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Abstract

Neurodegenerative diseases are becoming prevalent as the population ages. Geniposide

could inhibit oxidative stress, reduce apoptosis, protect neuron, and has been used for ther-

apy of the neurodegenerative diseases. The bioavailability of geniposide by nasal route is

greater than that by oral administration. However, mucociliary clearance is a rate-limiting

factor for nasal route administration. The objective of this study was to develop and evaluate

a mucoadhesive, thermoreversible in situ nasal gel of geniposide. The poloxamers (P407,

P188) and the hydroxypropyl methylcellulose were used as thermoreversible and mucoad-

hesive polymers, respectively. Borneol was used as a permeation enhancer. The hydrogel

was prepared with the cold method and optimized by the response surface methodology-

central composite design. Gelation temperature, pH, clarity, gel strength, mucoadhesive

strength, in vitro and ex vivo release kinetics of formulations were evaluated. The optimized

amounts of poloxamer407 (P407), poloxamer188 (P188) and hydroxypropyl methylcellu-

lose were determined to be 19.4–20.5%, 1.1–4.0% and 0.3–0.6% respectively. The second-

order polynomial equation in terms of actual factors indicated a satisfactory correlation

between the independent variables and the response (R2 = 0.9760). An ANOVA of the

empirical second-order polynomial model indicated the model was significant (P<0.01).

P407, P188, P407×P188, P4072 and P1882 were significant model terms. The effects of

P407 on gelation temperature were greater than those of other independent variables. The

pH values of all the formulations were found to be within 6.3–6.5 which was in the nasal

physiological pH range 4.5–6.5. The drug content, gel strength, mucoadhesive strength of

the optimized formulations were 97–101%, 25–50 sec and 4000–6000 dyn/cm2 respec-

tively. The in vitro release kinetics of cumulative release of geniposide was fitted to the zero-

order model. The ex vivo cumulative release kinetics of geniposide was fitted to the Weibull

model. This study concludes that the release of geniposide is controlled by gel corrosion,

and that the permeation of geniposide is time-dependent. The more residence time,

mucoadhesive, thermoreversible in situ nasal gel of geniposide for neurodegenerative dis-

eases is of compliance and potential application.
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Introduction

Neurodegenerative diseases are becoming prevalent as the population ages. The neurodegener-

ative diseases include Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral

sclerosis (ALS), frontotemporal dementia (FTD) and so on [1–4]. Geniposide is a pharmaco-

logically active compound in Gardenia jasminoides Ellis (Rubiaceae) used for the treatment of

hepatic disease, inflammation disorders, contusions and brain disorders [5–7]. Accumulated

research data showed geniposide could inhibit oxidative stress and mitochondrial dysfunction

[8], improve cognition [9], inhibit the interaction between amyloid-beta peptide and RAGE,

attenuate Aβ-induced neuronal injury [10,11]. The order of absolute bioavailability of genipo-

side was oral (F = 9.74%) < nasal drops (F = 49.54%)< intramuscular (F = 72.69%). The nasal

route delivered geniposide to brain directly through the olfactory region [12]. The pharmaco-

kinetics parameters of intranasal (i.n.) and intragastric (i.g.) administration were compared

with those of intravenous (i.v.) administration. The bioavailabilities of geniposide were 85.38%

(i.n.) and 28.76% (i.g.) [13]. Nasal delivery of drugs could improve better patient compliance

than intravenous (i.v) administration [14]. The nasal route has been considered as a viable and

efficacious alternative for drugs which have extensive first pass metabolism [15]. One of the

major disadvantages to deliver drugs through nasal route is the mucociliary clearance [16]. To

address this issue, mucoadhesive in situ gel formulation was devised to increase the residence

time in the nasal cavity [17]. The bioavailability of geniposide might be promoted if the drug

remains longer time inside the nasal cavity. The borneol could increase transportation of geni-

poside across the human nasal epithelial cell [18, 19]. Poloxamer was temperature-triggered,

nontoxic, nonirritating and non-sensitizing polymer [20–22]. Poloxamer and hydroxypropyl

methylcellulose have been used for the in situ gel [23–25]. Until now, mucoadhesive, thermo-

reversible in situ nasal gel of geniposide has not been reported.

Taking the above factors into consideration, the present study developed and evaluated a

more residence time, mucoadhesive, thermoreversible in situ nasal gel of geniposide for the

neurodegenerative diseases.

