mm2 in the center of the nucleus

(Figure 8). This 6.4 times increased labelling of the inner HC is

highly significant since it contrasts with the control H3 labelling

which varied by less than 5%. Direct inspection of the labelled

Figure 3. Immuno labelling of core histone H3. (A) DAPI staining
of an ultra-thin cryo-section (B) Core histone H3 labelling detected by
Alexa Fluor 488. (C) Merged image. (D) Overall view of the ultra-thin
immunogold labelled section. (E) Enlarged region showing the uniform
labelling of the section. (F) Schematic representation of the H3-specific
labelling. Bar represents 1 mm in D and 0.5 mm in E.
doi:10.1371/journal.pone.0011039.g003

Figure 4. Immunolabelling of transcriptionally inactive histone
marks. (A) Overall view of a rod nucleus immunogold labelled with
H3K9me3-specific antibodies (B) Schematic representation of the
H3K9me3-specific labelling. The dashed circle indicates the more
intensely labelled central HC core (C) Enlarged region showing the
distribution of the labelling along 30 nm fibers. (D) Schematic
representation of the H4K20me3-specific labelling. The dashed circle
indicates the more intensely labelled central HC core (E) Schematic
representation of the H3K27me3-specific labelling. The dashed circle
indicates the less labelled central HC core. The bar represents 500 nm in
(A, B, D, and E) and 85 nm in (C).
doi:10.1371/journal.pone.0011039.g004
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nuclei identifies two distinct HC domains. In a round almost

central core HC domain representing about 25% of the total HC

surface, the labelling density is 245 p/mm2 whereas in the

peripheral HC it falls to 42 p/mm2. Interestingly, both in the

peripheral and in the core HC, the gold labels were often arranged

along 30 nm wide fibers indicating that some chromatin fibers can

bind several antibodies whereas neighboring fibers cannot

(Figure 4C). The absence of labelling is not due to less accessible

epitopes or to an unfavorable cutting plane since such a pattern

was not observed for the control anti H3 antibodies. This fiber

pattern discloses a spreading mechanism where the nucleosomes of

some fibers are highly trimethylated on H3K9.

The overall distribution of the H4K20me3 mark is comparable

to that of the H3K9me3 modification. The HC domain is on

average 11.6 times more labelled than the EC compartment and a

5.6 fold increase in labelling density is observed between the most

peripheral and the most central parts of the nucleus. A core HC

domain, which represents 42% of the nuclear radius, can be

defined in which the labelling is almost homogeneous (400 p/mm2)

and 2.8 times higher than in the periphery (140 p/mm2)

(Figure 4D and 8). A fiber-like labelling pattern is also observed

for the H3K20me3 mark.

The H3K27me3 marks are also enriched in the HC region but

in contrast to the previously analyzed trimethylations, show a

decreased labelling from the periphery to the center of the HC

territory (Figure 4E and 8). A central HC core domain

representing about 25% of the HC surface can thus be delineated

in which the average labelling density is 24 p/mm2 whereas it rises

to 87 p/mm2 in the periphery.

5-Condensed chromatin can be acetylated
The distribution of acetylated histones generally associated with

actively transcribed genes and with decondensed chromatin was

investigated using an antibody directed against acetylated H4K8.

In sharp contrast to the silencing marks, H4K8ac is almost absent

in the central HC domain (4 p/mm2) but, unexpectedly, is found

highly enriched in the condensed HC closest to the HC/EC

interface (97 p/mm2) and in the EC compartment (41 p/mm2)

(Figure 5A–C and 8). The nucleosomes present in the EC and

close to the EC/HC interface are thus hyperacetylated on histone

H4. The condensed chromatin associated with the nuclear

membrane is also heavily decorated by this antibody (100 p/

mm2). An antibody directed against all acetylated forms of H4 gave

the same labelling profile (Figure 5D).

