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SUMMARY

Skeletal muscle generation of ammonia, an endogenous cytotoxin, is increased
during exercise. Perturbations in ammonia metabolism consistently occur in
chronic diseases, and may blunt beneficial skeletal muscle molecular responses
and protein homeostasis with exercise. Phosphorylation of skeletal muscle pro-
teins mediates cellular signaling responses to hyperammonemia and exercise.
Comparative bioinformatics and machine learning-based analyses of published
and experimentally derived phosphoproteomics data identified differentially
expressed phosphoproteins that were unique and shared between hyperammo-
nemic murine myotubes and skeletal muscle from exercise models. Enriched pro-
cesses identified in both hyperammonemic myotubes and muscle from exercise
models with selected experimental validation included protein kinase A (PKA),
calcium signaling, mitogen-activated protein kinase (MAPK) signaling, and pro-
tein homeostasis. Our approach of feature extraction from comparative untar-
geted ‘‘omics’’ data allows for selection of preclinical models that recapitulate
specific human exercise responses and potentially optimize functional capacity
and skeletal muscle protein homeostasis with exercise in chronic diseases.
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INTRODUCTION

Ammonia, an endogenous cytotoxin generated during amino acid and purine nucleotide catabolism and the

gut microbiome, is metabolized to urea in hepatocytes (Adeva et al., 2012; Dasarathy and Hatzoglou, 2018).

Dysregulated ammonia metabolism occurs in a number of chronic diseases, including liver cirrhosis, heart fail-

ure, and chronic obstructive pulmonary disease (Dasarathy and Hatzoglou, 2018; Medeiros et al., 2014; Valero

et al., 1974). During the consequent hyperammonemia, skeletal muscle becomes a major organ for ammonia

uptake (Ganda andRuderman, 1976; Lockwoodet al., 1979;Qiu et al., 2013) with complexmolecular andmeta-

bolic perturbations(Dasarathy and Hatzoglou, 2018; Davuluri et al., 2016a, 2016b; Kumar et al., 2021; Medeiros

et al., 2014; Valero et al., 1974; Welch et al., 2021). However, circulating and skeletal muscle ammonia concen-

trations do not parallel each other, which may be because of an increased expression of inducible skeletal

muscle ammonia transporter, RhBG (Kant et al., 2019; McDaniel et al., 2016; Qiu et al., 2013). Studies were per-

formed in our previously reported myotube model using ammonium acetate in the medium at concentrations

higher than those in circulation that, however, achieved ammonia levels similar to those in the skeletal muscle

of a preclinical rat model and human patients with cirrhosis (McDaniel et al., 2016; Qiu et al., 2013). The bio-

logical and translational relevance of hyperammonemia is because of tissue responses to this endogenous

cytotoxin (Chen and Dunn, 2016; Dasarathy et al., 2017). Public datasets exist for ammonia-induced transcrip-

tional and phosphoproteomic responses in mammals (Sequence Read Archive: SRP 313829) (Welch et al.,

2021); however, despite the presence of multiple public datasets of protein modifications such as phosphor-

ylation (a major post-translational regulatory modification) (Huang et al., 2018; Huang and Fraenkel, 2009; Lee

et al., 2006), including the effects of hyperammonemia in the cerebellum (Brunelli et al., 2012), there are no

published data on hyperammonemia-induced skeletal muscle protein phosphorylation in mammals.

Increased skeletal muscle ammoniagenesis with elevated circulating ammonia concentration that occurs

during exercise and muscle contraction is believed to be a causal factor for fatigue (Banister and
iScience 25, 105325, November 18, 2022 ª 2022 The Author(s).
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Cameron, 1990; Chen et al., 2020; Dudley et al., 1983; Eriksson et al., 1985; Gorostiaga et al., 2014; Graham

et al., 1987, 1990, 1993, 1995, 1990, 1987, 1995; GrahamandMacLean, 1998; Katz et al., 1986a, 1986b;MacLean

et al., 1991; Mutch and Banister, 1983). However, the impact of hyperammonemia on other exercise responses

including functional capacity, skeletal muscle organelle function, and molecular alterations and protein ho-

meostasis is not known. Exercise results in adaptive cellular signaling responses in the skeletal muscle, but

the mediators of these global alterations have not been specifically evaluated (Amar et al., 2021; Maier

et al., 2022; McGee and Hargreaves, 2020; Pillon et al., 2020; Srisawat et al., 2017). Regulatory layers of cellular

responses include chromosomal conformation, transcription, translation and post-translational modifications

including phosphorylation. Because skeletal muscle contraction is critical for exercise, a number of studies

have evaluated transcriptomics and proteomics responses during exercise and, recently, meta-analyses of

public databases have been published (Amar et al., 2021; Pillon et al., 2020; Srisawat et al., 2017). Despite

phosphorylation being a critical mediator of cellular function, there are few phosphoproteomics data from

disparate mouse models and human exercise studies published to date (Hoffman et al., 2015; Needham

et al., 2019; Nelson et al., 2019; Steinert et al., 2021). A goal of developing animal models is to perform mech-

anistic studies that can be translated to human interventions (Thu et al., 2017; Timson, 1990). However, similar

to the diversity of human responses, there are significant differences between mouse models of exercise.

Given that no animalmodel recapitulates all human exercise responses, we developed an approach to identify

models to evaluate specific hypotheses based on shared pathways or molecules in response to exercise. Such

a strategy has the potential to be applied to study other interventions also. This is of particular interest because

despite extensive data on the benefits and responses of exercise training in healthy subjects, in disease states,

phenotype andmolecular responses are not consistent, andmediators of differential responses have not been

well studied (Bellar et al., 2020; McGee and Hargreaves, 2020). Therefore, a strategy to determine optimal an-

imal models of exercise that most closely recapitulate the desired study outcomes of exercise in humans is

needed (Feng et al., 2019).

To identify skeletal muscle molecular responses with exercise that may be shared with those because of

ammonia, a comparative overlay of skeletal muscle phosphoproteomics in response to exercise and hyper-

ammonemia was performed. Comprehensive analyses of phosphoproteomics data in an established

in vitromodel of skeletal muscle hyperammonemia were performed. Using a number of supervised and un-

supervised approaches, these data were then compared with published, public domain skeletal muscle

phosphoproteomics data from human subjects and mice in response to exercise. Even though public data-

sets are freely accessible and can be reused for data-driven studies, comparative meta-analyses are only

recently being reported (Bono and Hirota, 2020; Srisawat et al., 2017; vanWijk et al., 2014). Integrating mul-

tiple unbiased datasets from skeletal muscle during hyperammonemia across molecular layers of chro-

matin access, proteomics and transcriptomics in cellular, murine and human skeletal muscle, we identified

global changes in the differential expression of molecules in a number of diverse pathways including pro-

tein synthesis, mitochondrial oxidative function, and senescence (Davuluri et al., 2019; Welch et al., 2021).

These multiomics analyses revealed changes in a number of pathways, but post-translational modifications

of proteins that are critical to mediate functional responses were not reported. Phosphorylation of mole-

cules has been among themost studied modifications and the regulatory role of kinases has been reported

extensively (Ramazi and Zahiri, 2021). The global phosphoproteomics landscape in skeletal muscle during

hyperammonemia has not been evaluated and can provide insights into regulatory responses and its rele-

vance to human physiology and homeostatic responses.

Our analyses of published exercise-induced skeletal muscle phosphoproteomics showed protein kinase A

(PKA), calcium, and mitogen-activated protein kinase (MAPK) signaling, and protein homeostasis were

among the most enriched pathways. In our experimental model of hyperammonemia in myotubes, we

noted distinct and shared temporal patterns of protein phosphorylation comparedwith untreated controls.

Changes in PKA, matrix metalloproteases, and integrin signaling occurred early, whereas later, cell cycle

control signaling, DNA damage signaling, and PKA signaling were among the most enriched pathways.

Experimentally, we validated a number of highly differentially expressed phosphoproteins during hyper-

ammonemia including phosphorylation of inhibitor of nuclear factor kappa B kinase subunit b (pIKKb),

decreased ribosomal protein S6 (Rps6) phosphorylation (as reported earlier) (Davuluri et al., 2016a,

2016b, 2019), increased phosphorylation of the HIPPO signaling core kinase Mst2 (also known as Stk3/4),

and lower phosphorylation of minichromosome maintenance complex component 2 (Mcm2). These mole-

cules were chosen because of their high relevance in skeletal muscle functional responses (Knight and

Kothary, 2011). Our complementary bioinformatics analyses of published data overlaid on experimental
2 iScience 25, 105325, November 18, 2022
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Figure 1. Temporal course of differentially expressed phosphoproteins and phosphorylated phosphosites in myotubes during hyperammonemia

Differentially expressed phosphoproteins (DEpP) and phosphorylated phosphosites (DPPS) were identified in murine C2C12 myotubes treated with10mM

ammonium acetate (AmAc) for 6 and 24h compared to untreated controls.

(A) Venn diagrams showing the number of shared and unique DEpP/DPPS.

(B) Volcano plots comparing significance to expression of DPPS.

(C) UpSet plot showing the number of DEpP in each group based on the direction of expression change (UP = increased expression, DOWN = decreased

expression vs. untreated controls).

(D) Representative immunoblots and densitometries for p-IKKBS672, total IKKB, p-MST2S316, total MST2, p-MCM2S139, total MCM2, p-S6S235/236, and total S6

in untreated and 6hAmAc and 24hAmAc myotubes. All myotube experiments were done in n = 3 biological replicates (one 24hAmAc phosphoproteomics

data replicate was removed from downstream analyses because of outlier status). For densitometry, data shown as mean G SD; *p < 0.05, **p < 0.01,

***p < 0.001 on ANOVA with Bonferroni post-hoc analysis. Statistical significance cutoff for DEpP/DPPS was p-adj <0.05 (Student’s t test with Benjamini

Hotchberg correction). IKKB = Inhibitor of nuclear factor kappa B kinase subunit beta, MST2 =Mammalian sterile 20-like kinase 2; MCM2 =mini chromosome

maintenance protein 2.
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results allow for selection of appropriate models and may provide insights into potential mediators of

global/specific responses in exercise and hyperammonemia including changes in functional capacity, skel-

etal muscle protein homeostasis and organelle function.

RESULTS

Phosphoproteomic landscape during hyperammonemia in myotubes

Because exercise increases muscle ammoniagenesis (Bellar et al., 2020; Calvert et al., 2010; Chen et al.,

2020; Graham and MacLean, 1998) and hyperammonemia results in perturbed skeletal muscle proteosta-

sis, we first examined the phosphoproteomics landscape during hyperammonemia in myotubes to deter-

mine whether there are post-translational changes that may mediate decreased protein synthesis. In the 6

and 24h hyperammonemic myotube datasets, there were 448 DEpP that were identified in hyperammone-

mic myotubes with 164 total (75 unique) DEpP in the 6hAmAc treatment group and 373 total (284 unique)

DEpP in the 24hAmAc treatment group with 89 shared DEpP (Figure 1A). We next identified unique and

shared DPPS within the hyperammonemia datasets. Of the 617 DPPS identified in the ammonia-treated

C2C12 myotubes, there were 193 total (108 unique) DPPS in the 6hAmAc treatment group and 509 total

(424 unique) DPPS in the 24hAmAc treatment group with 85 shared DPPS (Figure 1A). In hyperammonemic

myotubes, there were more DEpP with DPPS that had decreased phosphorylation than increased phos-

phorylation (DOWN or UP as compared to controls, respectively) in each treatment group (6hAmAc:

122(74.3%) total DOWN vs. 49(29.9%) UP, with 7 DEpP that had both increased and decreased phosphor-

ylation at two or more DPPS); 24hAmAc: 255(68.4%) DOWN and 158(42.4%) UP (with 40 DEpP that had both

increased and decreased phosphorylation at two or more DPPS)) as seen on volcano and UpSet plots

(Figures 1B and 1C). Immunoblots were performed to experimentally validate critical phosphoproteomics

data in myotubes. Consistent with the untargeted phosphoproteomics data, increased phosphorylation of

inhibitor of nuclear factor kappa B kinase subunit b (IKKbSer672) and Mammalian Sterile 20-like kinase 2

(MST2Ser316) were observed in response to hyperammonemia compared to no treatment in myotubes (Fig-

ure 1D). Phosphorylation of IKKb results in nuclear translocation of p65NF-kB and transcriptional responses

during hyperammonemia (Qiu et al., 2013). Phosphorylation of MST2 mediates muscle atrophy (Chen,

2005; Wei et al., 2013). In contrast, MCM2Ser139 and S6 ribosomal proteinSer235/236 exhibited decreased

phosphorylation in hyperammonemic (versus untreated) myotubes in our phosphoproteomics datasets

and in validation experiments. Inactivation of MCM2 and S6 ribosomal protein leads to decreases in cell

proliferation and protein synthesis (Fei and Xu, 2018; Rosario et al., 2020; Zhou et al., 2021).