Materials and methods

Materials

Geniposide (95.0% purity) and borneol (86.3% purity) were provided by the First People’s

Hospital in Jining. Geniposide standard (97.5% purity) was purchased from the National Insti-

tute for Food and Drug Control (Beijing, China). Poloxamers (P407, P188) were purchased

from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). Hydroxypropyl methylcellu-

lose (HPMC K4M) was purchased from Anhui Sunhere Pharmaceutical Excipients Co., Ltd

(Anhui, China). Acetonitrile (HPLC grade) was purchased from Avantor Performance Materi-

als Trading Co., Ltd (Shanghai, China). Benzalkonium chloride (BC) and sodium chloride

were purchased from Sinopharm Chemical Reagent Co., Ltd (Shanghai, China). All other

reagents were of analytical grade.

Determination of geniposide

Geniposide was quantified by high performance liquid chromatography equipped with Waters

e2695 separation module and 2998 photodiode array detector (Waters, the United States). The

chromatographic separation was achieved using a Waters X-Bridge C18 column (5μm, 4.6

mm × 250 mm). The mobile phase was an acetonitrile: purified water (15: 85) mixture. The

detector was set 238 nm. The column temperature was controlled 25˚C. The volume of each

injection was 20μl.
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Preparation of formulation

The cold method was adopted for preparing formulation [26–28]. First of all, purified water

was stored overnight at 4˚C in refrigerator. Secondly, the required amount of poloxamer

(P407 and P188) was slowly added into the required volume of cold purified water with

continuous stirring, and then the dispersion was kept overnight at 4˚C until a transparent

hydrogel was obtained. Thirdly, the required amount of hydroxypropyl methylcellulose, ben-

zalkonium chloride (0.001%, w/v) and sodium chloride (0.9%, w/v) were dispersed into the

hydrogel with continuous stirring. Finally, geniposide and borneol were added into the upper

solution. The volume was adjusted, and then stored in refrigerator again until transparent for-

mulations were prepared.

Clarity of formulation

Formulation was observed visually under black and white background. The clarity of formula-

tion was graded as follows: turbid: +, clear: ++, very clear (glassy): +++ [29].

pH of formulation

The pH value of formulation was determined by using the pH meter (HANNA, P211). The pH

meter was first calibrated using solutions of pH 7.01 and pH 4.01.

Gelation temperature of formulation

The gelation temperature of formulation was determined by the tube inversion method as

reported previously [30, 31]. Briefly, the hydrogel (0.5 ml) was transferred to small vial (2 ml,

12 mm × 32 mm), which was sealed and immersed into a thermostat controlled-electric water

bath at an initial temperature of 20˚C. The temperature of the water bath was increased in

increment of 0.5˚C/min. The mercury bulb of a thermometer with a minimum readable scale

of 0.2˚C was placed at the same level with the hydrogel. The meniscus of the hydrogel didn’t

move when the vial was tilted 90 degree angle. The temperature on the thermometer was iden-

tified as the gelation temperature. The gelation temperature was recorded and measured in

triplicate.

Gel strength of formulation

The gel strength of formulation was determined as reported previously [32–34]. A sample of

50 g of hydrogel was put into a 100 ml graduated cylinder and gelled in a thermostatically con-

trolled water bath at 37±0.5˚C. A weight of 35 g was placed onto the gel. The gel strength,

which was an indication of viscosity, was determined by the time in second required by the

weight to penetrate 5 cm into the gel.

Mucoadhesive strength of formulation

The mucoadhesive strength of formulation was determined as reported previously [35, 36]. A

section of goat nasal mucosa was obtained from local slaughter house immediately after its

sacrificesacrifice. Two cylindrical glass vials with 2 cm diameter and modified balance instru-

ment were taken. The goat nasal mucosa was tied to one side of the both vials. Fifty milligrams

of hydrogel was placed on one nasal mucosa of one vial. The two vials’ nasal mucosa were

attached together for 2 min. Water was poured drop by drop into the container of the balance

instrument until the two vials got detached from each other. The water was weighed. The

mucoadhesive strength of formulation was expressed as the detachment stress in dyne/cm2,
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and was determined by minimal.

