
Qin et al. BMC Bioinformatics 2010, 11:369
http://www.biomedcentral.com/1471-2105/11/369

Open AccessM E T H O D O L O G Y  A R T I C L E
Methodology articleHPeak: an HMM-based algorithm for defining 
read-enriched regions in ChIP-Seq data
Zhaohui S Qin*1,2,3, Jianjun Yu3,4, Jincheng Shen1, Christopher A Maher2,3,4, Ming Hu1, Shanker Kalyana-Sundaram3,4, 
Jindan Yu5 and Arul M Chinnaiyan2,3,4,6,7,8

Abstract
Background: Protein-DNA interaction constitutes a basic mechanism for the genetic regulation of target gene 
expression. Deciphering this mechanism has been a daunting task due to the difficulty in characterizing protein-bound 
DNA on a large scale. A powerful technique has recently emerged that couples chromatin immunoprecipitation (ChIP) 
with next-generation sequencing, (ChIP-Seq). This technique provides a direct survey of the cistrom of transcription 
factors and other chromatin-associated proteins. In order to realize the full potential of this technique, increasingly 
sophisticated statistical algorithms have been developed to analyze the massive amount of data generated by this 
method.

Results: Here we introduce HPeak, a Hidden Markov model (HMM)-based Peak-finding algorithm for analyzing ChIP-
Seq data to identify protein-interacting genomic regions. In contrast to the majority of available ChIP-Seq analysis 
software packages, HPeak is a model-based approach allowing for rigorous statistical inference. This approach enables 
HPeak to accurately infer genomic regions enriched with sequence reads by assuming realistic probability 
distributions, in conjunction with a novel weighting scheme on the sequencing read coverage.

Conclusions: Using biologically relevant data collections, we found that HPeak showed a higher prevalence of the 
expected transcription factor binding motifs in ChIP-enriched sequences relative to the control sequences when 
compared to other currently available ChIP-Seq analysis approaches. Additionally, in comparison to the ChIP-chip 
assay, ChIP-Seq provides higher resolution along with improved sensitivity and specificity of binding site detection. 
Additional file and the HPeak program are freely available at http://www.sph.umich.edu/csg/qin/HPeak.

Background
Understanding transcriptional regulation is essential to
deciphering the genetic pathways involved in various cel-
lular processes and represents one of the major chal-
lenges in molecular biology. One critical step during this
process is to determine how proteins interact with target
DNA to regulate gene expression. Chromatin immuno-
precipitation (ChIP) followed by PCR amplification of
specific target DNA has been the primary approach to
detect in vivo protein-DNA interaction [1,2]. However,
the ChIP-PCR assay has been limiting in characterizing
ChIP-enriched genomic DNA on a genome scale. To
address this, various techniques have been developed to

identify the binding sites of specific DNA-associated pro-
teins [3]. One frequently used technique is ChIP-chip [4-
6], in which the protein-bound DNA is detected through
hybridization to DNA microarrays containing a fixed set
of probes. However, this approach is heavily biased
towards the predetermined probes selected on the DNA
microarray, limiting the scale and resolution of this
method.

More recently, ChIP-Seq, leveraging massively parallel
next-generation sequencing technology, has emerged as a
powerful method for genome-wide mapping of protein-
DNA interactions and histone modifications [7-9]. Using
this technology, numerous studies have been conducted
to characterize the genomic landscape of various tran-
scription factors (TFs), histone marks and methylation
patterns [10-19]. In ChIP-Seq experiments, the ChIP pro-
cess isolates DNA fragments bound by a protein using a
corresponding antibody. Oligonucleotide adapters are
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then linked to the DNA to allow ultra-high-throughput
sequencing. Through direct sequencing of all of the
ChIP-enriched DNA fragments, ChIP-Seq is capable of
revealing protein-DNA interaction sites across the entire
genome, making it a valuable tool for researchers.

An array of computer algorithms has been developed to
analyze ChIP-Seq data aiming to identify ChIP-enriched
regions [10,11,20-31]. Excellent reviews of these methods
can be found in Spyrou et al. 2009 [28] and Laajala et al.
2009 [32]. A brief description of the seven methods cho-
sen for comparison in this study can be found in the
Method section. Although performed well in ChIP-Seq
studies, the majority of these methods are rule-based
therefore lack the ability to determine the significance of
each region. To address this, we have adopted a probabil-
ity model-based approach to explicitly model noise
within sequencing data, thereby enabling rigorous statis-
tical inference. For example, the probability of enrich-
ment can be derived and used to compare across samples
and experiments. Our approach, referred to as HPeak,
utilizes a hidden Markov model (HMM). HMMs have
been successfully applied for the analysis of ChIP-chip
data [33-37], which motivated us to adopt HMM in our
present algorithm. Recently, Mikkelsen et al. (2007) [12]
and Xu et al. (2008) [24] have utilized HMMs in their
ChIP-Seq studies. However, very little detail of their
HMM is provided in Mikkelsen et al. and the ChIPDiff
method presented in Xu et al. is restricted to analyzing
comparative histone modification data. By using a novel
unbalanced weighting scheme, HPeak will account for the
uncertainties in the actual lengths of DNA fragments.
Therefore, it is capable of accurately reconstructing the
genome-wide coverage profiles of DNA fragments. Such
information can be used to define the boundaries of
ChIP-enriched regions, which is indicated by the signifi-
cantly elevated DNA fragment coverage relative to the
neighboring genomic regions. Overall, we demonstrated
that HPeak produces higher motif enrichment in the
peaks identified without sacrificing sensitivity when com-
pared with other existing peak-calling algorithms.