Extending our analyses, we generated networks of known protein-protein interactions for themost connected

proteins that were differentially phosphorylated in each hyperammonemic dataset (Figure S1) and can poten-

tially be used to identify novel phosphorylation signaling cascades. We then determined the hyperammone-

mic DEpP that overlapped with our previously published quantitative proteomics data in hyperammonemic

myotubes (Welch et al., 2021) to determine whether any pair of DEpP and differentially expressed total protein

(DEP) had a shared direction of expression (Figure S2). There was no significant correlation between the

expression levels of all the 24hAmAc DEP and DEpP (Figure S2A). However, of the 19 shared DEP and

DEpP, the expression patterns of 10 molecules were concordant whereas the remaining had a discordant

pattern (Figure S2B). Functional enrichment analysis of all overlapping DEpP/DEP showed enrichment of

apoptosis-induced DNA fragmentation and formation of senescence-associated heterochromatin foci that

are consistent with reports that ammonia promotes senescence in multiple cell types (Gorg et al., 2015; Jo

et al., 2021; Kumar et al., 2021).
4 iScience 25, 105325, November 18, 2022
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Figure 2. Functional enrichment analysis of proteins that are differentially phosphorylated in myotubes during hyperammonemia

Analyses of shared and unique differentially expressed phosphoproteins (DEpP) in murine C2C12 myotubes treated for 6 and 24h with 10mM ammonium

acetate (AmAc) compared to untreated controls.

(A and B) Physiologically relevant pathways enriched in the phosphoproteomics datasets from hyperammonemic myotubes curated using IPA, DAVID, and

Perseus. All experiments were done in n = 3 biological replicates (one 24hAmAc replicate was removed from downstream analyses because of outlier status).
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Figure 2. Continued

Statistical significance cutoff for full datasets using IPA was performed using both log2ratio>|2.5| and padj<0.05 (Student’s t test with Benjamini-

Hotchberg false discovery rate correction (BH-FDR)). Foreground DEpP in DAVID analyses was padj<0.05. IPA pathway significance cutoff was the

default-log(p value)R 1.3. Perseus 1D analysis significance cutoff was the default BH-FDR>0.02. Green color = DEpP identified in the data subset, Black

color = DEpP not identified in the data subset.
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Next, to determine the global and temporal hyperammonemic phosphoproteomic landscape, functional

enrichment analyses were performed on the phosphoproteomics datasets from the hyperammonemic my-

otubes at 6 and 24h compared to untreated controls (Figures 2A, 2B, and S3A–S3C). Datasets were eval-

uated separately for pathway enrichment including all DEpP in the 6hAmAc set, all DEpP in the 24hAmAc

set, and smaller subsets of DEpP that were unique to only the 6hAmAc or the 24hAmAc datasets when

compared to each other. Furthermore, a subset of those DEpP that were shared between both 6hAmAc

and 24hAmAc datasets was also interrogated for functional enrichment. The curated pathway that was en-

riched in both the early (6h) and late (24h) hyperammonemia dataset was PKA signaling (Figures 2A and 2B).

Enrichment scores of pathways differed between 6hAmAc and 24hAmAc datasets (Figures 2A and 2B), sug-

gesting temporal changes in adaptive/maladaptive responses during hyperammonemia that are consis-

tent with our previous reports (Welch et al., 2021). Components of senescence including DNA damage

and cell cycle regulation were also enriched during hyperammonemia (Figure 2B). A number of other pro-

cesses were also enriched in the unique and shared 6hAmAc and 24hAmAc datasets (Figures S3A–S3C).

Because the PKA signaling pathway was enriched in both hyperammonemic datasets (and was among the

most enriched in the 6hAmAc dataset), we then evaluated if regulation occurred at one or more molecular

levels upstream of phosphorylation. We compared the DEpP from our 6hAmAc and 24h AmAc datasets

contained within the PKA signaling pathway to our previously published differentially expressed molecules

in ATACseq, RNAseq, and proteomics datasets from hyperammonemic myotubes; RNAseq and prote-

omics datasets from skeletal muscle from mice following ammonia treatment; and RNAseq from human

skeletal muscle from patients with cirrhosis (Welch et al., 2021) (Figures S4A–S4C). Within the 24hAmAc da-

taset, Polo-like kinase (PLK) signaling, which regulates cell cycle and is involved in cellular senescence(Kim

et al., 2013; Lee et al., 2014), was one of the most enriched pathways (Figure 2A). Phosphorylation of other

cell cycle regulatory serine/threonine kinases, including cyclin dependent kinases (CDK) that are involved in

senescence (Kim et al., 2013; Sadaie et al., 2015), was also significantly altered by ammonia (Figure S5A) as

reported earlier (Gorg et al., 2015; Jo et al., 2021; Welch et al., 2021). We also observed that PKA and PLK

signaling components (Figure S5B) were both altered during hyperammonemia (6hAmAc, 24hAmAc).

These data demonstrate that cellular functions including PKA signaling are regulated at multiple molecular

levels. To dissect potential interactions between the PKA and PLK components, we generated a network

map and a correlation matrix between known PKA and PLK targets in our UnT and 24hAmAc datasets

only as PLK was not among the highly enriched pathways in the 6hAmAc dataset (Figure S5C). We observed

multiple molecules in these pathways that showed positive and negative correlations, suggesting that such

critical regulatory molecules (PKA, PLK) may have indirect regulatory relationships even if the molecules

themselves do not interact.

Our phosphoproteomics studies in hyperammonemic myotubes with experimental validation also showed

altered expression of a critical member of the HIPPO signaling pathway, which is altered in a context

dependent manner in muscle fibers and myogenically committed satellite cells (Gnimassou et al., 2017;

Watt et al., 2018). The core elements of the HIPPO pathway converge to activate or inhibit mammalian

ste-20 like kinase 1 and 2 (Mst1/2) or mitogen-activated protein kinase kinase kinases (MAP4K) (Plouffe

et al., 2016; Watt et al., 2018). We dissected the HIPPO signaling and target responses in our previously

published proteomics dataset (Welch et al., 2021) and the phosphoproteomics dataset in hyperammone-

mic myotubes, which showed changes in HIPPO signaling components during hyperammonemia (Fig-

ure S5D). We also noted that using our list of non-differentially phosphorylated phosphoproteomics as

the background and queried at the level of DPPS, HIF1a signaling was also identified as significant

(p < 0.05) in the 24hAmAc dataset (Figure S5E) and consistent with our previous report of increased

HIF1a during hyperammonemia(Welch et al., 2021). The supervised heatmaps generated for PKA, CDK,

PLK, HIPPO and HIF1a were then complemented by unsupervised analyses that showed similar clustering

of samples in the datasets (Figures S4C, S5A, S5B, S5D, and S5E).

Temporal dynamics of phosphorylation during hyperammonemia were further evaluated by hierarchical

clustering with dimensionality reduction and feature selection of DPPS (Figures 3 and S6). These analyses
6 iScience 25, 105325, November 18, 2022
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Figure 3. Hierarchical clustering of phosphorylated proteins in hyperammonemic myotubes reveals distinct temporal differences

Hierarchical clustering, heatmap, and cluster analysis of differentially phosphorylated phosphosites (DPPS) and differentially expressed phosphoproteins

(DEpP) in untreated (UnT) myotubes or those treated with 6h or 24h of 10mM ammonium acetate (AmAc).

(A) Heatmap of DPPS with hierarchical clustering into 5 groups based on the direction of temporal change: Persistent increase (DPPS that have increased

phosphorylation at both 6hAmAc and 24hAmAc compared to UnT), Late increase (DPPS that have no change at 6hAmAc but have increased phosphorylation

at 24hAmAc compared to UnT), Late decrease (DPPS that have no change at 6hAmAc but have decreased phosphorylation at 24hAmAc compared to UnT),

Transient change (DPPS that have increased phosphorylation at 6hAmAc but have decreased phosphorylation at 24hAmAc compared to UnT), and

Persistent decrease (DPPS that have decreased phosphorylation at both 6hAmAc and 24hAmAc compared to UnT).

(B–F) Pathway enrichment of DEpP in each of the 5 identified clusters: Persistent increase, Late increase, Late decrease, Transient change, and Persistent

decrease. All experiments were done in n = 3 biological replicates (one 24hAmAc replicate was removed from downstream analyses because of outlier

status). Statistical significance cutoff for DEpP/DPPS was padj<0.05 (Student’s t test with Benjamini-Hotchberg correction). Significance for canonical

pathways was the default-log(p value) R1.3 using a right-sided Fisher exact test.
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allowed for identification of differential responses with supervised analyses of the 287 DPPS that segre-

gated into 5 distinct patterns or clusters of differentially regulated protein phosphorylation at early (6h)

and late (24h) exposure to ammonia (Figure 3A). Persistent increase/decrease clusters included those

DPPS with an increase (n = 71) and decrease (n = 135) in phosphorylation that remained high/low in

both 6hAmAc and 24hAmAc. Late increase/decrease clusters included DPPS with a delayed (at 24h) in-

crease (n = 28) or decrease (n = 32) in phosphorylation. Transient change cluster included DPPS that

were altered at 6hAmAc but reversed to untreated levels at 24h (n = 21). Even though other clusters could

be defined, they were not analyzed as part of our dimensionality reduction/feature selection approach to

ensure sufficient DPPS in each cluster. The Persistent increase and Persistent decrease clusters yielded the
iScience 25, 105325, November 18, 2022 7
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Figure 4. Differentially phosphorylated phosphoproteins and phosphosites in murine vs human skeletal muscle following exercise or maximal

intensity contractions

(A) Venn diagram of differentially expressed phosphoproteins (DEpP) and differentially phosphorylated phosphosites (DPPS) that are unique and shared in

mouse and human exercise datasets.

(B) UpSet plot comparing 4 mouse models of exercise and their DEpP and DPPS.
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Figure 4. Continued

(C) Canonical pathways enriched in each exercise dataset.

(D) Scatterplot comparing the averaged mouse DPPS expression to the human exercise DPPS expression.