Mucoadhesive strength ðdyne=cm2Þ ¼ m� g=A ðm ¼Weight required for

detachment of two vials in grams; g ¼ Acceleration due to gravity ð980 cm=s2Þ;

A ¼ The area of nasal mucosa exposedÞ:

In vitro release kinetics of formulation

In vitro corrosion of in situ gel and the release of geniposide from the in situ gel were studied

simultaneously through a membraneless method as reported previously [37–39]. The mem-

braneless model allowed the release medium to directly contact the gels surface. The cold

hydrogel (5 g) was transferred into a graduated test tube (1 cm diameter), which was placed in

water bath (34±0.5˚C) and maintained 10 min. A saline phosphate buffer (pH = 6.4, 2.5 ml)

used as release medium, pre-equilibrated at 37±0.5˚C, was layered over the surface of the gel.

After removing the medium at predetermined one-hour interval, the test tube was cleared,

weighted and layered with fresh saline phosphate buffer (2.5 ml). The repeated test procedure

was finished until less than 10% of the gel was remained. The amount of geniposide in the sam-

ples was determined by the high-performance liquid chromatography method. The experi-

ment was performed in triplicate.

Cumulative gel dissolved rate ¼ cumulative gel dissolved=initial gel� 100%

Cumulative geniposide released rate ¼ cumulative geniposide released=initial geniposide� 100%

Ex vivo drug permeation

Ex vivo drug permeation was studied as previously reported [40–42]. Nasal cavity of goat was

obtained from local slaughter house. It was safely transported to laboratory by keeping it in the

saline phosphate buffer (pH6.4). The intact nasal mucosa was separated, cleaned and stored in

the saline phosphate buffer. The study was conducted using a Franz diffusion system (RYJ-

12B, Shanghai China). The nasal mucosa was fixed on the Franz diffusion cell having effective

permeation area of 2.8 cm2. After 30 min of incubation time, the optimized formulation 0.5 g

was placed in the donor compartment. The temperature of the chamber was maintained at

34±0.5˚C. The saline phosphate buffer (pH6.4, 6.5 ml) was used as receptor medium. Receptor

medium 1 ml was withdrawn from the receptor chamber at the predetermined 30 min interval,

and immediately replaced by the fresh saline phosphate buffer maintained at 34±0.5˚C. The

geniposide of sample was determined by the high- performance liquid chromatography

method. The experiment was performed in triplicate. The ex vivo geniposide permeation data

were evaluated in different mathematical models.

http://dx.doi.org/10.17504/protocols.io.ks2cwge.

Results

Pre-formulation on gelation temperature

As shown in Table 1, the poloxamer exhibited the phenomenon of reverse thermal gelling

under a certain concentration and temperature. The formulation with P407(16.0–24.0%) and

P188 (1.0–8.0%) formed a semisolid transparent gel at a certain temperature. The gelation

temperature decreased gradually as the P407 concentration increased. However, the tempera-

ture increased as the P188 concentration increased. Therefore, P188 was used in combination

with P407 to regulate the gelation temperature for more suitable gel formulations.
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Effects of additives and geniposide on gelation temperature

Drug and additives changed the gelation temperature (Table 2). The gelation tempera-ture

decreased from 33.2˚C to 30.3˚C as the hydroxypropyl methylcellulose (HPMC) concentration

increased from 0.1% to 1.0% (F3-F5). Benzalkonium chloride (BC) and sodium chloride

(NaCl) decreased gelation temperature from 36.6˚C to 33.8˚C (F1 vs F2). However, the addi-

tion of the geniposide and borneol increased gelation temperature from 33.8˚C to 35.2˚C (F2

vs F6). The amounts of P407, P188 and HPMC should be optimized to achieve a more suitable

gelation temperature for the thermoreversible in situ nasal gel of geniposide. All the formula-

tions were transparent.

Optimization of formulation

P407 (18.0–24.0%), P188 (1.0–8.0%) and HPMC (0.1–1.0%) were the independent variables.

Gelation temperature was the response variable. A three-factor and five-level (-Alpha, -1, 0, 1,

+Alpha) full factorial design was employed for the optimization of in situ gel of formulations

geniposide (Table 3).

Central composite design (CCD) was employed to evaluate the influence of the three inde-

pendent variables in runs of 20 experiments. As shown in Table 4, based on the experimental

results, a second-order polynomial equation using actual values demonstrated the empirical

relationships between the independent variables and the response as follows:

Tgel = 192.7753–13.4382×P407+3.2916×P188-8.7255×HPMC-0.1687×P407×P188+

0.1389×P407×HPMC+0.1667×P188×HPMC+0.2702×P4072+0.1905×P1882+2.9784 ×HPMC2

(R2 = 0.9760). Regression analysis with a R2 value 0.9760 indicated a satisfactory correlation

between the independent variables and the response. Analysis of variance (ANOVA) was

Table 2. Effects of BC, NaCl, HPMC, geniposide and borneol on gelation temperature (n = 3).