The distribution of acetylated histone H3 was investigated by

using an antibody specific for acetylated K9 and K14. Despite a

slightly lower labelling density, the distribution of H3K9K14ac is

similar to that of H4K8ac (Figure 5E). Highest labelling is found

at the EC/HC interface and in EC domains where less condensed

chromatin is more likely to occur (Figure 8). These observations

confirm that the extended chromatin is highly acetylated and show

that the highly condensed chromatin placed at the interface with

EC is also acetylated thus demonstrating that this histone mark is

not sufficient to promote chromatin decondensation.

6-Euchromatin and its interface with heterochromatin
show high levels of H3K4 monomethylation

Unlike the H3K9, H3K27 or H4K20 methylations described

above, the methylation of lysine 4 of histone H3 is a post

translational modification exclusively associated with actively

transcribed genes and particularly with the early transcribed

region [28]. The distribution of this mark was investigated using

an antibody directed against the monomethylated form of H3K4.

Despite a lower labeling density than observed for the previous

marks, H3K4 monomethylation is 4 time more abundant in EC

than in the most central part of the HC domain and is found

enriched in the condensed HC closest to the HC/EC (Figure 6
and 8). The distribution of the methylation mark is thus

comparable to that of the acetylation mark with the notable

difference that the enrichment in the EC compartment is more

important for H3K4me. Due to the lower nucleosomal content in

Figure 5. Immunolabelling of acetylated histone marks. (A)
Overall view of a rod nucleus immunogold labelled with acetylated
H4K8-specific antibodies. (B) Schematic representation of the H4K8ac-
specific labelling. (C) Enlarged region showing the distribution of the
H4K8ac labelling around the EC cavities. (D) Schematic representation
of the labelling for the pan-actetylated H4. (E) Schematic representation
of the labelling for H3 actetylated on K9 and K14. The bar represents
1 mm in A, B, D, E, and 260 nm in C.
doi:10.1371/journal.pone.0011039.g005

Figure 6. Immunolabelling of lysine 4 monomethylated histone
H3. (A) Enlarged region showing the distribution of the H3K4me1
labelling around and within the EC cavities. (B) Schematic representa-
tion of the labelling for the H3K4me1 mark. The bar represents 260 nm
in A and 1 mm in B.
doi:10.1371/journal.pone.0011039.g006
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the EC compartment acetylation density drops by a factor of 2.1

between the HC close to the HC/EC interface and the EC. In the

case of H3K4 methylation, the labeling density remains constant

suggesting that the extended chromatin is more enriched in H3K4

monomethylation than in acetylation marks.

7-RNA polymerase II accumulates close to the EC/HC
transition

In order to position RNA polymerase II (RNA Pol II) molecules

an antibody targetting the repeated heptapeptide of the C-

terminal domain (CTD) of the largest RNA Pol II subunit was

used. This antibody recognizes all forms of RNA Pol II since it is

directed against the non phosphorylated CTD. The RNA Pol II

were found almost exclusively (79%) within the EC compartment

where the labelling was 14.5 times higher than in the HC domain.

Interestingly the labelling was not distributed randomly within the

EC cavities but appeared to be stronger close to the EC/HC

interface (Figure 7A). To quantify this effect, the distances of the

gold beads to the EC/HC interface were plotted as a histogram

along with a modeled random distribution of beads to take into

account the size distribution of the EC cavities (Figure 7C). This

representation shows that the RNA Pol II distribution peaks at a

distance of 40 nm from the interface and 67% of the label is found

within 40+/220 nm. In case of a random distribution, the plot is

flatter and a maximum is observed at 55 nm that contains only

26% of the beads. The most central parts of the cavities contain

only 8% of the RNA Pol II labelling when it should be 23% if

random. These experiments indicate that RNA pol II molecules

accumulate in the EC domain close to the EC/HC interface and

are depleted in the center of the EC cavities.

In order to investigate the distribution of the transcriptionally

active form of RNA Pol II an antibody directed against the CTD

phosphorylated on serine 2 of the heptapeptide repeat. The active

RNA Pol II is located preferentially (enriched 4.3 times) in the EC

compartment. The histogram representing the distance of the

active polymerases to the EC/HC interface shows that 66% of the

active enzyme peaks at 20+/220 nm from the interface.