(E) Expression of DPPS in each mouse exercise dataset was compared to that of the human exercise dataset using Pearson’s correlation analysis. Significance

cutoff for DEpP/DPPS was padj<0.05 for mouse data and padj<0.05 and expression fold change >|1.5| for human data. Significance for canonical pathways

was-log(p value) R1.3 using a right-sided Fisher exact test. MIC = maximal intensity contraction, Treadmill (65% max.) exercise = mice exercised at 65% of

their maximal running speed on a treadmill, Daytime exercise = mice that underwent high-intensity treadmill running during the zeitgeber time (ZT)0 period

of ‘‘lights on,’’ Nighttime exercise = mice that underwent high-intensity treadmill running during the ZT12 period of ‘‘lights off.’’

ll
OPEN ACCESS

iScience
Article
most pathway enrichment. In the Persistent increase cluster, we identified actin nucleation by the ARP-

WASP complex (central role in assembly of actin networks required for diverse cellular processes including

cell motility and morphogenesis (Goode et al., 2001)), ERK/MAK signaling, and synaptogenesis (shares

molecules with PKA signaling pathway) (Figure 3B). In the Late increase cluster, regulation of cellular me-

chanics by calpain protease was enriched (Figure 3C). In the Late decrease cluster, DNA damage repair

pathway (Chen et al., 2007) was enriched (Figure 3D). The Transient change cluster had enrichment of in-

sulin receptor signaling (Figure 3E). Mismatch repair, PKA signaling pathway, synaptic potentiation and

synaptogenesis were the most enriched pathways in the Persistent decrease cluster (Figure 3F). These

data show that skeletal muscle development, protein homeostasis, contractile and metabolic functions

were among the most enriched pathways. Even though our analyses suggested enrichment of different

pathways, we noted a number of shared molecules betweenmultiple pathways (on IPA database) including

PKA and synaptogenesis (Figure S6).

Analyses of the clusters of DEpP using KEGG and GO allowed us to link the regulation of phosphorylation

patterns to biological functions (Figures S7A–S7E). Supervised analyses showed clustering of DEpP

involved in regulation of transcription and cell adhesion (Persistent increase cluster; Figure S7A) and

were consistent with our overall pathway enrichment findings in hyperammonemia at 6 and 24h

(Figures 2A–2D). Synapse and synaptosome are regulated by PKA (Hoover et al., 2001; Munno et al.,

2003), a pathway consistently enriched during both 6hAmAc and 24hAmAc. A number of other regulatory

responses that were identified are consistent with previous reports of RNAseq and proteomics responses

and pathway enrichments during skeletal muscle hyperammonemia reported previously (Kumar et al.,

2021; Welch et al., 2021).

Exercise-induced skeletal muscle phosphoproteomics responses

Because we are interested in developing a framework to identify modifiable skeletal muscle targets that

can potentially improve functional capacity and protein homeostasis during exercise, we next performed

integration of previously published phosphoproteomics datasets from skeletal muscle in mouse and hu-

man models of exercise and identified the mouse models of exercise that best recapitulate human exercise

responses. The 4 mouse muscle phosphoproteomics datasets used for these analyses (electrically evoked

maximal-intensity contraction (MIC), single bout treadmill running at 65% of maximal (max.) running speed

in mice, daytime high-intensity treadmill running, nighttime high-intensity treadmill running) (Maier et al.,

2022; Nelson et al., 2019; Steinert et al., 2021) were compared to the phosphoproteomic responses to a

single bout of exercise in humans (Hoffman et al., 2015) (Figure 4). There were 296 shared differentially ex-

pressed phosphoproteins (DEpP) and 142 shared differentially phosphorylated phosphosites (DPPS) be-

tween all of the mouse exercise datasets and the human exercise dataset (Figure 4A). To determine re-

sponses that are related to individual mouse models of exercise or muscle contraction, we identified the

shared and unique DEpP and DPPS from the 4 mouse exercise datasets (Figure 4B) and correlated

each of the mouse datasets against each other (Figure S8). There were 14 DPPS shared across all mouse

exercise models. There were 3 datasets that included only male mice (Maier et al., 2022; Steinert et al.,

2021) and 1 dataset (Treadmill exercise at 65% of max. running speed) that included only female mice

(Nelson et al., 2019). Among all 3 male mouse phosphoproteomics datasets, there were 7 shared DPPS/

DEpP that were unique to the male models, perhaps related to reported sex differences in exercise re-

sponses (Hunter, 2016). Within the 7 shared DPPS/DEpP, the greatest decrease in differential expression

was noted in phosphorylation of Ankyrin Repeat Domain 2 (Ankrd2), a member of themuscle ankyrin repeat

protein (MARP) family of proteins that is highly expressed in skeletal muscle. Ankrd2 regulates sarcomeric

activity and mechanosignaling pathways (Cenni et al., 2019; Lun et al., 2014), both of which are of relevance

during exercise. The greatest increase in differential expression occurred in phosphorylation of Nascent

Polypeptide Associated Complex Subunit Alpha (Naca) which prevents newly synthesized peptides from

incorrect translocation and is involved in muscle growth, regeneration and myofibril organization (Li
iScience 25, 105325, November 18, 2022 9
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Figure 5. Differentially phosphorylated proteins in hyperammonemia are shared with those in skeletal muscle from exercised mice and humans

(A) Venn diagrams of differentially expressed phosphoproteins (DEpP) and differentially phosphorylated phosphosites (DPPS) present in at least one of the

6h/24h ammonium acetate (AmAc) treated C2C12 myotube datasets compared to DEpP and DPPS, respectively, from at least one of the exercise (mouse or

human) datasets.

(B) Canonical pathways enriched in DEpP unique to the hyperammonemia datasets compared to the exercise datasets.

(C) Representative immunoblots and densitometry of a protein kinase A (PKA) substrate motif (RRXS*/T*) phosphorylation in murine C2C12 myotubes

treated with 10mM AmAc, 50uM H89 (PKA activator), and 20uM forskolin (Fsk; PKA inhibitor). Separate membranes with the same samples were used to

generate loading controls for this panel.

(D) Representative immunoblots and densitometry of p-BAD(Ser155) in myotubes treated with 10mM AmAc, 50uM H89, and 20uM Fsk.

(E) Heatmap of enriched canonical pathways in DEpP unique to the exercise datasets and not found in the hyperammonemic datasets.

(F) UpSet plot showing unique and shared DEpP and DPPS among the 6hAmAc and 24hAmAc, mouse exercise, and human exercise datasets.

(G) Bar graph of enriched canonical pathways from the subset of DEpP that are shared between at least one hyperammonemia and at least one exercise

dataset.

(H) Correlation matrix of shared DPPS between any exercise dataset and any hyperammonemic dataset (Blue = positive correlation and Red = negative

correlation).Myotube experiments were done in n = 3 biological replicates (one 24hAmAc replicate was removed from downstream analyses because of

outlier status). Densitometry data are mean G SD. *p<0.05; **p<0.01; ***p<0.001 ANOVA with Bonferroni post-hoc analysis. Statistical significance cutoff

for DEpP/DPPS was padj<0.05 for ammonia and mouse data and padj<0.05 and expression fold change >|1.5| for human data. Significance for canonical

pathways was-log(p value) R1.3 using a right-sided Fisher exact test. Daytime exercise = mice that underwent high-intensity treadmill running during the

zeitgeber time (ZT)0 period of ‘‘lights on’’; MIC = maximal intensity contraction; Nighttime exercise = mice that underwent high-intensity treadmill running

during the ZT12 period of ‘‘lights off’’, Treadmill (65% max.) exercise = mice exercised at 65% of their maximal running speed on a treadmill.
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et al., 2009; Park et al., 2010b). Adding the female mouse dataset (treadmill at 65% max. running

speed), showed that Naca phosphorylation was shared across models but on different phosphorylation

sites in different models (Figure S9A). We also observed the greatest overlap in number of DPPS in the

mouse exercise datasets between the MIC male mouse model and the treadmill exercise at 65% max.

running speed female mouse model (n = 218), which also had a significant correlation between DPPS

expression (r2 = 0.26, p < 0.001). The most enriched pathways (curated for relevance to skeletal muscle)

included calcium signaling, PKA and synaptic transmission including vesicle fusion (SNARE), protein ho-

meostasis (mTOR, AMPK), and insulin secretion signaling pathways (Figure 4C). To further dissect the di-

rection of change in each dataset, heatmaps for these pathways were created (Figure S9B). Changes in

mTORC1 and insulin signaling are known responses to exercise (Hawley, 2009; Hawley et al., 2018), but

the relation between exercise and PKA is not as well studied (Azevedo Voltarelli et al., 2021; Berdeaux

and Stewart, 2012; Hostrup et al., 2018; Jessen et al., 2021). Other new pathways identified included the

TNF superfamily member 13 (APRIL) involvement during exercise responses. Of intererst, expression of

components of each enriched pathway was not consistent in the significance or direction of change

providing an explanation for differences in responses among models.

Comparison of shared mouse and human exercise DPPS expression using Pearson’s correlation analysis

showed that the phosphorylation pattern (i.e., whether the protein had increased or decreased phosphor-

ylation in the mouse and human datasets) was significantly correlated (r2 = 0.28, p < 0.001) (Figures 4A and

4D). We next compared the expression of the shared DPPS between each individual exercise model. We

used this approach to determine the mouse model that best recapitulates human muscle phosphoproteo-

mics responses. Even though the MIC dataset had the greatest percentage of positively correlated phos-

phorylated proteins (63%) with the human dataset, the correlation coefficient was not significant (r2 = 0.07).

The DPPS expression from the skeletal muscle of mice that underwent free treadmill running at 65% of

max.intensity was the most correlated with those in the human exercise model (r2 = 0.44, p < 0.001),

whereas the daytime high intensity treadmill running was the next most correlated with human responses

(r2 = 0.30, p < 0.05) (Figure 4E). These data are consistent with our initial observations that molecular

changes are not necessarily consistent across exercise models and may be context dependent because

of differences in potential mediator(s) of these post-translational modifications.

Integrated analyses of exercise related skeletal muscle phosphoproteomics public datasets

Exercise-induced skeletal muscle hyperammonemia is believed to contribute to fatigue and potentially limit

benefits of exercise, especially in chronic diseases (Banister and Cameron, 1990; Mutch and Banister, 1983).

We therefore integrated our hyperammonemic myotube phosphoproteomics datasets with the published ex-

ercise datasets inmice and human to identify responses unique to either hyperammonemia, exercise, or those

that were shared between the DEpP/DPPS under the two conditions in skeletal muscle and myotubes (Fig-

ure 5). Across any exercise (mouse and/or human) and any hyperammonemia (6hAmAc and/or 24hAmAc) da-

taset, there were 57 shared DPPS (165 DEpP), 560 DPPS (283 DEpP) unique to hyperammonemia, and 3322
iScience 25, 105325, November 18, 2022 11
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DPPS (1101DEpP) unique to exercise (Figure 5A). In theDEpPunique to theAmAcdatasets, themost enriched

pathways included glucocorticoid receptor signaling, CREB signaling, assembly of RNA polymerase II, and

matrix metalloprotease regulation, all of which are potentially regulated by PKA (Felinski et al., 2001; Park

et al., 2010a; Rangarajan et al., 1992) (Figure 5B). These findings are consistent with our experimental studies

that the total (overall) PKA substrate phosphorylation was not significantly altered in response to hyperammo-

nemia (Figure 5C) but that specific targets including phosphorylation of BCL2 associated agonist of cell death

(BADSer155) were significantly increased with hyperammonemia (Figure 5D). In theDEpP unique to exercise da-

tasets (as compared to hyperammonemia datasets), AMPK signaling, PKA signaling, MAPK signaling and

mTOR signaling were among the most enriched pathways (Figure 5E). Regulatory interaction of PKA with

these pathways have been reported including via the A-kinase anchoring proteins (AKAP) (Djouder et al.,

2010; Waltereit and Weller, 2003; Zhang et al., 2017). We identified differential phosphorylation of AKAP12

and 13 (Figures S10A and S10B), but these regulatory interactomes between PKA and the pathways/mediators

of ammonia and/or exercise responses need to be experimentally evaluated. We found that there were 2

DPPS (17 DEpP) that were found in the 6hAmAc, 24hAmAc, any of the mouse exercise datasets, and in the

human exercise dataset (Figure 5F). The DEpP that were shared between any exercise dataset and any hyper-

ammonemia dataset (n = 165) were analyzed for functional enrichment (Figure 5G), PKA was identified to be

consistently enriched in many of the full datasets and subsets including those shared between hyperammo-

nemic myotubes and human/mouse exercise models (Figure S10C). To further dissect the responses in exer-

cise and hyperammonemia, we identified both PKA signaling and target molecules on our previously pub-

lished proteomics datasets (Welch et al., 2021) and compared them with the DEpP/DPPS in the different

exercise models and ammonia datasets. These analyses showed that even though the PKA pathway was en-

riched in the unbiased datasets, the specific signaling molecules and targets were different, helping explain

the discord between in vivo exercise and in vitro hyperammonemia (Figures 5B, 5E, and 5G). In addition, RNA

binding, processing, splicing, and transport were among the pathways enriched in DEpP shared between ex-

ercise and 6hAmAc and exercise and 24hAmAc DEpP (Figure S10D). We then generated a correlation matrix

between all exercise (mice and human datasets) and all hyperammonemic DPPS (6hAmAc, 24hAmAc) and

found that the majority of the DPPS across these models were positively correlated (Figure 5H) showing

that certain clusters of molecules are highly correlated during hyperammonemia that show known and poten-

tially new interactomes or regulomes (Figure S11) and, interestingly, PKA pathway components were among

those highly correlated.