Concentration (w/v) Clarify pH Tgel (˚C)

F1 P407 20%+P188 4% +++ 6.3 36.6±0.3

F2 P407 20%+P188 4%+ BC 0.001% + NaCl 0.9% +++ 6.4 33.8±0.2

F3 P407 20%+P188 4%+ BC 0.001% + NaCl 0.9%

+HPMC 0.1%

++ 6.2 33.2±0.1

F4 P407 20%+P188 4%+ BC 0.001% + NaCl 0.9%

+HPMC 0.5%

++ 6.1 32.7±0.1

F5 P407 20%+P188 4%+ BC 0.001% + NaCl 0.9%

+HPMC 1.0%

++ 6.2 30.3±0.2

F6 P407 20%+P188 4%+ BC 0.001% + NaCl 0.9%

+geniposide 1.0%+ borneol 1.1%

++ 6.5 35.2±0.2

Note: turbid: +, clear: ++, very clear (glassy): +++

https://doi.org/10.1371/journal.pone.0189478.t002

Table 1. Effects of P188 and P407 concentration on the gelation temperature (n = 3, ˚C).

P188(%, w/v) P407 (%, w/v)

16.0 18.0 20.0 22.0 24.0

0 40.1±0.2 34.5±0.2 28.6±0.1 23.4±0.1 18.0±0.3

1.0 42.1±0.1 35.3±0.1 30.1±0.2 26.2±0.1 21.9±0.2

2.0 46.3±0.3 37.1±0.1 34.6±0.2 28.9±0.1 23.7±0.1

4.0 48.3±0.3 39.6±0.1 36.6±0.3 32.0±0.1 26.5±0.1

6.0 49.6±0.2 42.7±0.2 40.8±0.2 33.3±0.1 29.8±0.1

8.0 51.3±0.2 44.8±0.2 44.1±0.3 36.6±0.2 32.3±0.3

https://doi.org/10.1371/journal.pone.0189478.t001
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applied to evaluate the adequacy of the empirical second- order polynomial model (Table 5),

the Model F-value of 45.1780 (P<0.0001) implied the model was significant. In the present

study, P407, P188, P407×P188, P4072 and P1882 were significant model terms. Three-dimen-

sional surfaces and contours (Fig 1) as graphical representations of the regression equation

showed the considerable influences of P407, P188 and HPMC on the gelation temperature.

Gelation temperature increased smoothly with the increase of P188 from 1.0% to 8.0%.Gela-

tion temperature obviously decreased with the increase of P407 from 18.0% to 24.0%. Effect of

HPMC on gelation temperature was slight.

Gel strength and mucoadhesive strength of the optimized formulations

Eight groups of formulations which met the criteria (Table 6) were listed (Table 7). Clarity,

pH, gelation temperature, gel strength and mucoadhesive strength of the optimized formula-

tions were evaluated gradually (Table 7). All the optimized formulations were transparent. The

pH values of all the formulations were found to be within 6.3–6.5 which was in the nasal physi-

ological pH range 4.5–6.5. Gelation temperature values of the optimized formulations were

29.6–31.3˚C, which were in the nasal physiological temperature range 29–34˚C. The gel

strength values of the optimized formulations were between 29 sec and 67 sec. Mucoadhesive

Table 3. Independent variables and natural levels.

Independent variables Levels and ranges

-α low medium high +α
-1.6818 -1.0 0 +1.0 +1.6818

P407 (%) 18.0 19.2 21.0 22.8 24.0

P188 (%) 1.0 2.4 4.5 6.6 8.0

HPMC (%) 0.1 0.3 0.6 0.8 1.0

https://doi.org/10.1371/journal.pone.0189478.t003

Table 4. Central composite design experiments and experimental results.