Moreover no active RNA Pol II labeling could be detected in

the most central parts of the EC cavities. These results show that

the transcribing enzyme is located even closer to the interface than

the total pool of RNA Pol II.

Discussion

Murine rod photoreceptors are terminally differentiated cells

and contain a highly condensed HC domain placed at the center

of the nuclei. The small size of the EC compartment, the peculiar

chromatin organization and the availability of genome wide gene

expression data turn these cells into unique models to study the

correlations between chromatin compaction, transcriptional

activity and histone modifications. At first sight, rod photoreceptor

nuclei show two distinct nuclear domains that reflect the early

structural definition of EC and HC based on regions differentially

stained with basophilic dyes [29]. Our results show that this binary

EC/HC concept is oversimplified and reveal a variety of

chromatin states in both nuclear compartments. A specific pattern

of histone modifications is associated to each chromatin state and

transcriptional activity is confined to the decondensed chromatin

areas.

The 30nm chromatin fiber forms a discrete level of
heterochromatin compaction

A widely accepted model for chromatin compaction involves

successive folding events during which linear nucleosome arrays

wrap into 30 nm wide helical fibers forming either a solenoid or a

zig-zag assembly. Mostly observed in vitro for dispersed chromatin,

30 nm fibers are more elusive in the cellular context except for

isolated starfish sperm or chicken erythrocyte nuclei placed in

hypotonic conditions [30]. Direct evidence that such fibers are

fundamental structural units of condensed chromatin in physio-

logical ionic strength comes from early small angle X-ray

scattering experiments of isolated nuclei which showed a

diffraction signal at 1/30nm21 proposed to be generated by

tightly packed chromatin fibers [31]. Such a signal was however

never detected in electron micrographs of sectioned cell nuclei thus

Figure 7. Immunolabelling of RNA Polymerase II. (A) Rod nuclei
immunogold labelled with antibodies directed against the total pool of
RNA Pol II molecules. (B) Rod nuclei immunogold labeled with an
antibody directed against the transcriptionally active RNA Pol II in which
the CTD heptapeptide is phosphorylated on Ser5. (C) Histogram
showing the distances between the EC/HC interface and the
immunogold particles in the case of the total pool of RNA Pol II (blue)
and the actively transcribing RNA Pol II (red). The grey histogram
represents a simulated random distribution of the particles in the same
EC domains. The bar represents 200 nm.
doi:10.1371/journal.pone.0011039.g007
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Figure 8. Radial distribution of the labelling densities within rod nuclei. (A) Table showing the labelling densities found for each antibody in the
different chromatin compartments. (B) Graph representing the labelling density of the silencing histone marks in concentric nuclear compartments. From
left to right the graph represents the nuclear envelope-associated heterochromatin (NE-HC), the euchromatin compartment (EC) and five concentric rings
of the central heterochromatin domain that are separated by 150nm as indicated on panel B. The darkest bar positions the EC/HC interface. The labelling
densities were normalized by the average labelling density of the central HC domain. (C) Same representation as in (B) for the histone marks specific for
active transcription. (D) Schematic representation of a rod nucleus showing the euchromatin (white) and the heterochromatin (grey) territories. The
central heterochromatin domain is separated into 5 concentric rings separated by 150 nm and analyzed independently to determine the radial variation
in labelling density. The coloured dots represent schematically the distribution of the histone marks and respect the colour code used in panel (A).
doi:10.1371/journal.pone.0011039.g008
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raising the possibility that it could originate from structures other

than chromatin. Technical reasons such as poor structural

preservation or lack of repeated units were eluted by the

observation of frozen hydrated cryo sections which preserve

optimally the cell architecture. The absence of any detectable

signal for 30nm fibers in frozen hydrated section of mitotic

chromosomes [32] [33] or of cultured cells nuclei [8] led the

authors to support a model in which the fibers are highly

interdigitated thus leading to a liquid crystal-like organization of

nucleosomes.