To identify the potential contribution of ammonia to post-translational modification of skeletal muscle pro-

teins after exercise and to determine the exercise model(s) with the most shared molecules within each

ammonia dataset, we compared these individual datasets with each other (Figures S12A–12F). Shared

DEpP and DPPS among the 7 separate datasets (Figure S12F) showed only 2 DEpP shared among all

the data (Titin, Plectin). Titin is a PKA target and one of the largest muscle proteins (Fukuda et al., 2005).

Plectin regulates Wnt signaling (Yin et al., 2021) and consequently ribosome biogenesis via the b-cate-

nin-cMYC axis during hyperammonemia (Davuluri et al., 2019). We also identified all of the shared DPPS

on DEpP across all exercise and hyperammonemia datasets and created a score that allows for unbiased

clustering based on number of phosphosites and absolute value of expression log2ratio of DPPS in each

dataset (Figure S13). The shared DEpP with the highest scores, i.e., most phosphorylation sites with great-

est absolute value of differential expression, had enrichment of structural proteins andmolecular processes

whereas the shared DEpP with the lowest scores, i.e., fewer phosphorylation sites with lower absolute value

of differential expression, had enrichment of signaling (PKA, AMPK and mTORC1), structural proteins, and

longevity pathways. Generating such a score has the potential to identify the murine model that has the

greatest change in differential phosphorylation of each DEpP that were shared with human exercise and

will allow for identification of preclinical models based on biological relevance and evaluation of the reg-

ulatory role of individual molecules (using genetic or pharmacologic modulation).

We and others have also reported that hyperammonemia causes skeletal musclemitochondrial dysfunction

and senescence whereas exercise promotes mitochondrial biogenesis and oxidative function and miti-

gates aging related effects via effects on fibroadipogenic precursors and stem cells (Cartee et al., 2016;

Fiorenza et al., 2019; Kumar et al., 2021; Saito and Chikenji, 2021; Saito et al., 2020; Silva et al., 2009).

We therefore performed a comparative phosphoproteomics analysis of the unique and overlapping

DEpP in verified mitochondrial (Rath et al., 2021) and senescence genes (Avelar et al., 2020; Zhao et al.,

2016) in the hyperammonemic myotube and exercise datasets (Figures 6 and S14A–S14D). Analysis of

senescence related proteins showed 36 DPPS on 32 proteins that were shared between hyperammonemia
12 iScience 25, 105325, November 18, 2022
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Figure 6. Comparative analyses of phosphoproteomics during hyperammonemia and exercise

(A) UpSet plots of unique and shared differentially expressed phosphoproteins (DEpP) present in at least one of the 6h or the 24h ammonium acetate

(AmAc)-treated myotube datasets (Any ammonia) and those DEpP present in at least one of the mouse or human exercise datasets (Any exercise) compared

to genes in a verified mitochondrial-localized protein database (MitoCarta3.0), and genes in senescence databases (CSgene and CellAge).

(B) UpSet plot of unique and shared DEpP present in at least one of the 6hAmAc or the 24hAmAc-treated myotube datasets (Any ammonia) and those DEpP

present in at least one of the mouse or human exercise datasets (Any exercise) compared to transcription factor and kinase databases.

(C) Heatmap of canonical pathways enriched in the DEpP from the 6hAmAc and 24hAmAc datasets, mouse exercise datasets, and the human exercise

dataset.

(D) Scatterplots of expression levels for DPPS in the mouse exercise and hyperammonemic myotube datasets. All myotube experiments were done in n = 3

biological replicates (one 24hAmAc replicate was removed from downstream analyses because of outlier status). Statistical significance cutoff for UpSet plot

and scatterplot DEpP/DPPS was padj<0.05 for ammonia and mouse data and padj<0.05 and expression fold change >|1.5| for human data. Functional

enrichment analyses were performed with two cutoffs: 1)log2ratio cutoffs were used to identify a similar proportion of foreground molecules in each dataset

(500-800), 2) q<0.05 (as defined by each dataset) was used uniformly. The foregrounds were analyzed against each respective dataset as the background.

Significance for canonical pathway enrichment was-log(p value)R1.3 using a right-sided Fisher exact test. *p<0.05, **p<0.01, Daytime exercise = mice that

underwent high-intensity treadmill running during the zeitgeber time (ZT)0 period of ‘‘lights on’’; MIC = maximal intensity contraction; Mito. = verified

mitochondrial-localized molecules; Nighttime exercise = mice that underwent high-intensity treadmill running during the ZT12 period of ‘‘lights off’’; NS =

non-significant; Treadmill (65% max.) exercise = mice exercised at 65% of their maximal running speed on a treadmill.
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and the senescence databases (Avelar et al., 2020; Zhao et al., 2016), but only 3 DPPS that were also shared

with the exercise datasets (Figure 6A). Because telomere signaling is involved in DNA damage, and cell cy-

cle regulation (Venturelli et al., 2014; Wan et al., 2021), processes which were significantly enriched in

several datasets and clusters, we compared the ammonia and exercise datasets to a database of genes

involved in telomere maintenance (TelNet)(Braun et al., 2018) and found there were 158 DPPS in either

ammonia dataset (34% of the ammonia DPPS) and 519 (15%) of the exercise DPPS present in the Telnet da-

taset (Figure S14B). To identify change in phosphorylation status of kinases and transcription factors shared

between exercise and hyperammonemia, we compared the exercise and hyperammonemia datasets to da-

tabases of known transcription factors and kinases (Figures 6B and S14C). Heatmaps of the mitochondrial

and senescence-related DPPS during hyperammonemia in myotubes or in response to exercise in skeletal

muscle showed differential alteration in components of the oxidative phosphorylation, TCA cycle regula-

tory and senescence-related proteins (Figures S15A–S15D).

Using functional enrichment analyses, we identified PKA, mTOR, AMPK signaling and cell cycle regulation/

senescence/longevity to be overrepresented pathways in the human exercise dataset, at least one of the

mouse exercise datasets, and at least one of the hyperammonemia datasets (Figure 6C). We also observed

that SNARE signaling pathway which is involved in vesicle transport and synaptic transmission (Mukund and

Subramaniam, 2020) was enriched in some of these models. A number of molecules in the SNARE pathway

are also shared with the PKA signaling pathway, consistent with reports of PKA regulation of the SNARE com-

plex (Chheda et al., 2001). The synaptogenesis pathway that was enriched during hyperammonemia shared a

number of components with the PKA pathway. Similar to the observations with the PKA pathway, we also

observed sharedmolecules between ERK/MAPK. APRIL and p38MAPK signaling pathways were also enriched

during hyperammonemia (Figure S15E). We then generated scatterplots to compare the DPPS expression

levels across the hyperammonemic and exercise datasets (Figure 6D) that showed that the mouse exercise

and hyperammonemia models are significantly positively correlated (r2 = 0.12, p < 0.01).

Phosphoproteomic responses during hyperammonemia and exercise revealed shared and

unique motifs

To determine temporal changes in the motifs contained in the hyperammonemia dataset, we analyzed the

6hAmAc and 24hAmAc datasets separately for motif enrichment and compared them with the motifs in

the exercise datasets (Figure 7). In the 6hAmAc total DPPS dataset, there were 2 significant phosphorylation

motifs (all p-S) identified and in the 24hAmAc total DPPS dataset there were 5 significant phosphorylationmo-

tifs (all p-S) identified. Phosphorylation motifs in the various exercise datasets also showed 2 phosphorylation

motifs (xxRxxSxxxxx; xxxxxSPxxxx) shared between the hyperammonemia (6hAmAc, 24hAmAc) and exercise

(mouse and human) datasets (Figure 7A). These phosphorylation motifs were predicted targets for phosphor-

ylase kinase (regulates glycogenmetabolism), protein kinase B (mTOR1 kinase that regulates protein homeo-

stasis) and PKA (multiple targets involved in skeletal muscle (Knight and Kothary, 2011)) for motif 1

(xxRxxSxxxxx). Targets for motif 2 (xxxxxSPxxxx) included proline directed kinases, peptidyl-prolyl cis-trans

isomerase (Pin1) WW docking domain and the canonical and long version of the cyclin-dependent kinase

(CDK) phosphorylation site (Figure 7A). Of interest, PKA also has kinase interactions with phosphorylase
14 iScience 25, 105325, November 18, 2022
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Figure 7. Motifs and kinome analyses in the phosphoproteomics datasets

(A) Motifs and predicted kinases identified in differentially phosphorylated phosphosites (DPPS) from myotubes treated with 6 and 24h of 0mM ammonium

acetate (AmAc) and skeletal muscle from mice and human exercise models. Scores shown in each panel indicates best fit with a known motif from the

Eukaryotic Linear Motif database.

(B–D) Predicted kinases using NetworKIN, NetPhorest, and weighted CORAL kinome trees for DPPS in the 6hAmAc and 24hAmAc datasets and DPPS shared

between any hyperammonemic (6hAmAc, 24hAmAc) dataset and any mouse or human exercise datasets. Enlarged kinome tree subsets show predicted

protein kinases from the A, G and C (AGC) family in the respective datasets. Weighting is based on NetworKIN enrichment score.

(E) STRING protein-protein interaction network shows PKA, MAPK1, and their known interactions with DEpP shared between the hyperammonemia and

exercise datasets. All myotube experiments were done in n = 3 biological replicates (one 24hAmAc replicate was removed from downstream analyses

because of outlier status).
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kinase and PKB (Brushia and Walsh, 1999; Filippa et al., 1999) that can explain the high enrichment of PKA

motifs in DEpP in our datasets. We identified the proteins that contained PKA target motifs and generated

a connectivity network that showed the multiple levels of interactions and regulation by PKA during exercise

and hyperammonemia (Figure S16). Pin1 is a type of foldase and belongs to the parvulin family that regulates

mitotic activity. Pin1 interacts with mitotic phosphoproteins and regulates cell cycle and senescence (Shen

et al., 1998; Toko et al., 2014), consistent with previous reports on ammonia-induced cell senescence (Gorg

et al., 2015; Jo et al., 2021; Welch et al., 2021). The CDK molecules have regulatory roles in senescence

and differentiation of myoblasts that can explain their relevance in muscle senescence (Etienne et al., 2020).

