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Angiogenesis, the development of new blood vessels from pre-existing ones, is

an essential process determining numerous physiological and pathological

conditions. Accordingly, there is a high demand for research approaches

allowing the investigation of angiogenic mechanisms and the assessment of

pro- and anti-angiogenic therapeutics. The present review provides a selective

overview and critical discussion of such approaches, which, in line with the 3R

principle, all share the common feature that they are not based on animal

experiments. They include in vitro assays to study the viability, proliferation,

migration, tube formation and sprouting activity of endothelial cells in two- and

three-dimensional environments, the degradation of extracellular matrix

compounds as well as the impact of hemodynamic forces on blood vessel

formation. These assays can be complemented by in vivo analyses of

microvascular network formation in the chorioallantoic membrane assay and

early stages of zebrafish larvae. In addition, the combination of experimental

data and physical laws enables the mathematical modeling of tissue-specific

vascularization, blood flow patterns, interstitial fluid flow as well as oxygen,

nutrient and drug distribution. All these animal-free approaches markedly

contribute to an improved understanding of fundamental biological

mechanisms underlying angiogenesis. Hence, they do not only represent

essential tools in basic science but also in early stages of drug development.

Moreover, their advancement bears the great potential to analyze angiogenesis

in all its complexity and, thus, to make animal experiments superfluous in the

future.
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Introduction

Angiogenesis is a fundamental biological process defined as the

development of new blood vessels from pre-existing ones (Ribatti

and Pezzella, 2021). Because cell survival and proliferation are

crucially dependent on a sufficient oxygen and nutrient supply,

angiogenesis is a major prerequisite for tissue formation and growth.

Accordingly, blood vessel formation plays an essential role during

embryogenesis and wound healing (Fajersztajn and Veras, 2017;

Sorg et al., 2018). Moreover, it is important for the physiological

reproductive function of the placenta, ovary and uterus (Reynolds

et al., 1992; Vollmar et al., 2001; Laschke et al., 2008). On the other

hand, many pathological conditions are typically driven by

angiogenesis, such as tumor growth and metastasis (Folkman,

2002), endometriosis (Laschke and Menger, 2018), rheumatoid

arthritis (Wang Y. et al., 2021), ocular neovascular diseases

(Plastino et al., 2021) and chronic inflammatory skin disorders

(Lee et al., 2021). Hence, there is a strong interest in uncovering

molecular and cellular angiogenic mechanisms and in assessing the

pro- and anti-angiogenic effects of various agents to provide the

basis for the establishment of novel therapeutic approaches. For this

purpose, a broad spectrum of in vitro, in vivo and in silico assays and

FIGURE 1
The process of angiogenesis and animal-free approaches for its investigation. The process of angiogenesis can be subdivided in several well-
characterized steps, which involve i) the angiogenic activation of microvessels by growth factors, ii) the detachment of stabilizing pericytes and the
degradation of the basal membrane by MMPs, iii) the migration of endothelial tip cells towards an angiogenic stimulus and iv) the proliferation of
following endothelial stalk cells, which results in v) the formation of angiogenic sprouts. These sprouts develop a lumen and vi) finally
interconnect with each other to new blood-perfused microvascular networks, which are stabilized by the formation of a new basement membrane
and the recruitment of perivascular cells. To study this process in vitro, in vivo or in silico, multiple animal-free angiogenesis assays and models are
available focusing on different steps of blood vessel formation.
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models has been introduced in angiogenesis research during the last

decades (Nowak-Sliwinska et al., 2018).

There is no doubt that animal studies markedly contribute to a

better understanding of angiogenesis under different physiological

and pathological conditions. However, they also raise major ethical

concerns, because they face the fundamental conflict of interest

between the claim of advancing scientific knowledge and the

protection of animals. To address this critical issue, William

Russell and Rex Burch introduced the so-called 3R principle in

1959, which defines central criteria to perform animal experiments

in a more humane way (Russell and Burch, 1959). This principle is

based on the 3Rs “replacement, reduction and refinement”.