Our studies revealed for the first time a signal at 1/30nm21 in

the Fourier transform of nuclear images. The highly compact

nature of the rod nucleus may have favoured the detection of the

fibers and special care was taken to perturb as little as possible the

nuclear organisation during specimen preparation. In this respect,

the nuclei were not isolated from cells, the physiological ionic

strength was preserved during dissection and the freshly dissected

tissue was shown to be functional just prior to high pressure

freezing. Interestingly 30nm fibers are only detected in the

periphery of the HC whereas the central part appears uniform and

does not show any periodic signal at 1/30nm21. Our results thus

favour a model in which rod HC is organized as closely packed

30 nm fibers which, consistent with the liquid crystal model,

appear melted in the most central HC. However, even in these

central parts of the nuclei, our immunolabelling data reveal 30 nm

wide fibers, suggesting that the diffusion of nucleosomes around

the positions they would adopt within a regular 30 nm fiber is

limited. The transition between the homogeneous and the

granular HC is unrelated to histone acetylation but correlates

with a specific trimethylation pattern that could contribute either

directly or through the recruitment of specific factors to interfiber

interactions.

Functional organization of rod heterochromatin into
concentric layers

The rod HC is organized into three concentric layers, each

characterized by a specific combination of histone modifications

and this arrangement reflects the functional layout of the nuclei.

The central HC core has a radius of 0.8 mm corresponding to 42%

of the nuclear radius and contains histones highly enriched in

H4K20me3 and H3K9me3 marks, weakly trimethylated on

H3K27 and deacetylated. The size of this domain correlates with

Fluorescence In Situ Hydridization (FISH) experiments showing

that telomeric, centromeric and subcentromeric satellite DNA are

found between 0 and 45% of the nuclear radius [34]. The core

HC thus shows all the hallmarks of constitutive heterochromatin.

Interestingly both H4K20me3 and H3K9me3 marks are distrib-

uted along 30 nm fibers indicating their accumulation on

contiguous genomic locations consistent with their spreading

around an initial deposition site. Self propagation is a character-

istic feature of centromeric HC in mammals where spreading is

based on the SUV39H methylase that favours the binding of HP1

proteins which recruit more methylases and propagate the

H4K20me3 mark [35].

A peripheral domain surrounds this central core and extends to

about 0.2 mm to the EC/HC interface which corresponds to 42%

and roughly 60–80% of the nuclear radius since the interface is

folded. In this domain the histone tails are not acetylated and show

reduced H4K20me3 and H3K9me3 and higher H3K27me3 levels

than the central core. The H3K27me3 mark was associated in

several systems to facultative HC defined here as genomic regions

that have the opportunity to adopt an open or a compact

conformation within defined temporal or spatial constraints [36].

For example, H3K27me3 has an important role in embryonic

development and was found to be involved in long range HOX

gene silencing through the Polycomb group of proteins [37]. In

rod nuclei the accumulation of H3K27me3 around the central

core is consistent with a developmentally regulated onset of these

marks [34].

Finally a 0.2 mm thick rim of heterochromatin at the EC/HC

interface displays the same histone trimethylation pattern than the

peripheral HC domain but is surprisingly highly acetylated. FISH

experiments have located the gene rich regions of the genome,

irrespectively of their transcriptional status, between 70 and 100%

of the nuclear radius [34]. This layer of the rod nucleus is highly

heterogeneous and contains intermingled Eu- and Heterochro-

matin but it is tempting to speculate that transcriptionally inactive

genes are located in this compact but acetylated HC territory

whereas actively transcribed genes are placed in the adjacent EC

territory. Our results show that the role of histone acetylation

needs to be reassessed since it does not primarily affect the tight

nucleosomal packing and can be associated with inactive

chromatin. The position of these marks at the HC/EC interphase

raises the possibility that these marks contribute to the general

organization of the nucleus by partitioning the gene rich and gene

poor regions of the genome into distinct territories.