We performed complementary analyses usingNetPhorest (Horn et al., 2014) andNetworKIN (Horn et al., 2014)

to predict kinase-substrate interactions for the DPPS present in the AmAc and exercise phosphoproteomics

datasets and CORAL (Metz et al., 2018) to visualize the frequency of the predicted kinases. We also found that

the most frequently predicted kinases in either the 6hAmAc or 24hAmAc DPPS were casein kinase 2 (CK2),

PKC, and Cdc-like kinases (CLK) and PKA (Figures 7B and 7C). Changes in CK2 were consistent with our pre-

vious report that theWnt-b-catenin pathway which promotes ribosomal biogenesis and is regulated by casein

kinase is impaired during hyperammonemia (Davuluri et al., 2019). On the kinome tree, the evolutionarily

conserved serine-threonine protein kinaseA,G,C (AGC) family of enzymes, whichmediate signaling responses

in a number of pathways, was enriched in the datasets. Given the relevance of these molecules in senescence,

these observations are consistent with ammonia-induced post-mitotic senescence in skeletal muscle and

modulation of muscle senescence by exercise (Cartee et al., 2016; Kumar et al., 2021). The subset of DPPS

shared between any exercise dataset (human or mouse) and any hyperammonemia set (6hAmAc or 24hAmAc)

generated a smaller number of predicted kinases, but the AGC family was again represented in this compar-

ative analysis (Figure 7D). Given the consistent enrichment of our DEpP/DPPS datasets with PKA, an STRING

network of the shared molecules between ammonia and exercise with a PKA node identifies potential inter-

actions between these DEpP and PKA via MAPK1 (Figure 7E). Sequential analyses to identify regulatory inter-

actions can be used to identify additional biological processes that are involved in exercise.

To identify protein kinase-substrate relationships within the clusters (Jamal et al., 2021), we performed sub-

stratemotif analysis for each temporal cluster of DEpP (Figure S17). In the P. increase and decrease clusters,

the recognition motifs for phosphorylation by PKA, PKC, casein kinase I, GSK3 and Ca2+/calmodulin-

dependent protein kinase 2 (CAMK2) family members were noted. Interestingly, this motif was overrepre-

sented in both the P. increase and P. decrease cluster DPPS, which suggests that they are regulated by

distinct and potentially common kinases. In the Late increase cluster, Casein kinase II and PAK2 kinase,

which are important for muscle homeostasis, and in the Late decrease cluster, motifs for Casein kinase I

and b-adrenergic receptor kinase were enriched. T. change clusterDPPS were recognized by cyclin-depen-

dent kinase (CDK) and MAPK families. These analyses revealed that phosphorylation targets during hyper-

ammonemia induced signaling are regulated by distinct sets of kinases.

Our integrated muscle phosphoproteomics dataset can also be interrogated in future comparative ana-

lyses with the approaches we have used in these studies. An index of Tables (Table S1) that allows for

ease for determining the supporting data for our bioinformatics figures are provided as individual excel

files for rigor and ease of reproducibility (Tables S2, S3, S4, S5, S6, S7, S8, S9, S10, S11, S12, S13, S14,

S15, S16, S17, S18, S19, S20, S21, S22, S23, S24, S25, S26, S27, and S28).

DISCUSSION

We observed that ammonia, a cytotoxin consistently generated during exercise (Bellar et al., 2020; Chen

et al., 2020; Gorostiaga et al., 2014; Graham et al., 1990, 1993, 1995; Graham and MacLean, 1998), results
16 iScience 25, 105325, November 18, 2022
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in differential phosphorylation events and enrichment of pathways in myotubes. A number of unique and

shared phosphoproteomics responses between myotube hyperammonemia and skeletal muscle from ex-

ercise models were identified. Among the phosphorylated proteins shared between one or more hyperam-

monemic and skeletal muscle from exercise model dataset, PKA pathway had the highest enrichment.

Regulatory interactions of PKA targets including AMPK, protein homeostasis and senescence mediators

were also identified. Experimental studies in myotubes validated these phosphoproteomic responses dur-

ing hyperammonemia and suggest that targeting either PKA or its substrates may be of relevance in

chronic diseases with perturbed ammonia metabolism.

Our detailed phosphoproteomics analyses in hyperammonemic myotubes are consistent with and

expand published data on the global molecular responses (Welch et al., 2021). In addition, because of

our previous investigation of ammonia-induced changes in myotubes from the chromosomal to the

translational level, we were able to identify those proteins regulated at only the phosphorylation level,

only the protein level, or both. A number of molecules including those involved in cell cycle regulation

and senescence, mitochondrial function, and protein synthesis that are known responses to hyperammo-

nemia were regulated at both the proteomic and phosphoproteomic levels. Individual molecules that

were shared between proteomics and phosphoproteomics in myotubes and whose expression levels

changed in the same direction included metabolism regulatory molecule pyruvate dehydrogenase

(Pdha1); Serine and Arginine Rich Splicing Factor 6 (Srsf6), an RNA splicing factor; Syntaxin (Stx7), a

vesicle trafficking molecule; and Neurite outgrowth inhibitor (Rtn4), another membrane trafficking mole-

cule that also interacts with apoptosis regulatory protein Bcl2 like-1 gene. Pathways that were enriched in

the subsets of DE-Ps only regulated at the protein level and DEpP only regulated at the phosphoprotein

level contained proteins regulating both known and previously unknown responses to hyperammonemia.

The functional and regulatory relevance of these proteins in the skeletal muscle is still not completely

clear and require experimental studies to identify their biological role during hyperammonemic stress

(Davuluri et al., 2016b).

Hyperammonemia blunts protein synthesis via multiple mechanisms as reported by us earlier (Davuluri

et al., 2016a, 2016b, 2019; McDaniel et al., 2016; Welch et al., 2021) and the phosphoproteomics analyses

in the present studies also suggest reduced signaling in the protein synthesis pathway and impaired mito-

chondrial oxidative function, a critical requirement for ATP synthesis during contractile function. The pre-

sent studies are consistent with recent data that muscle hyperammonemia promotes a senescence associ-

ated molecular phenotype that adversely affects multiple signaling and metabolic pathways (Kumar et al.,

2021). Our phosphoproteomics analyses in myotubes show that, in addition to the alterations in mitochon-

drial proteins, telomere regulatory pathways are also altered and may contribute to muscle senescence

during abnormal ammonia metabolism in chronic disease. Although exercise in healthy subjects promotes

muscle plasticity via improved mitochondrial function and multiple signaling responses (Cartee et al.,

2016), hyperammonemia worsens muscle plasticity. These observations suggest that dysregulated

ammonia metabolism in chronic diseases (Dasarathy and Hatzoglou, 2018) may perturb skeletal muscle

functional capacity, contractile function, and signaling responses to exercise.

Recently, two metanalyses of skeletal muscle transcriptomics related to exercise in humans have been

published (Amar et al., 2021; Pillon et al., 2020). A number of factors including the duration and type

of exercise, sex of the subject, location of the muscle biopsied and the time interval between termination

of exercise and biopsy influenced the transcriptomic responses. In one study, 66 datasets were analyzed

for exercises (n = 59) or inactivity (n = 6) and related differentially expressed skeletal muscle mRNA (Pillon

et al., 2020). Distinct and shared patterns of transcriptomics were observed between acute endurance

and resistance exercise whereas the expression of a number of genes including NR4A3 and GADD45

were differentially expressed between acute exercise and inactivity. In a subsequent metanalyses, the

temporal course of skeletal muscle transcriptomics showed SMAD3, as a central hub of the regulatory

responses to exercise (Amar et al., 2021). Both studies identified PGC1a, a regulator of mitochondrial

biogenesis as an exercise responsive gene. However, our studies on muscle phosphoproteomics re-

sponses to exercise and ammonia in myotubes revealed enrichment of mitochondrial dysfunction path-

ways but not PGC1a targets, reiterating the lack of consistent concordance across layers of regulation in

cells. We have previously shown that hyperammonemia causes reversible skeletal muscle mitochondrial

dysfunction in addition to reversible post-mitotic senescence. Many of the molecules identified in these

analyses were regulated by or altered the phosphorylation status of downstream signaling molecules.
iScience 25, 105325, November 18, 2022 17



ll
OPEN ACCESS

iScience
Article
In our integrated analyses of skeletal muscle phosphoproteomics responses in different models of exer-

cise, we identified that there is enrichment of the PKA pathway including RNA processing, splicing, cell cy-

cle regulation, as well as well recognized exercise responses including AMPK signaling, mTORC1 signaling

and insulin responses (Hawley, 2009; Hawley et al., 2018; Hoffman et al., 2015). However, previous studies

on skeletal muscle transcriptomics or proteomics do not report changes in PKA expression. The MetaMEx

database (Pillon et al., 2020) showed that in acute aerobic exercise, PKA transcripts did not show significant

changes, suggesting that PKA regulation of downstreammolecules may be dependent on phosphorylation

rather than on transcript expression. In the skeletal muscle, PKA regulates the neuromuscular junction and

decreases mitochondrial oxidative function (Antipenko et al., 1999; Rudolf et al., 2013). The mechanism by

which PKA is modulated during exercise is currently believed to be because of sympathetic activation

(Bruno et al., 2014; Cairns and Borrani, 2015). However, our previous studies on the global landscape during

hyperammonemia, a consistent metabolic consequence of exercise, showed enrichment of the PKA

pathway in myotube transcriptomics and proteomics (Welch et al., 2021), and the present studies showed

that PKA kinase activity is enriched during hyperammonemia, but the canonical target, CREB, is not phos-

phorylated at reported phosphorylation sites. Instead, during hyperammonemia, PKA regulates apoptosis

via BAD with decreased apoptosis, consistent with previous data on preferential senescence over

apoptosis (Kumar et al., 2021). Our analyses also suggest that PKA may regulate senescence via interac-

tions between PKA signaling and CDKs as have been reported in other systems (Arsenijevic et al., 2006;

Makarevich et al., 2010). Thus post-mitotic senescence in myotubes may be the consequence of conver-

gence of multiple regulatory pathways whose molecular components may not necessarily directly interact.

This is similar to the lack of direct correlation of their expressions of PKA and PLK in our bioinformatics an-

alyses or in published data. However, both kinases have been reported to target the anaphase promoting

complex/cyclosome (APC) complex, a ubiquitin ligase that targets cyclin B and factors that regulate meta-

phase-anaphase transition and mitotic exit and transcription (Kotani et al., 1998; Martin and Strebhardt,

2006). In addition to senescence, a number of CDK molecules regulate skeletal muscle morphogenesis

that is also controlled by the HIPPO pathway (Watt et al., 2018). Consistently, our analyses suggested

enrichment of HIPPO signaling pathways. Experimentally, we identified increased phosphorylation of

MST2, a HIPPO signaling inhibitor. This is of relevance given that HIPPO signaling controls organ growth

and regeneration via regulating cell proliferation and cell fate across species and multiple organs (Meng

et al., 2016; Watt et al., 2018). Our studies showed that even though expression of HIPPO targets were

not significantly altered in quantitative proteomics in hyperammonemic myotubes, phosphorylation of a

number of HIPPO target proteins was altered. These data suggest that ammonia differentially regulates

HIPPO responses in a time and context dependent manner and could be a potential target, along with

PKA signaling, to optimize exercise induced skeletal muscle protein homeostasis and functional capacity,

especially in chronic diseases, by mitigating perturbations related to skeletal muscle ammoniagenesis.

Our analyses merging all data in each dataset complement a recently described ‘‘personalized phospho-

proteomics’’ — linking biological function using phenotype differences in response to exercise in human

subjects (Needham et al., 2022). By taking into consideration duplicate annotations that may be secondary

to transcript variants as well as orthologous phosphosites across species, these analyses provide a unique

resource for additional analyses to address novel questions or relate these observations to future unbiased

datasets that may be published in response to either hyperammonemia or exercise. However, challenges

for such ‘‘across dataset analyses’’ include the complexity of the data, heterogeneity in models, and non-

uniform experimental protocols that contribute to differences in responses. With the increasing use of ma-

chine learning and artificial intelligence-based approaches (including supervised and unsupervised ana-

lyses), comparative overlays, and functional enrichment analyses, unique and shared responses can be

identified for mechanistic studies and therapeutic targeting. Additional challenges include the increasing

availability of computational tools for such analyses. A large number of algorithms and post sample ana-

lyses bioinformatics tools have been developed to analyze unbiased data. It can be, therefore, challenging

for scientists to translate developer tools to biological systems to express and interpret data in a meaning-

ful manner (Lee et al., 2015; Mangul et al., 2019; Savage and Zhang, 2020). Our use of standard and widely

used comparative molecular and pathway analyses allows for similar approaches to be applied rapidly and

easily across models by an interdisciplinary group of investigators who may not be proficient in advanced

bioinformatics or pipeline development and provides rigor and reproducibility.