Runs Independent variables

in coded form

Independent variables

in their natural form

Tgel value (˚C)

407

(%)

188

(%)

HPMC (%) 407

(%)

188

(%)

HPMC

(%)

Predicted Actual

1 1.0 1.0 -1.0 22.8 6.6 0.3 30.4 29.4±0.1

2 -1.0 1.0 -1.0 19.2 6.6 0.3 41.8 41.9±0.3

3 0.0 0.0 -1.6818 21.0 4.5 0.1 31.9 31.8±0.2

4 1.0 -1.0 1.0 22.8 2.4 0.8 24.4 24.3±0.3

5 0.0 0.0 1.6818 21.0 4.5 1.0 30.4 30.5±0.2

6 1.0 -1.0 -1.0 22.8 2.4 0.3 25.4 25.2±0.1

7 1.0 1.0 1.0 22.8 6.6 0.8 29.9 28.6±0.3

8 -1.6818 0.0 0.0 18.0 4.5 0.6 41.5 40.0±0.2

9 -1.0 1.0 1.0 19.2 6.6 0.8 41.0 41.1±0.3

10 -1.0 -1.0 1.0 19.2 2.4 0.8 33.0 34.0±0.2

11 1.6818 0.0 0.0 24.0 4.5 0.6 24.7 26.2±0.1

12 0.0 1.6818 0.0 21.0 8.0 0.6 38.5 39.7±0.3

13 -1.0 -1.0 -1.0 19.2 2.4 0.3 34.2 35.4±0.2

14 0.0 -1.6818 0.0 21.0 1.0 0.6 27.5 26.3±0.1

15~20 0.0 0.0 0.0 21.0 4.5 0.6 30.6 30.6±0.1

https://doi.org/10.1371/journal.pone.0189478.t004
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strength values of the optimized formulations were between 3885 dyn/cm2 and 1 0935 dyn/

cm2.

In vitro release kinetics of geniposide

As shown in Fig 2 and Table 8, the cumulative release rate of the geniposide from the opti-

mized formulations (S3, S4, S5) versus time increased slowly without burst release condition,

and the average rate was 99.4% after 6 h. The cumulative corrosion average rate of gel was

95.2% after 6 h. To understand the release mechanism of geniposide from in situ gel, data were

analyzed with DD Solver (1.0) software. The order of suitable model was Zero-order

model > Weibull model >First-order model > Higuchi model (Fig 3 and Table 9). A repre-

sentative HPLC chromatogram of geniposide and a chromatogram of geniposide of the opti-

mized formulations were presented in Fig 4.

Ex vivo permeation kinetics of geniposide

As shown in Table 10, the cumulative geniposide permeation rates of the optimized formula-

tions were 83.1–86.8% after 6 h. To understand the release and permeation mechanism of gen-

iposide, data were analyzed with DD Solver (1.0) software. The order of suitable model was

Weibull model > Zero-order model > First-order model > Higuchi model (Table 11).

Discussion

Nasal drug delivery has received a significant attention as a convenient and reliable route for

local administration of drugs [43, 44]. The nasal cavity offered a distinctive advantage for

potential direct drug delivery to the brain along the olfactory nerves [34, 45, 46]. The rapid

mucociliary clearance was important rate-limiting factor for nasal drug absorption [15, 47].

For the reason, researches have oriented toward the application of the bioadhesive polymers to

extend formulations’ residence time in the nasal cavity for better drug bioavailability [48, 49].

In situ forming polymeric formulation was the ideal drug delivery for nasal drops [50]. In this

study, the poloxamer407 and the poloxamer188 were used as the basic excipients. The ideal

formulation and gelation temperature were got by optimizing proportion of poloxamer407

and poloxamer188.

Determination of gelation temperature is a major step in the preparation of the thermore-

versible gel [51, 52]. The thermoreversible hydrogel for nasal drug delivery should be gelled in

25–34˚C [23, 53]. As shown in Table 1, the gelation temperature increased when the concen-

tration of poloxamer407 was decreased. The same phenomenon was found when the

Table 5. ANOVA for response surface quadratic model.

Source Sum of squares df Mean Square F-value P-value

Model 510.9341 9 56.7705 45.1780 < 0.0001

A-P407 (%) 339.6683 1 339.6683 270.3087 < 0.0001

B-P188 (%) 145.8883 1 145.8883 116.0981 < 0.0001

C-HPMC (%) 2.7124 1 2.7124 2.1586 0.1725

AB 3.2512 1 3.2512 2.5874 0.0188

AC 0.0313 1 0.0313 0.0249 0.8778

BC 0.0613 1 0.0613 0.0487 0.8297

A2 11.0482 1 11.0482 8.7922 0.0142

B2 10.1740 1 10.1740 8.0965 0.0174

C2 0.4994 1 0.4994 0.3974 0.5426

https://doi.org/10.1371/journal.pone.0189478.t005
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concentration of poloxamer188 was increased. When the concentration of poloxamer407 was