Transcriptionally active chromatin
Transcription, as probed by the presence of RNA Pol II, is

strictly restricted to the EC compartment, which is characterized

by the presence of decondensed chromatin, acetylated and

monomethylated histone tails, and the absence of H3K9me3,

H3K27me3 and H4K20me3 marks. Hyperacetylation of H3 and

H4 tails is a hallmark of actively transcribed genes in higher

eukaryotes [38], [39], [40] and in vitro transcription experiments

indicate that acetylation facilitates chromatin unfolding and

transcription [41]. However, recent folding studies showed that

acetylation of the H4 tail does not totally impair condensation and

that histone H1 eviction is necessary to form an extended

chromatin structure [22]. Accordingly, our in vivo observations

confirm that H3 and H4 acetylation on its own is not sufficient to

elicit chromatin decondensation at the HC/EC interface. In vitro

the extended 11 nm chromatin fibers showing the typical beads-

on-a-string appearance were only observed in the absence of the

histone H1, which is believed to stabilize the 30 nm fiber by acting

on the path of DNA at the exit of the nucleosome [42], [43].

Therefore our observations indicate that the removal of H1 is a

critical event in the transition towards an active transcriptional

state.

Electron tomograms revealed large variations in nucleosomal

packing in the EC compartment ranging from extended 11 nm

fibers to more densely packed chromatin regions. These variations

suggest that all the euchromatin is not in the same transcriptional

state and that significant transcriptional regulation may still occurs

in the EC compartment through modulation of the chromatin

structure. The fraction of the genome exposed in the EC territory

can be roughly estimated to be 20 Mbp or less than 1% of the

mouse genome from the average nucleosome density (about 105/

mm3) and the volume of the EC compartment (about 9 mm3). This

fraction may correspond to genes that can rapidly switch between

an activated and a repressed state.

The distribution of the actively transcribing RNA Pol II

correlates with the EC/HC interface since both the phosphory-

lated and the total pool of RNA Pol II accumulate at a defined

distance to the HC compartment. These distance constraints,

which are found to be more stringent for the active enzymes,

indicate that the transcription process takes place preferentially at

20 nm or 1–2 nucleosomes away from the interface. The
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significance of this observation is still unclear but it is tempting to

speculate that chromatin fibers loop out of the HC domain and

that transcribing polymerases are located close to the basis of these

loops.

Materials and Methods

Retina dissection
The ICS/IGBMC animal facility is approved by the French

Ministry of Agriculture and Fisheries’ veterinary services (D67-

218-5 - notification of 13/10/2008). The experiments involving

animals were conducted under the supervision of a staff member

holding an animal experimentation authorization from the

Ministry of Agriculture and Fisheries: having followed the

obligatory national training programs for animal handling,

including procedures of euthanasia. The institution is guided by

the International Guiding Principles for Biomedical Research

Involving Animals developed by the Council for International

Organizations of Medical Sciences and all experiments were

performed in accordance with the National Institutes of Health

Guide for the care and Use of Laboratory Animals.

Thirteen to twenty-one weeks old C57/BL6 mice were sacrificed

in accordance with the National Institutes of Health Guide for the Care

and Use of Laboratory Animals. Their eyes were rapidly enucleated and

placed in Artificial CerebroSpinal Fluid (ACSF) buffer (126 mM

NaCl, 2.5 mM KCl, 1.2 mM MgCl2, 2.4 mM CaCl2, 1.2 mM

NaH2PO4, 18 mM NaHC03, 11 mM Glucose, PH 7.4, equilibrat-

ed with 95% O2 and 5% CO2) for the dissection. The retina were

gently separated from the pigment epithelium and the sclera after

removal of the lens, iris and vitreous humor. The dissection was

completed in less than 5 min [44].

High Pressure Freezing and freeze substitution
For High Pressure Freezing (HPF), retinas were punched

(Miltex, biopsy punch) to obtain an oriented disk 1.5 mm in

diameter that fits into the specimen carrier. After infiltration in a

drop of cryoprotectant containing 10% dextran (Sigma # D1662)

and 10% BSA (Sigma # A4503) v/v in ACSF buffer (5 sec), each

disk was placed onto a 200 mm thick flat gold-plated specimen

carrier in order to be vitrified in the HPF machine (EMPACT2,

Leica Microsystems, Vienna).