Our systems biology approach to evaluate specific phosphoproteomic signatures will help identify preclin-

ical models based on the scientific hypothesis and biological relevance. Specifically, our analyses suggest
18 iScience 25, 105325, November 18, 2022
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that ammonia lowering, especially during chronic diseases with perturbed ammonia metabolism including

liver cirrhosis, heart failure, chronic obstructive lung disease and renal failure(Dasarathy and Hatzoglou,

2018; Medeiros et al., 2014; Valero et al., 1974), may improve exercise capacity and functional responses.

This is especially relevant given the availability of ammonia lowering agents for human use and recent data

that ammonia lowering can be beneficial in chronic diseases (Kumar et al., 2017, 2021). Future studies on

the effects of ammonia-lowering interventions on exercise induced improvement in functional capacity

and skeletal muscle protein homeostasis will be of high translational relevance. Our studies also lay the

foundation for novel strategies to improve exercise capacity and beneficial responses by modulating other

potential mediators of adverse responses to exercise(Bellar et al., 2020) while maintaining tissue and whole

organism benefits.
Limitations of the study

Despite the physiological and translational relevance of our studies to identify the potential ammonia-

related responses during exercise, it is possible that our myotube model may not reproduce skeletal mus-

cle concentrations during exercise. However, blood concentrations of ammonia with exercise are similar to

those reported in human cirrhosis and ammoniagenesis occurs within the skeletal muscle during exercise.

Therefore, exercise-induced ammoniagenesis is likely to result in tissue concentrations that are similar to

those observed in patients with cirrhosis and potentially other chronic diseases with hyperammonemia

(Chen et al., 2020; Dasarathy and Hatzoglou, 2018; Medeiros et al., 2014; Qiu et al., 2013; Valero et al.,

1974). Plasma ammonia concentrations decrease rapidly because of hepatic disposal in healthy subjects,

but not necessarily in patients with disease because of impaired ureagenesis (Shangraw and Jahoor,

1999; Zheng et al., 2018). Another potential difference between exercise-induced ammoniagenesis in

healthy subjects and subsequent responses and those in our experimental models is the temporal course

of skeletal muscle phosphoproteomics responses during exercise. We have used the existing exercise

phosphoproteomics datasets generated from healthy human subjects or wild-type mice, but the temporal

course and severity of muscle hyperammonemia in chronic disease and exercise are currently unknown.

Our myotube model recapitulates the tissue concentrations of ammonia in the resting state in cirrhosis,

but with exercise, blood ammonia increases further (Dietrich et al., 1990) with muscle concentrations being

even higher than in the basal state. Such a response during exercise in chronic disease may result in greater

or different alterations in muscle molecular responses than those observed in our myotubemodel of hyper-

ammonemia, but there are no published data on muscle ammonia in response to exercise in chronic dis-

eases. Our analyses are therefore likely to bemore conservative than the responses with exercise in chronic

disease. Exercise related tissue ammonia concentrations will allow for direct comparisons of tissue levels,

but even though such data are currently not available, future studies on ammonia lowering during exercise

will be helpful for clinical translation.

Another potential confounder is that myotube cultures do not reproduce the fiber type differences in vivo,

which can explain some of the differences observed between the cellular, animal and human studies

observed in these and reported in other studies (Welch et al., 2021). However, differentiated C2C12 murine

myotubes have been shown to recapitulate a number of skeletal muscle responses and in vitro studies allow

for determining responses to stressors without the whole body adaptive responses compensating for the

cell-specific responses (Abdelmoez et al., 2020; Davuluri et al., 2016b; Kumar et al., 2021; McMahon et al.,

1994; Nedachi et al., 2008). Also, some of the differences in physiological, kinase and signaling and re-

sponses between myotubes and in vivo models may be related to the sex of the mice or gender of human

subjects, muscle group used and exercise protocols. Hence, the numbers of DPPS on DEpP are not always

concordant because even if the DEpP are shared, the DPPS on those proteins may not necessarily match,

suggesting that phosphorylation at different sites can have variable functional responses depending on the

confounders that influence data integration across models. Despite these limitations, our analyses,

including experimental data, lay the foundation for future mechanistic studies including ammonia mea-

surements and responses to ammonia lowering in human subjects with chronic diseases in response to ex-

ercise. Even though our analyses across models helped identify unique and shared exercise-induced re-

sponses and perturbations during hyperammonemia across molecular layers (that some call ‘‘omics

layers’’), pathways including PKA signaling may be potential targets for modulating skeletal muscle protein

homeostasis (proteostasis) in response to exercise. Our analyses or experiments do not provide direct ev-

idence of a mechanistic evidence that exercise induced ammoniagenesis lessens the beneficial responses

including skeletal muscle functional capacity and protein homeostasis. By querying public datasets of un-

targeted phosphoproteomics from skeletal muscle from mouse and human exercise models, we identified
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that the treadmill at 65% of max. running speed and MIC mouse models had the most concordant phos-

phoproteins with exercise responses in human muscle and therefore may be optimal models to use for

future exercise-based studies with hyperammonemia. Studies in preclinical models with loss/gain of func-

tion with or without ammonia lowering are needed to establish such a link given the challenges of mech-

anistic studies in humans.
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Ghandi, M., Mesirov, J.P., and Tamayo, P. (2015).
The Molecular Signatures Database
(MSigDB) hallmark gene set collection. Cell Syst.
1, 417–425. https://doi.org/10.1016/j.cels.2015.
12.004.

Liberzon, A., Subramanian, A., Pinchback, R.,
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Phospho-Bad antibody (Ser155) (rabbit polyclonal) Cell Signaling Cat# 9297; RRID:AB_2062131
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(rabbit monoclonal)
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Phospho-S6 antibody (Ser235/326) (rabbit polyclonal) Cell Signaling Cat# 2211; RRID:AB_331679

S6 ribosomal protein antibody (clone 54D2)

(mouse monoclonal)

Cell Signaling Cat# 2317; RRID:AB_2238583

b-actin antibody (clone C4) (mouse monoclonal) Santa Cruz Cat#: sc-47778; RRID:AB_626632

Anti-rabbit IgG, HRP-linked antibody Cell Signaling Cat#7074; RRID:AB_2099233
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Ammonium Acetate Sigma Aldrich Cat# A7330
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H-89, Dihydrochloride EMD Millipore Cat# 371962

Deposited data

Hyperammonemia-dependent and independent
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This paper ProteomeXchange: PXD031372

Mitochondrial responses during hyperammonemia ProteomeXchange ProteomeXchange: PXD026955

Transcriptomic, proteomic and phosphoproteomic

underpinnings of daily exercise performance and Zeitgeber

activity of endurance training in mouse skeletal muscle

ProteomeXchange ProteomeXchange: PXD026461

The exercise-regulated skeletal muscle phosphoproteome ProteomeXchange ProteomeXchange: PXD001543

Phosphoproteomic screening of exercise-like treatments

reveals drug interactions regulating protein secretion

ProteomeXchange ProteomeXchange: PXD014322

Phosphoproteomics of rodent exercise models ProteomeXchange ProteomeXchange: PXD010452

Impact of maximal-intensity contractions and rapamycin

on the proteome and phosphoproteome of mouse

skeletal muscle

University of California

San Diego (UCSD)

MassIVE Database

MassIVE database: MSV000086732

Integrated molecular landscape perturbations underlie

cellular responses during hyperammonemia [ATAC-seq]

GEO GSE171642

Integrated molecular landscape perturbations underlie

cellular responses during hyperammonemia [human RNA-seq]

GEO GSE171643

Integrated molecular landscape perturbations underlie cellular

responses during hyperammonemia [mouse RNA-seq]

GEO GSE171644
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Integrated molecular landscape perturbations underlie

cellular responses during hyperammonemia

GEO GSE171645

Experimental models: Cell lines

C2C12 myotubes ATCC CRL-1772

Software and algorithms

IPA QIAGEN, Inc. https://digitalinsights.qiagen.com/IPA

g:Profiler N/A https://biit.cs.ut.ee/gprofiler/gost

RStudio N/A Rstudio.com

ImageJ NIH https://imagej.nih.gov/ij/

Perseus MaxQuant https://maxquant.net/perseus/

Phomics N/A http://phomics.jensenlab.org/

phospho_enrichment

STRING String Consortium 2022 https://string-db.org/

Other

Phosphoproteomics Scatterplot code Zenodo and GitHub v0.1SitesPerProtein dasaraslab/Unbiased:

Phosphoproteomics Scatterplot

https://zenodo.org/badge/latestdoi/392334492
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Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Srinivasan Dasarathy (dasaras@ccf.org).
Materials availability

This study did not generate any new reagents.

Data and code availability

d The hyperammonemia phosphoproteomics data have been deposited to the ProteomeXchange Con-

sortium via the PRIDE partner repository with the dataset identifier ProteomeXchange: PXD031372

and https://doi.org/10.6019/PXD031372. Previously published hyperammonemia datasets for cellular

RNAseq are publicly available at NCBI Sequence Read Archives database NCBI BioProject:

PRJNA495054. Previously published proteomics, cellular RNA-Seq datasets, cellular ATAC-Seq dataset

and human and mouse RNA-Seq datasets, are available at NCBI Gene Expression Omnibus as a supers-

eries with accession number GSE171645 can be directly located at the following URLs:

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171642.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171643.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171644.

The previously published hyperammonemia MS proteomics data are available at ProteomeXchange

Consortium via the PRIDE partner repository (http://www.proteomexchange.org) with dataset identifier

ProteomeXchange: PXD026955 and https://doi.org/10.6019/PXD026955. Other published data were

curated from the manuscripts: Maier et al. proteomics datasets available at ProteomeXchange, accession

code ProteomeXchange: PXD026461 (Maier et al., 2022), ProteomeXchange: PXD001543 (Hoffman et al.,

2015), ProteomeXchange: PXD014322 (Needham et al., 2019), ProteomeXchange: PXD010452 (Nelson

et al., 2019), the University of California San Diego (UCSD) MassIVE Database: MSV000086732 (Steinert

et al., 2021).
iScience 25, 105325, November 18, 2022 27

mailto:dasaras@ccf.org
https://doi.org/10.6019/PXD031372
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171642
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171643
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE171644
http://www.proteomexchange.org
https://doi.org/10.6019/PXD026955
https://digitalinsights.qiagen.com/IPA
https://biit.cs.ut.ee/gprofiler/gost
http://Rstudio.com
https://imagej.nih.gov/ij/
https://maxquant.net/perseus/
http://phomics.jensenlab.org/phospho_enrichment
http://phomics.jensenlab.org/phospho_enrichment
https://string-db.org/
https://zenodo.org/badge/latestdoi/392334492


ll
OPEN ACCESS

iScience
Article
d All original code has been deposited at Zenodo and is publicly available as of the date of publication.