Results
Datasets
To demonstrate the performance of the HPeak algorithm,
in this study we used four previously published ChIP-Seq
data sets including the NRSF (neuronrestrictive silencer
factor) dataset [10], the STAT1 (signal transducer and
activator of transcription protein 1) dataset [11] and data-
sets from two histone marks H3K4me3 and H3K27me3
[8]. We selected these two histone mark datasets because
both H3K4me3 and H3K27me3 are important histone
modifier and they show opposite modification patterns
[13].

The NRSF ChIP-Seq data [10] was downloaded from a
website of Illumina (Illumina, Inc. San Diego, CA), now
accessible from GEO with accession number GSE13047.
It consists of two files of 25 bp sequencing reads in
ELAND output file format. Only reads that uniquely
mapped to the human reference genome, with up to two
mismatches, were included in these two files. One file has
about 1.7 million reads that were obtained from the sam-
ple treated by ChIP. The other file contains about 2.3 mil-
lion reads obtained from the mock control sample.

The STAT1 dataset [11] was downloaded from http://
www.bcgsc.ca/data/chipseq. It consists of two files in
ELAND output file format, each of which contains reads
combined from six lanes of a flowcell. The lengths of
reads contained in these two files range from 21 to 27 bp.
Only reads that uniquely mapped to the human reference
genome, with up to two mismatches, were included in
these two files. The numbers of uniquely-mapped reads
contained in these two files are 15.3 and 13.0 million for
the stimulated and the unstimulated samples respectively.

The BED format of aligned reads obtained from
H3K4me3 and H3K27me3 ChIP-Seq experiments [8]
were downloaded from http://dir.nhlbi.nih.gov/papers/
lmi/epigenomes/hgtcell.aspx. Reads contained in these
two files are 24 bp in length. The numbers of available
reads contained in these two files are 16.8 and 9.0 million
respectively.

ChIP-Seq reproducibility
It is of critical importance to examine the reproducibility
of an experimental assay to confirm that it returns consis-
tent results on biological and technical replicates. In this
study, we evaluated the reproducibility of ChIP-Seq by
examining the similarity of genome-wide distributions of
sequencing reads obtained from duplicated or distinct
samples. A common strategy is to apply a Chi-square test
of homogeneity to compare the two distributions; how-
ever, it faces the challenge of selecting the quantity and
size of intervals to cover the genome. In this study, we
took an alternative approach using the two-sample Kolm-
ogorov-Smirnov (K-S) test to evaluate the distribution of
sequencing reads across chromosomes. To compare
under the same setting, we first separated reads into indi-
vidual chromosomes and forward/reverse strands. Under
the null hypothesis that the two samples are reproducible,
the genome-wide distributions of sequencing reads are
assumed to be identical. Thus we expect non-significant
outcome from the K-S test conducted in each chromo-
some/strand combination. Bonferroni correction was
used to correct for multiple testing.

For our reproducibility analysis we used the STAT1
ChIP-Seq data [11], as this dataset is comprised of reads
from multiple lanes. In total, there are six lanes each for
the stimulated and unstimulated samples. The variance
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between the numbers of usable reads differed substan-
tially between lanes, ranging from 0.7 million to 4.3 mil-
lion reads per lane of stimulated sample, and 0.6 million
to 3.4 million per lane of unstimulated sample. Since dif-
ferences in sequencing depth affect the reproducibility
assessment, we only considered pairs of lanes with similar
numbers of uniquely mapped reads (within 10%). Table 1
lists the numbers of chromosome/strand combinations in
which the p-value from the K-S test is lower than the
Bonferroni corrected significance threshold of 0.001. As
expected, we found that no more than one out of 48 chro-
mosome/strand combinations showed significant dis-
crepancy for a pair of lanes within either the stimulated
or the unstimulated samples. When comparing lanes
from the stimulated group to the unstimulated group, we
observed a much higher frequency of chromosome/
strand combinations displaying significant discrepancies
(36 to 42 out of 48). Figure S1 in additional file 1 shows
plots of empirical cumulative distribution functions
(ECDFs) under various scenarios. These observations led
us to conclude that the K-S test, along with the ECDF
plots, provide a rigorous quantitative means for assessing
reproducibility in the ChIP-Seq assay.

Comparison of ChIP-Seq with ChIP-chip data
One question that arose from the analysis of the ChIP-
Seq experiment is how well it performs relative to the
ChIP-chip experiment. We selected STAT1 for a compar-
ison study, since it has been recently evaluated using the
ChIP-chip technique [38]. Using a threshold of false dis-
covery rate (FDR) [39] 0.05, Euskirchen et al. identified

3,701 ChIP-enriched regions in about one-tenth of the
genome, mostly on chromosomes 20, 21, 22, X and Y. For
ease of comparison, we focused only on ChIP-Seq peaks
located within these five chromosomes, which corre-
sponds to 2,023 out of 24,394 regions. A motif scan dem-
onstrated that the peaks defined by ChIP-Seq showed
greater enrichment of the STAT1 motif than peaks
defined by ChIP-chip. Comparison of Chi-square statis-
tics using the ChIP-Seq data showed that motifs in the
STAT family are much more enriched relative to motifs
from other families (the negative log transformed p-value
for STAT family is about twice as large as the second
highest) whereas the STAT motif family is not the most
enriched in the ChIP-chip data (Figure 1A, B). Our
results supported earlier reports of the superior resolu-
tion of the ChIP-Seq technique [10].