�24% and the concentration of poloxamer188 was�2.0%, the gelation temperature of the for-

mulation was <25˚C. The formulation easily gelled during manufacturing and was unsuitable

for administration. If the concentration of poloxamer407 was� 18%, the gelation temperature

of formulation was >34˚C. The formulations couldn’t be used because they remained in liquid

Fig 1. Three-dimensional surfaces and contours showing the influences of P407, P188 and HPMC. (A) 3D surface plot of

P407 and P188 on Tgel (HPMC = 0.4%). (B) Contour of P407 and P188 on Tgel (HPMC = 0.4%). (C) 3D surface plot of P407 and

HPMC on Tgel (P188 = 3.1%). (D) Contour of P407 and HPMC on Tgel (P188 = 3.1%). (E) 3D surface plot of P188 and HPMC on

Tgel (P407 = 21.0%). (F) Contour of P188 and HPMC on Tgel (P407 = 21.0%).

https://doi.org/10.1371/journal.pone.0189478.g001
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state and were easily washed away in nasal cavity. When the concentration of poloxamer407

was>18% and<24%, some gelation temperature was >34˚C, too. The addition of poloxa-

mer188 provided more alternative in the optimization of the formulation in the present study.

The differential effects of P188 and P407 on the gelation temperature resulted from the differ-

ent proportions of PPO and PEO subunits. As shown in Table 2, the addition of drug and

additives had some effects on the gelation temperature, too. The gelation temperature de-

creased with the addition of the hydroxypropyl methylcellulose, because the hydroxypropyl

methylcellulose could bind to polyethylene oxide chains in poloxamer molecules. This binding

hindered the interactions between water and poloxamer molecules, promoted dehydration,

and caused an increase in the entanglement of adjacent molecules with more extensive inter-

molecular hydrogen bonding [54, 55]. The gelation temperature decreased when sodium chlo-

ride was added. The decrease in the gelation temperature was possible due to the salting-out

effect of NaCl on PEO segments. It was known that the cloud point of PEO surfactants

decreased due to the salting out effects caused by Na+ and Cl-[56, 57]. However, the addition

of geniposide increased the gelation temperature by its water solubility characteristics.

The response surface methodology is a kind of mathematical and statistical technique for

designing experiments, building models, evaluating the relative significance of several inde-

pendent variables, and determining the optimum conditions for desirable response [58–60].

In this study, the central composite design was employed for determining the optimum condi-

tion of the gelation temperature. A 3-factor, 5-level full factorial design was employed for the

optimization of the mucoadhesive, thermoreversible in situ nasal. To evaluate the adequacy of

the model, analysis of variance (ANOVA) was applied. The ANOVA of the empirical second-

order polynomial indicated that the model was highly significant (Table 5). The response sur-

face methodology played an important auxiliary role in optimizing the thermoreversible in
situ nasal gel.

Mucoadhesive strength of the formulation is another important index [61]. Nasal mucocili-

ary clearance decreased contact time and drug absorption by transporting the drug to the

Table 6. Criteria for the optimized formulations.

Name Goal values Lower limit Upper limit

P407 (%) in range 18.0 22.8

P188 (%) in range 1.0 8.0

HPMC (%) in range 0.1 1.0

Tgel (˚C) 31.0 30.0 32.0

https://doi.org/10.1371/journal.pone.0189478.t006

Table 7. Parameters of the optimized formulations (n = 3).

F P407

(%)

P188 (%) HPMC

(%)

pH Clarity Tgel

(˚C)

Gel strength

(sec)

Mucoadhesive strength

(dyn/cm2)

S1 21.1 4.0 0.1 6.3 ++ 30.6±0.2 29±1.7 4560±106

S2 20.2 1.5 0.2 6.4 ++ 30.8±0.2 35±2.4 3885±68

S3 20.5 3.3 0.3 6.5 ++ 30.8±0.1 37±2.5 4450±46

S4 19.7 1.3 0.5 6.4 ++ 29.7±0.2 38±0.9 4555±82

S5 19.9 2.4 0.6 6.4 ++ 30.2±0.1 46±1.2 5330±53

S6 19.6 1.5 0.8 6.3 ++ 31.0±0.3 58±1.8 6780±72

S7 19.6 1.6 0.9 6.5 ++ 31.3±0.2 59±1.2 8945±115

S8 19.4 1.1 1.0 6.5 ++ 29.6±0.3 67±2.2 10935±62

Note: turbid: +, clear: ++, very clear (glassy): +++

https://doi.org/10.1371/journal.pone.0189478.t007
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nasopharynx and then to the gastric intestinal tract. The mucoadhesive strength between