The DOI can be found in the key resources table.

d All other data are contained within the article. Any additional information needed to reanalyze the data

reported within the article will be provided by the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell lines

Murine C2C12 myoblasts (ATCC, Manassas, VA) were differentiated as previously described (Qiu et al.,

2012, 2013). In brief, myoblasts were grown at 37�C in Dulbecco’s modified Eagle Medium (DMEM) with

10% fetal bovine serum (proliferation medium) to near confluence. Proliferation medium was replaced

with differentiation medium (DMEM with 2% horse serum) for 48h. Differentiated myotubes were then

treated with 10mM ammonium acetate, a concentration that reproduces tissue concentrations of

ammonia in a rat model and human patients with cirrhosis and (McDaniel et al., 2016; Qiu et al.,

2013). Even though it is not known if these concentrations reproduce skeletal muscle concentrations dur-

ing exercise, we have chosen this model because we expect tissue concentrations to increase even

further with exercise based on consistent increases induced blood ammonia with exercise (Calvert

et al., 2010; Dietrich et al., 1990).
METHOD DETAILS

Sample preparation and phosphoproteomics assays

Label free proteomics were performed in samples as previously described (Welch et al., 2021). In brief, cells

were lysed in �500ml of Urea Lysis Buffer (20mM HEPES, 9M urea, 1X HALT protease and phosphatase in-

hibitor cocktail, pH 8.0 and protein concentrations measured using bicinchoninic acid assay as previously

reported. Protein extracts were reduced by alkylated dithiothreitol and digested with trypsin overnight

at room temperature. After digestion, peptides were purified (desalted), lyophilized and spiked with -

phosphopeptide standard I (Protea Biosciences Group, Inc. #PS-180-1) with 6 pool each of three syn-

thetic phosphopeptides [DRVpYIHPF (Angiotensin II), IKNLQpSLDPSH (Cholecystokinin 10-20) and

DFNKFHpTFPQTAIGV (Calcitonin 15-29)]. These peptides were spiked in after digestion and prior to

enrichment to serve as a measure of enrichment efficiency. Two of these phosphopeptides were identified

in the LCMS/MS experiments. The data from these samples were searched against the full mouse

UniProtKB database considering S, T, and Y phosphorylation as a dynamic modification. Equal amounts

of peptide from each sample were phospho-enriched using Thermo Scientific� High-Select� TiO2 Phos-

phopeptide Enrichment Kit, and the eluted peptides were dried immediately. Each sample was reconsti-

tuted in 30ml 1% acetic acid and spiked in 10ml 50 fmole/ml Pierce Peptide Retention Time Calibration

Mixture (12.5 fmole/ml final concentration) as reference. The LC-MS system was a ThermoScientific Fusion

Lumos mass spectrometer system. The HPLC column was a Dionex 15 cm 3 75 mm internal diameter

Acclaim Pepmap C18, 2mm, 100 Å reversed-phase capillary chromatography column. Peptides from 5mL

of the extract were eluted from the column by an acetonitrile/0.1% formic acid gradient at a flow rate of

0.25 ml/min introduced into the source of the mass spectrometer on-line. The digest was analyzed using

the data dependent multitask capability of the instrument acquiring full scan mass spectra to determine

peptidemolecular weights and product ion spectra to determine amino acid sequence in successive instru-

ment scans.

Raw mass spectra were searched against the mouse UniProt protein database with 16,996 entries (down-

loaded on July 9th, 2019) using Sequest algorithm of Proteome Discoverer software (Orsburn, 2021) (V2.3

(https://www.thermofisher.com/order/catalog/product/IQLAAEGABSFAKJMAUH). Carbamidomethyl C

was selected as a fixed modification, whereas oxidation (M), acetylation (protein N-term), and phosphory-

lation (STY) were selected as variable modifications. Perseus software 1.5.8.5 (74) was used for quantitative

analysis of the results from Proteome Discoverer V2.3. The raw intensity of each phosphorylation site was

normalized on the basis of starting amount of proteins. Analysis of variance (ANOVA) with permutation-

based false discovery rate (control at 0.05) was used to detect statistically significant differences in phos-

pho-peptide levels between developmental stages. Hierarchical clustering of the z-score transformed

abundance of the statistically significant phosphorylation sites was performed using Euclidean distance

and the average linkage method. Sequence logos around phosphorylated residues were created

(PhosphoLogo) for subsets of statistically significant sites based on profile plots (increasing or decreasing).
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The total number of peptides identified in all eighteen samples was 14453 with 9232 phosphopeptides. The

experimental approach is shown in the graphical abstract.
Quantitative analysis

The relative abundance of the phosphopeptides in these samples was determined using a label free

approach. This method involves aligning chromatograms and determining the normalized abundance

for each peptide. The LFQ value was either derived from an identified peptide precursor or a precursor

peak whose peptide was identified in another sample. If the precursor peak was not found in a sample,

the data point would be missing. These data were normally not missing at random but were either due

to their abundances below the detection limit of the instrument or not presented in the samples. The

censoring missing values were imputed using a quantile regression approach that imputes missing data

using random draws from a truncated distribution with parameters estimated using quantile regression

in Perseus (Tyanova et al., 2016). The data matrix was log2 transformed and the missing values were

imputed from a truncated normal distribution. The imputed data were taken randomly from the distribution

of the data in the column down shift 1.8 s and the width of selection was set at 0.3s. The LFQ intensities and

imputed values for each protein across all 9 samples are provided in Figure S18A). These normalized abun-

dances were used to calculate the LFQ ratios. The counts plots for all 9 samples indicates that the 24hr

Ammonia-1 sample is an outlier due to the identification of only 1026 phosphopeptides (Figure S18B).

The low number of identified phosphopeptides may be due to poor digestion of this sample. PCA plots

were plotted without this sample (Figure S18C). Sample comparisons for phosphosites in the hyperammo-

nemic datasets are shown in Figures S18D and S18E.
Experimental validation

Immunoblots of lysates from differentiated myotubes were performed as previously described (Qiu et al.,

2012). In brief, after denaturation using Laemmli buffer, proteins were subjected to electrophoresis in a 10%

tris-glycine gel, electrotransferred to PVDF membranes, transfer and equal loading ascertained by Pon-

ceau staining, incubated with primary (1:1000) and secondary antibodies (1:10,000), and developed using

enhanced chemiluminescence assay. Densitometry of blots were quantified by ImageJ (Schneider et al.,

2012). For the protein kinase A regulation, cells were treated with forskolin 20mM for 6h to activate and

H89 (50mM for 6h) to inhibit PKA. Classical PKA target cyclic AMP response binding (CREB) protein phos-

phorylation at the canonical serine133 site, and Bcl2 associated agonist of cell death (BAD) at serine 155

was also quantified by immunoblots. Other phosphorylated proteins that were experimentally validated

includedMST2Ser316, MCM2Ser319, and ribosomal S6Ser235/236. These specific phosphoproteins were chosen

because they are critical regulators of skeletal muscle protein homeostasis (proteostasis); published liter-

ature supports changes in one or more of these molecules across tissues during hyperammonemia (IKKB

and ribosomal S6 protein) and validated antibodies are commercially available to test molecules of high

relevance in maintenance of muscle mass/proteostasis that were highly enriched in our pathway ana-

lyses/DEpP.
Curation of published exercise datasets

A search of ProteomeXchange, a consortium of unified submissions in the proteomics field (Vizcaino et al.,

2014) followed by a manual search of publications identified 4 mouse phosphoproteomics datasets in

which either exercise or electrical contraction were used (Maier et al., 2022; Nelson et al., 2019; Steinert

et al., 2021) and one human exercise phosphoproteomics dataset (Hoffman et al., 2015) that were

compared with controls in skeletal muscle. We compared these public datasets of DEpP/DPPS from

mice and humans to our data in myotubes during hyperammonemia. We recognize the heterogeneity of

the exercise protocols and used overlay approaches to determine unique and shared responses.

Mouse exercise datasets

In the MIC dataset, mouse muscle was obtained following max. intensity contractions to electrical stimu-

lation were elicited in anesthetized male mice using an electrode placed on the sciatic nerve which was

stimulated at 100Hz with 0.5 ms pulses at 4-7 V for 10 sets of 6 contractions (Steinert et al., 2021). Each

contraction was elicited for 3 seconds and was followed by a short (10 second) rest period with 1 min

rest between sets. Mice were sacrificed 1h after this regimen and the tibialis anterior was collected for

the phosphoproteomics analyses. In our analysis, we compared the group of mice that underwent MIC

plus vehicle (n = 4) to the group of mice that did not undergo MIC plus vehicle (n = 4).
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In the dataset from the daytime exercise mice (Maier et al., 2022), skeletal muscle from male mice who under-

went high intensity treadmill exercise at Zeitgeber time 0 (e.g. earlymorning exercise, at the time of light onset)

was compared to the skeletal muscle of sedentary mice (n = 3 in each group). The exercise regimen was per-

formed using a treadmill with a shock grid onwhich amax. exercise capacity test was performedwith the tread-

mill speed increasing by 2 meters per minute every 2 minutes at a 15 degree slope until exhaustion. In the

nighttime exercise dataset from the same publication (Maier et al., 2022), a similar high intensity treadmill ex-

ercise was performed at Zeitgeber time 12 (e.g. early nighttime exercise at the time of light offset) with a mild

electrical shock as for the daytime exercisemice above compared to sedentarymice analyzed at the same Zeit-

geber time 12 (n = 3 in each group). Mice in all groups compared in this analysis were sacrificed immediately

after exhaustion and the quadriceps and gastrocnemius muscles were analyzed for phosphoproteomics.

In the mouse dataset from the treadmill (65% max.)mice (Nelson et al., 2019), data were obtained from skel-

etal muscle from 3-month-old femalemice that underwent a single bout of treadmill running and compared to

that from sedentary mice (n = 5 in each group). Max. running speed per mouse was determined using a 10

degree incline with a 5-minute warm up at 10 meters/minute and speed increased by 1.2 meters per minute

every minute until exhaustion (defined as the speed at which themouse was unable to keep up with the tread-

mill). The experiment was performed at 65% of each mouse’s max. running speed (approximately 20 meters/

minute) for 30 minutes at a 10 degree incline. Control mice were rested on a still treadmill. Mice were sacri-

ficed immediately after the exercise episode and the gastrocnemiusmuscle was analyzed for phosphoproteo-

mics studies.

Human exercise dataset

We compared hyperammonemic cellular and mouse exercise phosphoproteomics data to human exercise

data from skeletal muscle biopsies from untrained healthy males prior to and after undergoing one bout of

high-intensity exercise on a cycle (n = 4 at each timepoint). Exercise was performed for 6 minutes at 85% of

maximumwork capacity (Wmax) and then to exhaustion at 92% ofWmax, which occurred after 9–11minutes

of exercise time (Hoffman et al., 2015). Muscle biopsies were taken from the vastus lateralis before and after

exercise completion and phosphoproteomics analyses were performed.

Phosphoproteomics datasets from hyperammonemic myotubes and those from skeletal muscle in exercise

models were aligned and merged to generate a searchable table.
Bioinformatics approaches

Comparative phosphoproteomics analyses were performed across myotubes, mouse and human muscles

using machine learning approaches including feature selection and supervised and unsupervised analyses

of different datasets. Supervised analyses used labeled datasets (group to which the data belongs is iden-

tified) for differential expression analyses. This allowed for pattern identification of the groups (UnT, 6h

AmAc and 24hAmAc). Subsequently, an unsupervised analysis was done where the labels were removed

and the data were analyzed for hierarchical clustering to determine if our pattern identification was valid.

Even though this is a limited use of machine learning, it did allow us to demonstrate that hyperammonemia

did result in distinct signatures that had unique and overlapping features with exercise responses in vivo.

Feature visualization

R studio (version 4.1.2) was used for the visualizations. The following R packages were used for the Venn

diagrams-Venn (https://github.com/dusadrian/venn), ggplot2(Wickham, 2016) (https://ggplot2.tidyverse.

org), and ggpolypath (https://CRAN.R-project.org/package=ggpolypath). Venn diagrams of DEpP were

created by removing duplicated proteins with multiple phosphosites and counting the unique phospho-

proteins in a dataset. To generate the correlation matrix, we used corrplot(Wei and Simko, 2021),

https://github.com/taiyun/corrplot] and magrittr [https://magrittr.tidyverse.org/articles/magrittr.html]

R packages. Excel (Microsoft Corporation. (2021). Version 16.56.Microsoft Excel. Retrieved from

https://www.microsoft.com/en-us/microsoft-365/excel) was used to create scatterplots of shared DPPS.