It has been reported that regions with higher ChIP-chip
scores are more likely to contain the motif(s) of interest
[40]. A natural question is whether the ChIP-Seq data
shows a similar property. To investigate this, we ranked
all peaks identified by HPeak from the STAT1 ChIP-Seq
data according to the average posterior probabilities of all
bins within the peak. We then divided these peaks into
five groups of equal sizes. We next calculated the Chi-
square test statistics of motif enrichment within each of
these five groups of sequences relative to the length-
matched control sequences. For comparison, we per-
formed the same analysis on regions identified by the
ChIP-chip study on STAT1 [38]. We found that the
change in motif enrichment is more dramatic among
regions identified by ChIP-Seq than ChIP-chip (Figure
1C).

Performance comparison with other ChIP-Seq peak-calling 
algorithms
To demonstrate the performance of HPeak, we tested it
on the four publicly available ChIP-Seq datasets
described above. Seven ChIP-Seq analysis packages were
used in this comparison, PeakFinder [10], FindPeak
[11,30] MACS [20], SISSRs [23], CisGenome [22], ChIP-
seeqer http://physiology.med.cornell.edu/faculty/ele-
mento/lab/chipseq.shtml and ChIPDiff [24] (only used
for analyzing histone mark data). We applied these soft-
ware programs to the datasets using either the default or
the recommended parameters according to the program
manuals.

Since FindPeaks analyzes treated and control samples
separately. To provide a fair comparison, we ran HPeak
twice, first using both treated and control samples and
second with the treated sample only (comparable to Find-
Peaks).

A brief summary of the peak-calling results of the
NRSF ChIP-Seq data is presented in Table 2. The number
of identified peaks ranges from 1,935 (Peak Finder) to

Table 1: Summary of reproducibility from two-sample 
Kolmogorov-Smirnov tests performed on the STAT1 
ChIP-Seq data*.

Stimulated

Lanes 1:2 5:6 7:8

Significant 0 0 0

Unstimulated

Lanes 2:5 3:4 7:8

Significant 1 1 0

Stimulated vs unstimulated

Lanes 1:3 1:4 2:3 2:4 5:7

Significant 38 40 42 40 36

*numbers displayed in the table are quantities of chromosome/
strand combinations that show significant discrepancy when 
conducting the two-sample Kolmogorov-Smirnov test.
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Figure 1 Comparison of motif enrichment in peaks identified by ChIP-chip and Chip-Seq. Chi-square test statistics from 2 × 2 contingency table 
is shown for all 153 families of vertebrate TF binding motif patterns found in the MatBase library 7.0 database of Genomatix (Genomatix, GmBH, Mu-
nich, Germany). Motif scan was performed using MatInspector in Genomatix using the default setting. A. STAT1 ChIP-chip result (on about 10% of the 
entire genome, the majority of them (88%) on chromosomes 20, 21, 22, X and Y). B. STAT1 ChIP-Seq result (subset of 2,023 peaks out of 24,394 located 
on Chromsome 20, 21, 22, X and Y). C. Correlation between motif enrichment and rank of significance in peaks indentified from STAT1 ChIP-Seq and 
ChIP-chip experiments. All peaks were ordered according to their significance and then divided into five segments of equal sizes. Their motif enrich-
ment is measured by Chi-square test statistics in these five segments are shown from left to right. 
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5,243 (SISSRs). As explained in the Method section, we
used motif enrichment as the measure of performance to
evaluate the results obtained from different ChIP-Seq
analysis programs. The motif enrichment in the ChIP-
enriched and random control sequences was measured
by Chi-square test statistics derived from 2 × 2 contin-
gency tables (see the Methods section). Since the num-
bers of peaks identified differed substantially across these
methods, for a fair comparison, we ranked the peaks by
each method s specific significance criterion (score or
number of reads in peaks), and subsequently selected the
top m peaks nominated from each approach to compare
their motif enrichment (Figure 2A). Overall, for the NRSF
dataset, we found HPeak performs the best in most cases
when both the stimulated and unstimulated samples were
used. When only the stimulated sample was used, HPeak
outperformed FindPeaks in terms of enrichment of the
expected motif.

Next, we compared motif enrichment in peaks identi-
fied by one method, but not the other, in order to deter-
mine the distinguishing features of each program. We
found that, among the 2,323 peaks that were identified as
significant by HPeak but not PeakFinder, the NRSF motif
is the most enriched relative to length-matched random
control sequences (Chi-square test p-value < 10-16)
among all 508 motifs in the MatBase matrix library 7.0.
Analogously, among the 495 peaks that were identified by
HPeak, but not FindPeaks, the NRSF motif is again the
most enriched (Chi-square test p-value 5.8 × 10-14). In
contrast, among the 285 peaks that were identified by
FindPeaks but not HPeak, the NRSF motif ranked 68th
among the 508 motifs tested with p-value 0.012, which
was no longer significant after correction for multiple
testing. When tested using the two half sites of NRSF
motif, which have been shown to present in NRSF ChIP-
Seq binding domains in statistical significant manner rel-
ative to random sequences [10], we found that the right
half-site ranked 32nd with p-value of 0.0015 while the left
half site ranked 213th with p-value 0.868. Neither was
significant after correction for multiple testing. Overall,
this suggests that peaks identified by other programs but
not by HPeak are likely to be false positives.