4000-6000dyn/cm2 was considered adequate [17, 62]. As shown in Table 7, the concentration

of HPMC influenced the mucoadhesive strength greatly. As concentration of HPMC increased

from 0.1% to 1.0%, there was a significant increase in mucoadhesive strength from 4560 dyn/

cm2 to 1 0935 dyn/cm2.

The gel strength is another important criterion. The gel strength values between 25–50 sec

were essential [15, 63]. As shown in Table 7, as concentration of HPMC increased from 0.1%

to 1.0%, there was a significant increase in gel strength from 29 sec to 67 sec. The gel strength

values of optimized formulations (S6, S7) were more than 50 sec, which meant the formula-

tions were too stiff and would cause discomfort to the mucosal surface. Gel strength of the

optimized formulations (S3, S4 and S5) was suitable.

The pH values of all the formulations were 6.3–6.5 which were in the nasal physiological

pH range 4.5–6.5 (Table 7) [64].The drug and agents didn’t effects the pH of the formulations.

The drug contents of all optimized formulations were checked and found in the range of 97–

101% (Table 8).

The membraneless model was applied to study geniposide release from thermosensitive gel

in vitro. In general, this model allowed the release medium to directly contact the gel surface

and was closer to the in vivo condition [37–39, 65]. The in vitro release profiles of geniposide

from the optimized formulations and the gel corrosion profiles were obtained simultaneously.

Fig 2. The release features of formulation in vitro. (A) Cumulative release of geniposide from the optimized formulations. (B) Cumulative corrosion of gel of

the optimized formulations.

https://doi.org/10.1371/journal.pone.0189478.g002

Table 8. Corrosion of gel and release of geniposide from the optimized formulations.

Time

(h)

Cumulative corrosion of gel (%) Cumulative release of geniposide (%)

S3 S4 S5 S3 S4 S5

1 16.2±4.6 21.1±5.6 18.5±4.6 21.3±4.6 23.2±4.1 19.5±3.6

2 32.1±2.5 39.3±3.1 31.7±3.9 37.1±2.6 36.1±2.2 36.7±1.8

3 43.3±2.1 47.8±2.8 52.7±2.6 49.3±1.9 51.8±2.6 50.5±2.8

4 62.1±2.8 60.3±1.2 63.6±1.9 67.1±2.7 66.3±1.7 67.6±2.8

5 78.6±1.9 78.3±3.6 76.0±3.9 80.3±3.3 81.0±3.6 81.9±3.0

6 94.6±5.8 97.7±4.3 93.3±5.1 97.6±6.5 99.3±8.0 101.3±7.0

https://doi.org/10.1371/journal.pone.0189478.t008
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The in vitro release data of geniposide were evaluated kinetically using mathematical models

like the Zero-order, First-order, Higuchi and Weibull (Table 9). The best-fit model was the

Zero-order model (R2 = 0.9935–0.9959). Release of geniposide was controlled by gel corrosion.

Ex vivo drug permeation could give more valuable informations about drug behavior in vivo

[41–42, 66]. In this study, the cumulative release of geniposide from the optimized thermorever-

sible in situ nasal gel was 83.1–89.8% (Table 10). As shown in Table 11, the geniposide perme-

ation kinetics model of the optimized formulations was fitted to the Weibull model (R2 =

0.9943–0.9979), which indicated the permeation of geniposide across nasal mucosa was possibly

time-dependent. The more residence time of in situ nasal gel of geniposide was essential.

Conclusions

The release of geniposide is controlled by gel corrosion. The permeation of geniposi- de is

time dependent. The more residence time, mucoadhesive, thermoreversible in situ nasal gel of

geniposide for neurodegenerative diseases is of compliance and potential application. The

attractive in situ nasal gel of geniposide will be evaluated in further animal study.

Fig 3. Release kinetics of geniposide from the optimized formulations.

https://doi.org/10.1371/journal.pone.0189478.g003

Table 9. In vitro release kinetics models of geniposide from the optimized formulations.