UpSet plots were generated using R package UpSetR (version 1.4.0) (Lex et al., 2014).

Dataset comparisons

In order to compare the mouse phosphosites in the hyperammonemic myotube and mouse exercise

datasets to the human exercise dataset and to use the downstream motif prediction tools, we used
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PhosphoSitePlus to identify orthologous phosphosites between mouse and human(Hornbeck et al., 2015).

When we merged the human/mouse datasets, we only included those mouse proteins that had a human

ortholog to capture the most overlap with exercise and hyperammonemia possible. We next determined

whether there was any overlap between the hyperammonemic and exercise datasets with the senescence

databases CSgene (Zhao et al., 2016) and CellAge (Avelar et al., 2020) which we combined to create a

curated senescence database, verified mitochondrial genes fromMitocarta3.0 (Rath et al., 2021), transcrip-

tion factors (Chawla et al., 2013), kinases (UniProt Consortium, 2021), and telomere maintenance(Braun

et al., 2018) databases. For rigor and reproducibility of our analyses, we chose those bioinformatics tools

that were consistently functional across operating systems, produced high quality of results, had an ability

to adapt to additional data, and allowed for efficiency and audit trails to evaluate the logic of the analyses.

We therefore chose the PhosphoSitePlus databases over others to determine orthologous phosphoryla-

tion sites across mouse and human proteomes for these analyses as well as multiple functional enrichment

tools including both open-source and proprietary software.

Motif identification

Two motif-based sequence analysis tools from Meme-suite.org (MEME version 5.3.3) were used, MoMo

(Cheng et al., 2019), and Tomtom (Gupta et al., 2007). First, MoMo was used to discover phosphorylation

motifs within the datasets and subsets using the following parameters: algorithm–motif x, motif width—11,

Eliminate duplicate peptides identical for width—11, yes, Minimum number of occurrences—5, Motif-x

P-value Threshold—0.000001. The motif-x algorithm score, which identifies the sum over the significant po-

sition/residue pairs of-log(pbinomial)). Fg_size is the total number of foreground peptides with the given cen-

tral modification and fg_match is the number of foreground peptides that match the motif. This score was

used to identify motifs enriched in our data. Next, the Tomtom tool was used to search these motifs against

the Eukaryotic Linear Motif (ELM 2018) database (Kumar et al., 2020). Parameters used in Tomtom were as

follows:Motiftype—Protein, Target motifs—ProteinMotifs, Eukaryotic Linear Motif (ELM 2018), Search with

just one motif—yes, Motif column comparison function—Pearson correlation coefficient, Significance

threshold—E-value<10, Activate complete scoring—yes. Output motifs from Tomtom were investigated

using the ELM resource for Functional Sites in Proteins (Kumar et al., 2020), a manually curated database

from over 3000 publications identifying of experimentally validated short linear motifs (n = 3523) within

289 motif classes.

Identifying known and predicted kinase-substrate relationships

The kinase-substrate database from PhosphoSitePlus (Hornbeck et al., 2015) was used to identify experi-

mentally validated kinase-substrate relationships for the phosphosites identified in the analyzed datasets.

Prediction for kinase-substrate relationships were made using NetPhorest (v2.1) and NetworKIN (v3.0) that

are components of kinomeXplorer, which incorporate artificial intelligence methods including neural net-

works (Horn et al., 2014). The NetworKIN score is a NetPhorest probability score combined with the

STRING-derived proximity score using the naı̈ve Bayes method.

Weighted CORAL (Clear and customizable visualization of human kinome data) (Metz et al., 2018) (http://

phanstiel-lab.med.unc.edu/CORAL/) kinome trees were used to visualize the most frequent predicted kinase

families enriched in the studied datasets. The kinome trees were weighted by quantifying the number of times

a kinase was predicted to interact with a DPPS in a dataset (determined by NetworKIN score) for a kinase-sub-

strate relationship (Hoffman et al., 2015; Needham et al., 2019; Nelson et al., 2019; Steinert et al., 2021).
QUANTIFICATION AND STATISTICAL ANALYSIS

Differential expression for DEpP/DPPS was determined by comparing the expression of the treated (e.g.

exercise or ammonia) sample to its respective control (e.g. resting or untreated) sample. Differential

expression of the phosphoprotein (DEpP) was then defined as an adjusted p-value <0.05 irrespective of

the phosphorylation site (serine/threonine). DPPS was defined as an adjusted p value of p<0.05 but ac-

counting for the phosphorylation site to allow for comparisons between the same proteins but on different

phosphorylation sites which not be identified on DPPS analyses. Similarly, shared and unique DPpP and

DPPS were defined as follows: if at least one phosphoproteins/phosphosite was common between mouse

and human datasets, it was considered to be shared and if there were no common phosphorylated pro-

teins/phosphosites across dataset, it was considered unique to the model in which this was differentially

expressed.
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Feature selection was performed by filtering DEpP/DPPS based on an adjusted p-value (false discovery rate

or q-value which is obtained by calculating the fraction of accepted hits from the permuted data divided by

the accepted hits from the measured data and normalized by the total number of randomizations) of <0.05

(Tyanova et al., 2016).

When we paired the ammonia and exercise datasets, the average expression ratio of the phosphoprotein

pairs was calculated. This was a modification of a method previously described by others (Bono and Hirota,

2020) to quantify the log2ratio expression of DPPS that are identified across similar models. For example, if

a DPPS is found in both the 6hAmAc and 24hAmAc dataset, then the average log2ratio of the two scores is

calculated. If a DPPS is shared in 3 mouse models, the DPPS for exercise is the average log2ratio across the

3 datasets. If the averaged ratio was over the threshold for upregulation, it was considered to be upregu-

lated and vice versa for downregulation. Since we only considered DPPS, there were no unchanged

molecules considered in this analysis. The relation between models was evaluated using the averaged

expression scores plotted for each pair and the correlations were either positive or negative and were

located on the top right and bottom left quadrants respectively. Pairs that did not correlate between

models were defined in the top left and bottom right quadrants. The percentage of correlated and non-

correlated molecules were not calculated because they depend on the total number of shared and unique

genes. Hence, to provide a perspective of the total number of molecules being evaluated for the AE score

correlations, Venn diagrams of shared and unique molecules were provided with each model pair being

compared.

Frequency-expression plots were created from the DPPS for each gene across datasets (log2ratio of exer-

cise/control). Specifically, the protocol used was:

1. For each gene, count the number of total sites up-regulated across all datasets.

2. For each gene, count the number of total sites down-regulated across all datasets.

3. Store the maximum value between step 1 & step 2
32
a. Ex: TTN

i. TTN Position 10-> 6h: 1.0, 24h: 2.0, MIC: �4.0, Human: 1.5

ii. TTN Position 20-> 6h: �1.5, 24h: �2.4, MIC: 6.0, Human: 2.0

iii. Step 1 results in 5 up-regulated sites for TTN, Step 2 results in 3 down-regulated sites for TTN.

iv. Store a value of 5 for the maximum value of shared directional sites
If there is a tie between themaximum values between genes, the tie is broken by ordering by the average of

the absolute value of the fold changes for each gene’s sites.
Functional enrichment analyses

To account for differences in statistical analyses across themouse and human exercise phosphoproteomics

datasets, comparative functional enrichment analyses were performed using twomethods of feature selec-

tion and dimensionality reduction: first, using greatest expression differences in phosphorylation as

compared to controls and, next, using the p-value cutoffs specified in each published dataset. To avoid

reliance only on one pathway algorithm or gene list (Liberzon et al., 2011, 2015), we used GO (Harris

et al., 2004), KEGG (Kanehisa et al., 2017; Kanehisa and Goto, 2000), and Reactome (Fabregat et al.,

2018) databases.

IPA (QIAGEN Inc., https://www.qiagenbio-informatics.com/products/ingenuity-pathway-analysis), DAVID

(Huang da et al., 2009a, 2009b), Perseus (Cox and Mann, 2012; Tyanova et al., 2016), g:Profiler (https://biit.

cs.ut.ee/gprofiler/), and STRING were used for functional enrichment analyses. Given the differences in al-

gorithms and gene lists for different approaches, we used a combination of tools including IPA (Kramer

et al., 2014) that provided pathway enrichments, DAVID (Huang da et al., 2009b) to obtain an annotated

gene list and functional enrichment using gene datasets, and Perseus (Tyanova et al., 2016) to determine

if expression values of individual phosphoproteins have a preference to be systematically larger or smaller

than the global distribution of expression values (Cox and Mann, 2012). These varied approaches allowed
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for a broad exploration of pathway and biological process enrichment discovery of these integrated

datasets.

DAVID

DAVID functional enrichment analysis was performed for the complete hyperammonemia phosphoproteo-

mics datasets using a foreground of regulated (FDR <0.05) sites and using a background of unregulated

sites (FDRR0.05). DAVID functional enrichment analysis was performed for the phosphoproteomics data

subsets of the ‘6hAmAc Only’ sites, the ‘24hAmAc Only’ sites, and the hyperammonemic clusters and a

background using the entire phosphoproteomics data (Huang da et al., 2009a; 2009b).

Ingenuity pathway analysis (IPA)

Canonical pathways shown in figures were filtered for relevance and ordered based on a-log(p-

value) R 1.3. Exercise and hyperammonemia data in IPA were analyzed using the dataset phosphorylated

proteins as the background and filtered by log fold change for the foreground proteins in order to under-

stand what pathways were enriched using the greatest change in expression in each group. Since the

statistical approaches and number of samples in each of the published datasets were variable, we per-

formed functional enrichments in IPA on the full datasets by defining the foreground of differentially

expressed proteins using 2 approaches: 1) Absolute value of log2ratio change cutoffs was adjusted per da-

taset (6hAmAc and 24hAmAc>|2.5|; Nighttime, Daytime>|1|; MIC, Treadmill (65% max.), Human >|0.5|) to

achieve 500-800 proteins to normalize for differences in machines and batch effect, 2) A uniform signifi-

cance cutoff at the DEpP level of q<0.05 in each dataset. The background against which enrichment was

identified for each hyperammonemia and exercise datasets was the full dataset of phosphoproteins iden-

tified in each project. For the data subsets, i.e. ‘AmAc’ only, ‘Exercise only’, and ‘Shared AmAc and

Exercise,’ the foreground data used were the DEpP which were analyzed against the background of all

phosphoproteins within the hyperammonemia datasets (‘AmAc only’), the exercise datasets (‘Exercise

only’), or both (‘Shared AmAc and Exercise’ sites).

Perseus

Perseus 1D analysis was performed for the hyperammonemia datasets using all phosphoproteins without

any significance cutoff for protein at 6hAmAc and 24hAmAc and the default settings for pathway signifi-

cance (Benjamini-Hotchberg method, FDR<0.02, removal of duplicate phosphoproteins if more than

one site was phosphorylated on the protein) in the hyperammonemia datasets.

g:Profiler

g:Profiler analysis was only performed for subsets of shared hyperammonemia and exercise DEpP and were

performed using the gene lists of interest against a homo sapiens genome background.

All canonical pathways that had representation within a dataset or subset are listed in supplementary tables

that correspond to each figure that contains functional enrichment analyses.

Phomics

(http://phomics.jensenlab.org/phospho_enrichment) analysis (Munk et al., 2016) was used to determine

the functional enrichment of phospho-proteomics datasets as compared to phospho-proteomics back-

ground molecules that were not differentially expressed in the datasets of interest.

STRING

The STRING database was queried to showprotein-protein network interactions between proteins of interest.

Connections between DEpP subsets were identified using the ‘‘multiple proteins by names/identifiers’’ search

tab (https://stringdb.org/cgi/input?sessionId=bI6QSAkvXKc1&input_page_active_form=multiple_identifiers).
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