We next assessed the performance of HPeak using the
STAT1 ChIP-Seq dataset [11]. We did not compare it to
PeakFinder, since it only identified approximately one-
tenth of the peaks found by most of the other algorithms
under its default parameter settings (modifications of the
significance threshold failed to result in much increase in
the number of peaks). Compared to the NRSF dataset,
the STAT1 data represents a deeper coverage scenario,
with an increase in usable reads obtained from multiple
lanes.

For this dataset, when both stimulated and unstimu-
lated samples were considered under the default setting,

HPeak identified 24,394 peaks. The number of peaks
identified by competing algorithm ranges from 9,561
(ChIPseeqer) to 41,127 (FindPeaks). Using both the stim-
ulated and unstimulated samples, HPeak showed the
highest motif enrichment. When only the stimulated
sample was used, HPeak identified 43,440 peaks. Using
the stimulated sample alone, HPeak showed significantly
higher motif enrichment than FindPeaks. However, add-
ing unstimulated control samples improved HPeak's per-
formance in terms of motif enrichment (Figure 2B). This
suggests that the use of control samples may improve the
accuracy of identified peak regions as substantial region-
specific biases are often observed in genome-wide
sequencing due to the different accessibility of genomic
regions.

In the above comparison, the lengths of the peaks dif-
fered across tested algorithms. Therefore, if we scan these
peaks only, those with wider peaks will contain more
motif of interest. We have corrected such bias by intro-
ducing size-matched control sequences. An alternative
solution to remove the size bias is to search a fixed win-
dow around the peak summit. This method was adopted
in the MACS study [20]. We have examined the perfor-
mance using this method as well. The results of these
scans can be found in Figure S2 in additional file 1. From
there, we found that nearly all methods reported similar
number of motif occurrences in the 200 bp regions
around the peak summits especially for the NRSF data.
MACS showed slight edge perhaps owing to its accurate
positioning of the peak summits.

For the two histone mark datasets, since there is no list
of gold standard binding loci, and there are no known
motifs associated with either mark, we tabulated the sets
of peaks identified from all peak-calling algorithms and
studied the overlap among these sets of peaks. The
results are summarized in Tables 2 and 3. We found that
results from most of the peak-calling algorithms we
tested are very similar especially for the open chromatin
histone mark H3K4me3 (most overlap percentages are
greater than 90%). For H3K4me3, the overlap pattern is
similar to what we observed for TFs NRSF and STAT1
(Table S1 in additional file 1). For H3K27me3, the per-
centages of overlap vary greatly, most likely due to the
fact that the numbers of peaks generated by these peak-
calling algorithms are quite different. We did not
included results from ChIPDiff in this evaluation since
this program produces many more peaks than others and
ChIPDiff was originally designed for the comparison
between two cell types.

In addition, we observed that the patterns of the peaks
identified from ChIP-Seq experiments on TFs like NRSF
and STAT1 are different from those obtained from ChIP-
Seq experiments on histone marks like H3K4me3 and
H3K27me3. The average peak length is 253 bp for NRSF
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Table 2: Summary of peaks identified by various peaking calling algorithms.

Peak Findera MACS HPeakb FindPeaks HPeak
(chip only)

ChIPseeqer
(control)

SISSRs CisGenome

NRSF

chip: 1.7M

mock: 2.3M

Number of peaks 1,935 4,679 4,404 3,445 4,085 2,361 5,243 2,545

Covered space (kb) 908 1,902 1,112 4,936 1,512 682 276 775

Avg peak width (bp) 469 406 253 1,433 370 289 53 304

STAT1

stimulated: 15.3M

unstimulated: 13.0M

Number of peaks - 22,402 24,490 41,127 43,443 11,662 9,561 38,878

Covered space (kb) - 16,940 6,562 46,781 15,354 3,025 455 10,012

Avg peak width (bp) - 756 269 1,137 353 259 48 258

H3K4me3

16.8M

Number of peaks 28,960 27,568 - 33,890 41,217 31,773 137,286 46,261

Covered space (kb) 30,610 36,675 - 83,348 30,435 18,789 6,464 26,500

Avg peak width (bp) 1,057 1,330 - 2,459 738 591 47 573

H3K27me3

9.0M

Number of peaks 335 1,342 - 8,348 4,858 417 2,458 437

Covered space (kb) 83 607 - 19,234 894 115 138 191

Avg peak width (bp) 248 452 - 2304 184 276 56 436

and 269 bp for STAT1 respectively. In contrast, peaks of
H3K4me3 are much broader (738 bp) with high variance
((731 bp)2) while peaks of H3K27me3 are shorter (183 bp)
with lower variance ((145 bp)2). Histograms of peak
lengths from the four ChIP-Seq datasets can be found in
Figure S3 in additional file 1.

Discussion
In this study we have described HPeak, an HMM-based
algorithm for defining ChIP-enriched peaks from short
sequencing read data generated from ChIP-Seq experi-
ments. Distinct from various algorithms currently avail-
able [10,11,20-31], HPeak explicitly assumes probability
distributions to model coverage profiles of hypothetical
DNA fragment (HDFs, see the Methods section) along
the genome. After dividing each chromosome into bins,
HPeak employs an HMM to distinguish ChIP-enriched
regions from the background. Generalized Poisson (GP)
[41] or zero inflated Poisson (ZIP) [42] distributions were

used to model observed HDF counts in each bin, allowing
for a more optimal fit to the data than a standard Poisson
distribution. The end of each HDF was down-weighted
when evaluating coverage to account for the uncertainties
in ChIP DNA fragment length. These features facilitate
the recognition of the core regions that show significant
ChIP-enrichment. As a result, HPeak produces more cali-
brated peaks with higher motif concentration when com-
pared to other peak-finding algorithms. Evaluation of
experimental data showed favourable performance in
terms of motif enrichment. Because the underlying
HMM is quite general, HPeak may be applied to a wide
spectrum of ChIP-Seq data with different experimental
design and different sequencing depth, achieving bal-
anced sensitivity and specificity with little or no fine-tun-
ing by the users. In a recent study, Laajala et al. conducted
a comprehensive performance comparison of existing
peak-calling software [32]. HPeak was included in that
study along with eight other published peak-calling algo-
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rithms. We noticed that overall HPeak performance is
quite encouraging. For example, HPeak showed the best
true positive rate and is closest to the optimum when
testing on the NRSF ChIP-Seq data. This is consistent
with what we have found.