Model Zero-order First-order Higuchi Weibull

S3 Y = 3.512+1.003*X

Rsqr = 0.9959

Y = 100*[1-Exp(-0.018*X)]

Rsqr = 0.9493

Y = 8.597*X^0.5

Rsqr = 0.9171

Y = 100*{1-Exp[-(X^1.449)/324.419]}

Rsqr = 0.9835

S4 Y = 0.480+1.029*X

Rsqr = 0.9935

Y = 100*[1-Exp(-0.017*X)]

Rsqr = 0.9132

Y = 8.430*X^0.5

Rsqr = 0.8782

Y = 100*{1-Exp[-(X^1.765)/1250.221]}

Rsqr = 0.9827

S5 Y = 1.072*X-0.339

Rsqr = 0.9941

Y = 100*[1-Exp(-0.018*X)]

Rsqr = 0.9084

Y = 8.602*X^0.5

Rsqr = 0.8721

Y = 100*{1-Exp[-(X^1.661)/797.704]}

Rsqr = 0.9660

Note: X: Cumulative corrosion of gel (%). Y: Cumulative release of geniposide (%).

https://doi.org/10.1371/journal.pone.0189478.t009
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Fig 4. Determination by HPLC method. (A) Representative HPLC chromatogram of geniposide (5.967 min). (B) Chromatogram of

geniposide of the optimized formulations (5.990 min).

https://doi.org/10.1371/journal.pone.0189478.g004

Table 10. Ex vivo cumulative permeation rate of geniposide from optimized formulations.

Time (h) S3 S4 S5

0.5 8.1±1.2 7.9±2.3 11.2±1.0

1.0 16.8±1.9 18.6±2.3 16.3±2.1

1.5 25.3±3.2 26.9±1.6 23.9±3.2

2.0 33.7±2.8 38.1±3.7 35.2±3.3

2.5 46.1±3.1 45.6±5.5 43.3±2.4

3.0 53.5±1.6 55.5±3.1 50.5±4.6

3.5 61.3±5.6 63.6±3.4 61.1±3.8

4.0 74.1±2.1 73.0±3.0 67.4±4.2

4.5 79.5±3.6 77.4±1.7 72.8±3.6

5.0 82.6±2.1 83.1±1.6 79.1±1.0

5.5 84.6±6.3 86.3±5.6 80.6±5.6

6.0 86.8±5.3 89.8±4.6 83.1±7.0

https://doi.org/10.1371/journal.pone.0189478.t010
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Supporting information

S1 Fig. Cube plot of the effects of P408, P188 and HPMC on Tgel at a time. The predicted

values from the coded model were P407 (19.2–22.8%), P188 (2.4–6.6%) and HPMC (0.3–

0.8%).

(TIF)

S2 Fig. The normal plot of residuals. Distribution of Tgel points indicates that the transfor-

mation of the response may provide a better analysis.

(TIF)

S1 Table. Diagnostic statistics. The report of the residual, leverage, fitted value DFFITS and

other statistics indicate that not all actual values are ideal and some are suitable. So the opti-

mized formulations must be testified and achieve the suitable formulation.

(DOC)
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Table 11. Ex vivo permeation kinetics models of geniposide from the optimized formulations.

Model Zero-order First-order Higuchi Weibull

S3 Y = 4.442+15.369*t

Rsqr = 0.9678

Y = 100*[1-Exp(-0.282*t)]

Rsqr = 0.9423

Y = 50.553*t^0.5–37.762

Rsqr = 0.9824

Y = 100*{1-Exp[-t^1.457)/6.159]}

Rsqr = 0.9943

S4 Y = 5.702+15.317*t

Rsqr = 0.9771

Y = 100*[1-Exp(-0.290*t)]

Rsqr = 0.9532

Y = 50.410*t^0.5–31.3999

Rsqr = 0.9928

Y = 100*{1-Exp[-(t^1.408)/5.600]}

Rsqr = 0.9979

S5 Y = 5.976+14.174*t

Rsqr = 0.9757

Y = 100*[1-Exp(-0.260*t)]

Rsqr = 0.9621

Y = 46.469*t^0.5–28.049

Rsqr = 0.9839

Y = 100*{1-Exp[-(t^1.327)/5.763]}

Rsqr = 0.9947

Note: Y: Cumulative release of geniposide (%). t: Time (h)

https://doi.org/10.1371/journal.pone.0189478.t011
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