After HPF, the samples were freeze substitute [45] at 290uC for

80 h in acetone supplemented with 2% OsO4 and were then

warmed up slowly (1uC/h) to 260uC in an Automated Freeze

Substitution device (AFS2, Leica Microsystems). After 8–12 h the

temperature was raised to 230uC (1uC/h) and the samples were

kept at this temperature for 8–12 h before being rinsed several

times in acetone. The samples were then infiltrated with gradually

increasing concentration of Epon in acetone (1:2, 1:1, 2:1 volume

ratio and finally pure Epon) for 2–3 h while raising the

temperature. Addition of pure Epon was performed at room

temperature. After polymerization of the resin at 60uC, 70–

100 nm thin sections were produced using an ultramicrotome

(ultracut UC6, Leica Microsystems, Vienna), collected on formvar-

carbon coated hexagonal 50 mesh copper grids and post-stained

for 5 min with 2% aqueous uranyl acetate, rinsed and incubated

for 2 min with lead citrate. The quality of the vitrification was

assessed by the absence of recognizable ice crystal ghosts.

Stereology. To determine the proportion of the nuclear

volume occupied by the different chromatin compartments we

used stereological methods [46] and approximated the nucleus as

concentric spheres composed, from inside to outside, of core HC,

HC, EC, and membrane interacting HC. To estimate the volume

of the nuclei, the radius of 20 sectioned nuclei were measured and

plotted as a histogram. The peak of the histogram was close to the

largest measured value and gave the radius of the central section of

the nuclei. The volume occupied by a given chromatin

compartment is proportional to the surface occupied by this

compartment in a central section of the nucleus corrected for its

radial distribution. The areas of the different chromatin

compartments were determined by applying an intensity

threshold on low pass filtered images. The surface of the central

HC compartment was used to determine an average HC radius

that was used to calculate the volume. Heterochromatin was

considered to be associated to the nuclear envelope (NE) when it

was within 150 nm of the NE. The volume of this shell was

calculated and multiplied by the fraction of this area occupied by

NE-HC to obtain the volume of NE-HC.

Electron Tomography. Ten nanometer colloidal gold

particles were applied on one side of the grid to be used as

fiducial markers to align the tilt series. The specimen was inserted in

a transmission electron microscope equipped with a field emission

gun and operating at 200 kV (Tecnai F20, FEI Company). Digital

images were recorded at a magnification of 29.0006on a Pelletier

cooled 2k CCD camera leading to a pixel spacing of 3.6 Å (Gatan,

Inc., Pleasanton, CA, USA). Each tilt series was recorded in bright-

field mode over a tilt range of 265u to +65u with 1u increments

giving a total of 131 images automatically collected with the Xplore

3D software (FEI Company). The recorded images were aligned on

a common origin by means of cross correlation techniques and the

3-D reconstruction was performed using the Inspect3D tomography

reconstruction package (FEI Company) according to the weighted-

back projection methods or the Simultaneous Iterative

Reconstruction Technique (SIRT). Surface rendering was

performed by gray level thresholding using the Chimera software

(http://www.cgl.ucsf.edu/chimera) after having low pass filtered

the tomograms to 1/10 nm21. In order to position the electron

dense particles the low pass filtered tomograms were searched for

peaks of high intensity separated by more than 12 nm. For

modeling, a 12 nm sphere was placed at each peak coordinate.