A key advantage of model-based methods is that they
are compatible with rigorous statistical inference. For
example, under our model assumption, we can directly
calculate the probability of observing the actual number
of HDFs in a bin. Such probabilities can then be used to
rank all peaks identified. This is important, as we have
shown that higher-ranking peaks are more likely to har-
bour canonical binding motifs (Figure 1C). Furthermore,
these probabilities can facilitate comparison of peaks
across samples and studies. Another advantage of model-
based method is that additional information such as GC
content and mappability scores can be easily incorpo-
rated by extending the model.

In addition to its ability to identify the ChIP-enriched
portion of the genome, HPeak provides more extensive
information than other available programs. For example,
as an option to users, HPeak provides more comprehen-
sive annotation corresponding to each peak such as GC
content, phylogenetic conservation (phastCons scores
[43]), genomic features of the region (exon, intron, 5'
UTR, 3' UTR, intergenic), and distance to the TSS of
nearby genes. HPeak also provides an optional WIG file
containing the genomic locations of all identified peaks,
easily enabling the visualization of all of the peaks within
the UCSC genome browser. Further, HPeak provides an
optional FASTA format sequence file containing nucle-
otide sequences of all peaks to facilitate subsequent motif
analysis.

When comparing publicly available STAT1 ChIP-Seq
and ChIP-chip data, we found that the ChIP-Seq tech-
nique has a clear advantage over the ChIP-chip technique
in terms of enriching for an expected motif under the
predicted peaks. The improvement can be largely attrib-
uted to the increased resolution offered by the new
sequencing technology. By enabling the detection of nar-
rower peaks flanking the true binding sites, ChIP-Seq
reveals a higher concentration of the predicted binding
motif within its peaks. It is known that the significance
measure derived from the ChIP-chip data is correlated
with the probability that a region contains the canonical
binding motif [40]. We found that such correlation is
much stronger in ChIP-Seq data (Figure 1C). This implies
that the read coverage profile is very informative on the
presence and location of actual functional binding sites.

In this study, rather than the commonly used Chi-
square goodness-of-fit test, we proposed to use the K-S
test as an alternative to evaluate the reproducibility of
datasets obtained under different conditions. We found
that the K-S test is better suited for sequencing data than
the Chi-square goodness-of-fit test, since there is no need
to divide chromosomes into windows and correlation/
reproducibility can be conveniently visualized by plotting
ECDFs (Figure S1 in additional file 1).

Figure 2 Performance comparison between HPeak (using data 
from both treated and untreated samples or using data from 
treated sample only) and other ChIP-Seq analysis algorithms. A. 
NRSF ChIP-Seq data: Chi-square test statistics of motif enrichment 
comparing original sequences under peaks and a set of random con-
trol sequences. B. STAT1 ChIP-Seq data: Chi-square test statistics of 
motif enrichment comparing original sequences under peaks and a set 
of random control sequences.
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It is worth pointing out that it is challenging to deter-
mine criteria to evaluate the performance of various
peak-calling algorithms on experimental ChIP-Seq data.
This is because in general very little information is avail-
able on true positive and true negative loci. We choose to
use the prevalence of known motifs as a metric for per-
formance. One caveat of this approach is that, as pointed
out in Hu et al. 2010 [44], many of the motif patterns
stored in the database may not be accurate and there
maybe novel motifs that do not exist in motif databases.
We speculate that the inaccurate motif patterns will affect
the results of all peak-calling algorithms equally, but the
actual effect remains to be seen and further studies seem
warranted. Additionally, our method is not well-suited
for quantifying false detection rate therefore some meth-
ods maybe put in a disadvantaged position in our com-
parison. Because of this, our performance evaluation
results should be interpreted with caution.

The ChIP-Seq technology can be applied to other types
of proteins in addition to TFs. For example, multiple

studies have utilized ChIP-Seq to identify histone modifi-
cation sites in the genome [12-14], which is reviewed in
Park [45]. Since the underlying two-component HMM is
quite general, HPeak can also be applied to data collected
from other types of sequencing-based experiments such
as MeDIP-seq [46], RNA-seq [47] and methylation pat-
tern discovery [19]. In these experiments, HPeak can be
used to identify regions in the genome that is significantly
enriched for sequencing reads. Some adjustment of
HPeak parameters such as bin size may be needed when
analyzing non-ChIP-Seq type of data.

The HMM used in HPeak assumes two different states:
enriched and non-enriched. Although such a scheme is
well-accepted in ChIP-chip analyses [33], it is possible
and of interest to consider more sophisticated HMM
schemes where more than two states are allowed. As an
example, we may consider a four-state HMM: enrichment
of reads on the positive strand, enrichment of reads on
the negative strand, enrichment of reads on both strands
and no enrichment. By utilizing strand information, we

Table 3: Summary of overlaps among peaks identified by different peaking calling algorithms in H3K4me3 and 
H3K27me3 ChIP-Seq datasets*.