Antibodies. Active marks of transcription were detected with

rabbit polyclonal antibodies directed against H3K9K14ac

(Millipore # 06-599), H4K8ac (Abcam # ab15823, Cambridge),

pan acetylated H4 (Millipore # 06-866) and H3K4me1 (Abcam #
ab8895). Inactive marks of transcription were detected with rabbit

polyclonal antibodies directed against H4K20me3 (Abcam #
ab9053), H3K27me3 (Millipore # 07-449) and H3K9me3

(diagenode # pAb-056-050). Total Histone H3 was detected

with a rabbit monoclonal antibody directed against the C-terminus

of histone H3 (Millipore # 05-928). RNA polymerase II was

detected with an IgG1-type mouse monoclonal antibody

developed at IGBMC (1PB7C2). This immunopurified antibody

reacts with the conserved heptapeptide repeat of the largest

subunit of eukaryotic RNA polymerase II. The active form of

RNA polymerase II was detected with an IgM-type mouse

monoclonal antibody directed against the phosphoserine 2 in the

heptapeptide repeat of Rpb1 (Covance # MMS-129R). The

primary antibodies were revealed with goat anti-rabbit ultra-small

gold-conjugates (Aurion, Wageningen, The Netherlands). For the

detection at the light microscope level goat anti-rabbit IgG

coupled to AlexaFluor 488 were used (Invitrogen # A11008).

Immunocytochemistry. Retina samples were prepared,

sectioned and immunolabelled according to Tokuyasu [47].

Sample preparation: Briefly, after dissection, retina were cut into

small blocks of about 1mm3, fixed in 2.5% formaldehyde, 0.1%

glutaraldehyde in 0.1 M Phosphate Buffer Saline pH 7.4 (PBS) for

1h. Free aldehydes were blocked with several washes in PBS

supplemented with 50 mM glycine. The blocks were infiltrated
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with 2.3 M sucrose in PBS in an Eppendorf tube on a rotating

wheel for at least 2 h at 4uC. The blocks were then mounted on

the holders of the cryoultamicrotome and rapidly frozen in liquid

nitrogen. Cryosectioning: Ultra-thin cryo-sections (100 nm) were cut

using a cryo-ultramicrotome (UM6, Leica Microsystems) at

2130uC using diamond knives (Diatome, Switzerland) and

recovered with a drop of 2.3 M sucrose on formvar-carbon

coated 50 mesh nickel grids or on coated light microscope slides

for immunofluorescence. After thawing, immunolabelling was

performed using the automatic Immuno Gold Labelling apparatus

(IGL, Leica Micosystems, Vienna). Immunolabelling: After a

blocking step of two times 10 mn in glycine (0,5 mM in PBS)

and another 10 mn in 1% BSA/PBS (blocking buffer), the sections

were incubated 20 min with the primary antibodiy. After 4 times

2 min washes on 106 diluted blocking buffer bound antibodies

were revealed using goat anti-rabbit conjugated to ultra-small

colloidal gold (US) diluted 1:25 PBS with 0.1% acetylated BSA

(BSA-cTM) (Aurion, Wageningen, The Netherlands). After several

washes in PBS/0,1%BSA followed by PBS, the antigen-antibody

complexes were stabilized on 1% glutaraldehyde in PBS for 5 min

After several washes in PBS followed by water colloidal gold silver

enhancement was performed using R-GentTM (Aurion) for 30 min

resulting in an average particle size of 10 nm. Thereafter, sections

were carefully washed 5 times (5 min each) with water, stained and

embedded in a solution containing 4 parts of 2% methyl cellulose

(Sigma-Aldrich # M-6385) and one part of 2% uranyl acetate.

Sections were observed using a Philips CM 120 transmission

electron microscope at an accelerating voltage of 100 kV.

For immunofluorescence the primary antibody was detected

with a goat anti-rabbit IgG coupled to AlexaFluor 488 diluted in

blocking buffer. Sections were counterstained with DAPI (49,6-

diamidino-2-phenylindole) (1 mg/ml, Sigma) and embedded in

Aqua-Poly/Mount (Polysciences # 18606-20) medium. The

results were examined using a DM400B Leica epifluorescence

microscope connected to a Cool Snap camera (Roper).
Quantification of gold particles. The number of particles

per mm2 was quantified for 15–20 rod nuclei for each

immunolabelling experiment. The regions of interest were

delimited and their surfaces were measured using the ImageJ

software (http://rsbweb.nih.gov/ij/). Gold particles were counted

within each region of interest after high pass filtering of the images

and by using an automated peak search algorithm (Imaging

Science, Berlin, Germany).
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