H3K4me3

Method (# of peaks) Peak 
Finder

MACS HPeak Find Peaks ChIP 
seeqer

SISSRs CisGenome

Peak Finder (28,960) 84.3 99.8 100.0 98.2 98.0 99.6

MACS (27,568) 90.6 95.4 84.8 87.7 84.8

HPeak (41,217) 99.4 100 98.9 97.1

FindPeaks (33,886) 100 99.8 100

ChIPseeqer (31,773) 99.0 100

SISSRs (137,286) 94.6

CisGenome (46,261)

H3K27me3

Method (# of peaks) Peak 
Finder

MACS HPeak Find Peaks ChIP 
seeqer

SISSRs CisGenome

Peak Finder (335) 44.8 99.7 100 77.3 90.4 70.9

MACS (1,341) 42.5 42.4 23.5 24.4 32.9

HPeak (4,858) 72.1 77.7 98.2 82.0

FindPeaks (8,346) 77.7 91.6 87.1

ChIPseeqer (417) 58.5 75.8

SISSRs (2,455) 25.4

CisGenome (437)

* We compare two sets of peaks (generated from two different peak-calling algorithms) to assess how much overlap can be found among 
them. Numbers displayed is the percentage of peaks in one set that are overlapped with at least one peak in another set. For each pair of peak 
sets, two percentages can be calculated by switching the order of the two sets. The higher percentage for each pair of peak sets is shown.
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will be able to better identify true binding events since a
symmetric pattern among reads with different strands is
expected around the binding sites. Another possibility is
to distinguish shapes of peaks, such as sharp peaks, broad
and low plateaus. These may help us to distinguish differ-
ent types of binding events.

We assume HDF counts follow ZIP and GP distribu-
tions in background and ChIP-enriched regions respec-
tively. Other probability distributions such as negative
binomial (NB) has also been used to model ChIP-Seq
data [22,28]. It is of interest to understand whether these
distributions fit observed ChIP-Seq data better than the
standard Poisson distribution. To investigate, we fit GP,
Poisson and NB distributions to the number of HDFs
found in NRSF and STAT1 ChIP-Seq data. For the num-
ber of HDFs found in the ChIP-enriched regions, we
found that the GP distribution shows a much better fit
than the Poisson distribution and a slightly better fit than
the NB distributions. An example of the model fit can be
found in Figure S4 in additional file 1. For the number of
HDFs found in background regions, we found that the
ZIP distribution produces a slightly better fit than both
Poisson and NB distributions (data not shown).

The current HPeak algorithm does not distinguish
reads of different orientation within a peak. Such infor-
mation has been shown to be informative in pinpointing
the summit of the peak and to estimate the DNA frag-
ment length [20,21,25,48]. We plan to incorporate such
information in the future release of HPeak and we believe
it will further enhance the performance of the HPeak pro-
gram.

Conclusions
Based on our study, we believe that HPeak will be highly
useful to researchers conducting ChIP-Seq experiments.
For instance, HPeak has already been utilized in a recent
study to map the genomic landscape of master transcrip-
tional regulators of prostate cancer [49]. We envision that
this tool will greatly facilitate the rapid and accurate anal-
ysis of the emerging ChIP-Seq data generated by the
research community.

Methods
HPeak scheme
The goal of ChIP-Seq analysis is to partition the genome
into ChIP-enriched and non-enriched segments based on
the number of mapped sequencing reads, such that the
enriched portion of the genome is much more likely to
harbour protein-DNA interaction sites. The entire proce-
dure of HPeak analysis can be summarized into four steps
(Figure 3).

In the initial step, HPeak imports the genomic coordi-
nates of all mapped sequencing reads. Various ELAND
output format (Illumina Inc, San Diego, CA) and BED

formats are allowed. In order to represent the entire DNA
fragment, we followed the method used by Robertson et
al. [11] to extend each short read directionally from its
start position to form a hypothetical DNA fragment
(HDF), mimicking the ChIP DNA fragment from which
the sequencing read was generated.

In the second step, HPeak partitions the entire genome
into small bins of fixed length (25 bp in this study) and
subsequently counts the numbers of HDFs that fall in
each bin throughout the genome. By adopting a bin
approach, we are able to simplify computation and facili-
tate straightforward comparison across samples while
obtaining a high resolution genome-wide ChIP DNA cov-
erage profile. The size of the bins can be adjusted to bal-
ance the computational run time with resolution.

In the third step, HPeak applies a two-state HMM on
the HDF coverage profile to distinguish blocks of consec-
utive ChIP-enriched bins from the background. GP and
ZIP distributions were utilized to model the numbers of
HDFs found in ChIP-enriched and non-enriched bins.

In the last step, HPeak generates additional output files
based on the peaks called in the previous step. These
include a wiggle (WIG) format file for visualization, a
sequence file for subsequent motif analysis and an anno-
tation file that details the genomic properties of each
peak identified.

Down-weighting the end of HDF to account for length 
uncertainty
In ChIP-Seq experiments, a size selection step is
employed during sample preparation to restrict the size
of DNA fragments to be sequenced to a certain range (for
example, 200 bp ± 25 bp). Since only the beginning or end
portion of each DNA fragment is sequenced, we employ a
read extension step described earlier in order to quantify
the actual DNA fragment coverage at any given locus. To
account for the uncertainties in the lengths of the DNA
fragments, we gradually down-weight the HDF coverage
contribution in bins covered by the end portion of each
HDF. For example, if the DNA fragments are size-
selected to be between 175 and 225 bp, we assign one unit
of coverage to the genomic locations covered by the first
175 bp of the HDF, linearly decreasing the coverage
assigned to the last 50 bp from 1 to 0 (Figure S5A in addi-
tional file 1). We also assign partial coverage to bins with
partial HDF coverage.

Statistical model to define ChIP-enriched regions
We adopted a two-state HMM to model the observed
ChIP DNA fragment profile and classify the bins into
either ChIP-enriched (peaks) or non-enriched (back-
ground) along the entire genome (Figure S5B in addi-
tional file 1). We employ a HMM because of the strong
correlation of HDF coverage in adjacent bins. To infer the
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emission probabilities in the HMM, we used GP and ZIP
distributions to model the numbers of HDFs found in the
two types of bins. Both distributions were modified from
and are more flexible than the standard Poisson distribu-
tion. The GP distribution was adopted for the ChIP-
enriched group. Due to the wide dynamic range of ChIP-
Seq data, the number of HDFs falling into ChIP-enriched
bins varied dramatically and showed significant over-dis-
persion (the variances of HDF counts in ChIP-enriched
bins are about ten times larger than the mean HDF
counts in these bins). A standard Poisson distribution
requires the mean and variance to be the same which is
unrealistic for this type of data. In contrast, the GP distri-
bution is much more flexible, since it contains two
parameters and allows the variance to be greater than the
mean. The probability density function of the GP distri-
bution is

here , λ > 0.
Since the majority of the genome is not enriched, there

are significantly more empty bins required to model the
background than would be expected from the Poisson
distribution. An ideal alternative is the zero-inflated Pois-
son (ZIP) distribution [42], which is essentially a mixture
distribution of point mass at zero and a Poisson distribu-
tion. The probability density function of the ZIP is:

where π (0 ≤ π ≤ 1) is the proportion of zeros in the
mixture distribution. Compared to the standard Poisson
distribution, the GP and ZIP distributions provide a
much better fit to the observed data due to improved
flexibility. This allows the assignment of accurate proba-
bilities to each bin and defines the boundaries of the
enriched regions more precisely.

Some ChIP-Seq experiments are carried out using
paired samples: a treated sample (stimulated) with an
untreated control (unstimulated). For the paired design,
we used the bivariate GP/ZIP distributions to model the
difference in HDF coverage in the two types of samples.
More specifically, let Di = Xi - Yi, i = 1,2. Xi, Yi represent
the HDF counts in bins residing in the treated and
untreated samples respectively; i = 1 indicates ChIP-
enriched; i = 2 indicates nonenriched. Assuming that X1
follows the GP distribution while X2 Y1 and Y2 follow ZIP
distributions, we calculate the marginal probabilities of
observing the HDF coverage differences between the two
samples in the same bin, based on the bivariate distribu-
tions using the parameters estimated within treated or
untreated samples separately. An HMM is then designed
to perform inference on the enriched/non-enriched
states.

HMM parameter estimation
For HMM parameter estimation, we use the well-estab-
lished Viterbi algorithm [50]. In the initial step, we use
summary statistics to get a quick and rough estimate of
the transition and emission probabilities. Following the
method described in Robertson et al. [11], all HDFs that
overlap are merged into a single consecutive candidate
peak. The read coverage of each candidate peak is then
calculated to determine whether it surpasses a signifi-
cance threshold that is required for it to be classified as a
ChIP-enriched peak. The initial probability of being in a
peak, and the transition probability from background to
peaks, is equivalent to the proportion of the genome that
is covered by the peaks, as defined above. The transition
probability from a peak back to the background is defined
such that the a priori length of the peaks is roughly equiv-
alent to the median length of the peaks as defined above.
For instance, supposing that L represents the median
length of these peaks, p0 represents the transition proba-
bility from peak to background, and d is the bin size, then
p0 can be estimated by solving (1 - p0)L/d = 1/2.

The emission probabilities in the HMM are derived
from the GP and ZIP distributions that are used to model
the HDF count data in ChIP-enriched and non-enriched
bins. The initial parameters in these distributions were
estimated as follows. For the ZIP distribution that models
background HDF counts, we first selected the bins with
HDF counts less than klow, where klow = k/2 and k is the
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minimum number of HDFs found in bins belonging to
ChIP-enriched peaks. Next, we used the method of
moments to estimate GP distribution parameters  and λ,
as well as ZIP distribution parameters μ and π. Detailed
formulas of these estimation can be found in additional
file 1. For the two-sample case, we obtain the parameters
of two sets of GP and ZIP distributions from treated and
untreated samples separately.

After the initial step, we iterate the two steps of the Vit-
erbi algorithm: conditional on the current estimate of the
model parameters, we derive the hidden states for each
bin across the genome by evaluating which model fits the
observed HDF count data better; conditional on the cur-
rently assigned hidden states, we separate all bins into
ChIP-enriched and non-enriched, and update model
parameters for the two categories separately. Here we no
longer merge HDFs; all hidden state inferences are con-
ducted at the bin level.

As a final result, using a user-specified posterior proba-
bility threshold, we identify blocks of consecutive bins
that show significant enrichment of HDF counts from the
HMM. Each set of bins is then defined as a peak. In addi-
tion to its genomic location and the length of the peak,
HPeak reports the location of the highest HDF coverage
within the peak, the actual maximum HDF coverage at
that location, and the log transformed posterior probabil-
ity of these bins being ChIP-enriched. These probabilities
reflect the significance of these peaks and therefore can
be used to rank the peaks.

Implementation
We have implemented HPeak in a software package using
Perl and C++. HPeak can run on most platforms includ-
ing Linux, Windows and Mac OS. Using a Dell Power-
Edge computer server, we found that HPeak required
reasonable amounts of memory (less than 2G for a data-
set of 15 million reads) and time (approximately 30 and
60 minutes for treated only and paired design respec-
tively). Currently, HPeak is capable of analyzing ChIP-Seq
data collected from human and mouse and can easily be
extended to other species. The HPeak program is freely
available at http://www.sph.umich.edu/csg/qin/HPeak.

Existing peak detection algorithm
We provide a short summary for each of the algorithms
being compared in this study. For more details, please
consult the original publications or the software websites.
Peakfinder (ChIPSeq-mini)
This is perhaps the earliest software for ChIP-Seq peak
calling. A candidate peak is called if it contains at least k
reads not separated by more than n bp (75 by default),
and at least five of these reads are overlapping. An addi-
tional requirement is that there is at least m-fold enrich-
ment (default 5-fold) when control samples are available.

FindPeaks
Findpeaks extends each read directionally to form an
HDF. The length of the extension is taken to be the aver-
age length of the size-selected ChIP-DNA fragments.
Subsequently overlapping HDFs are merged to form a
candidate peak. A binding site is then identified if the
number of HDFs in a candidate peak exceeds the signifi-
cance threshold. An FDR for each binding site is esti-
mated based on Monte Carlo simulation, which is the
number of peaks identified in the randomized data
divided by the number of peaks identified in the real data
under the same significance threshold.
MACS
MACS first separate reads of different strands, and then
empirically models the shift between the two types of
strands. MACS also implements a Poisson distribution-
based model to characterize the background read distri-
bution. They termed their model a "dynamic Poisson
model" to reflect the fact that the parameter of the Pois-
son distribution is allowed to fluctuate along the genome
in order to capture local sequencing bias. MACS works
with or without negative control samples. When negative
control samples are available, an FDR is estimated by
dividing the number of peaks identified in the control
sample by the number of peaks identified in the ChIP
sample.
CisGenome
CisGenome employs a sliding window strategy to identify
regions with over-abundant reads. The authors assume a
NB distribution for the background read occurrence
which was said to provide a better fit of the data than the
Poisson distribution. When negative control data are
available, the authors use a binomial model to decide
whether the enrichment of reads in the ChIP channel is
significantly higher than in the control.
SISSRs
SISSRs first extends each read to form an HDF, next par-
titions the genome into windows of equal sizes, then
scans the genome to count the number of reads landing
in each window. Binding sites are called when the major-
ity of reads switch from one strand to the other. A nega-
tive control sample, or a Poisson background model is
used to estimate the FDR, defined to be the ratio of the
number of peaks in the control sample or background
model to the number of peaks observed.
ChIPseeqer (revised from the description provided by Dr. 
Elemento)
In this program, a read density map is first constructed by
extending the reads to the average length of the DNA
fragments in the sequenced DNA library and by counting
the number of overlapping reads at each nucleotide posi-
tion. The Poisson distribution probability model is then
used to compare the observed read count to the expected
read count for both ChIP and input (control) data (if

http://www.sph.umich.edu/csg/qin/HPeak
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available) and to compute a normalized peak score for
each nucleotide position (based on probabilities). A peak
is called when this score is greater than a specific thresh-
old (default 15) and the interval is at least 100 bp. It is
important to note that the algorithm uses the mappability
map to correct for the variation in mappablity between
sequences. Moreover, if input data are provided, it is fur-
ther required that there is at least an m-fold enrichment
(default 2-fold) of reads in the ChIP data over the input.
ChIPDiff
ChIPDiff was developed to identify differential histone
modification sites genome-wide. This method employs
an HMM to infer the states of histone modification
changes at each genomic location based on the observed
ChIP fragment counts. To apply ChIPDiff, it is required
that ChIP-Seq data from two sources (two different cell
lines, etc) are available.

Performance evaluation metrics
Motif enrichment analysis
Since consensus motifs are often enriched in the binding
sites of the TF, motif enrichment may serve as a measure
of the performance (sensitivity and specificity) when
comparing ChIP-Seq peak-calling algorithms. One strat-
egy is to scan all sequences identified as ChIP-enriched
(referred to as test sequences) and compare the propor-
tion of sequences that contain the motif of interest. How-
ever, longer sequences, by chance, are more likely to
contain motifs of interest. To adjust for this bias, we
introduced length-matched control sequences. These
random control sequences were extracted from a collec-
tion of the regions 5 kb upstream of annotated transcrip-
tion starts of all RefSeq genes with annotated 5 UTRs.
This set of promoter sequences was downloaded from the
UCSC genome browser [51] website http://hgdown-
load.cse.ucsc.edu/downloads.html. Any sequence that
overlapped with test sequences was excluded. Motif scan
of the test and the control sequences was then performed
using MatInspector [52] in the Genomatix suite (Genom-
atix GmBH, Munich, Germany) with default settings. The
numbers of test and control sequences either harbouring
or lacking the expected motifs were recorded in a 2 × 2
contingency table. A Chi-square test was then performed
to evaluate the significance of the motif enrichment.
Motif enrichments of all 153 families of vertebrate motif
matrices found in the Genomatix MatBase 7.0 database
were calculated then ranked by the Chi-square test statis-
tics.

Additional material
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