Replacement means that animal models should be replaced by

animal-free approaches whenever possible. If this is not

completely achievable, researchers should at least reduce the

number of individual animals required to generate statistically

valid and reproducible data to an absolute minimum. Refinement,

in turn, focuses on any decrease in the incidence or severity of

inhumane procedures applied to those animals, which are still to be

used (Russell and Burch, 1959).

As from an ethical point of view replacement is the most

desirable aim, the present review article selectively provides an

overview of common animal-free approaches in angiogenesis

research. These approaches allow for the analysis of multiple

biological mechanisms that are of utmost importance for the

development of new blood vessels (Figure 1). Hence, they do not

only represent essential tools in basic science but also in early stages

of drug development.

The dynamic process of angiogenesis

A major prerequisite for the adequate use and

interpretation of angiogenesis assays is the basic

understanding of the dynamic process of blood vessel

formation, which is characterized by the coordinated

interaction of humoral factors and different cell types. It

is initiated by a local imbalance of pro-angiogenic factors,

such as vascular endothelial growth factor (VEGF) and basic

fibroblast growth factor (bFGF), and anti-angiogenic factors,

such as endostatin and thrombospondin (Naumov et al.,

2006; Hu et al., 2014). Potent triggers for this so-called

angiogenic switch are tissue hypoxia and inflammation

(Hashimoto and Shibasaki, 2015; Ridiandries et al., 2016).

This results in the detachment of stabilizing pericytes from

the wall of pre-existing (parent) microvessels and the

angiogenic activation of microvascular endothelial cells,

which start to degrade their basement membrane by the

release of proteolytic matrix metalloproteinases (MMPs)

(Carmeliet and Jain, 2011). In a next step, the endothelial

cells migrate out of the vessel wall. Tightly regulated by

Notch/DLL4 signaling, they differentiate into filopodia-

forming tip cells, which spearhead new vessel sprouts

towards an angiogenic stimulus and are followed by

proliferating stalk cells (Potente et al., 2011). The

elongating sprouts develop a lumen and interconnect with

each other to blood-perfused microvascular networks. These

networks are finally stabilized by the formation of a new

basement membrane and the recruitment of perivascular

cells (Sun et al., 2015).

This brief description indicates that the process of blood vessel

development can be subdivided in several well-characterized steps,

which involve angiogenic activation, matrix degradation, endothelial

cell migration and proliferation as well as sprouting, network

formation and vessel maturation (Figure 1). Comparably, most

animal-free angiogenesis assays can also be subdivided according

to their main mechanism(s) of action to be studied (Figure 1).

In vitro assays

Endothelial cells

Endothelial cells are the primary target cells of in vitro

angiogenesis assays. When performing such assays, the

choice of the right endothelial cell type already represents

the first major challenge. Immortalized cell lines may not be

recommended, because they exhibit altered growth control

and survival mechanisms (van Beijnum et al., 2008). Hence,

primary endothelial cells are commonly used. They are

available from different species, such as mice, pigs, cattle

and humans. For the sake of generating translational results

human cells should be preferred if possible. These can be

harvested from large vessels, such as human arterial

endothelial cells (HAECs) and human umbilical vein

endothelial cells (HUVECs). Particularly the latter ones

are widely used in angiogenesis studies due to their

availability, low costs of maintenance and capability of

forming capillary structures (Stryker et al., 2019).

However, angiogenesis typically occurs within the

microvasculature and it is well known that endothelial

cells from macro- and microvessels markedly differ in

terms of their structural and functional phenotype (King

et al., 2004; Hewett, 2016). To address this issue, human

microvascular endothelial cells may alternatively be used.

There are different sources for these cells. For instance,

commercially available human dermal microvascular

endothelial cells (HDMECs) are isolated from the dermis

of juvenile foreskin and adult skin. It should be considered

that they comprise a mixture of blood and lymphatic

endothelial cells (Rossi et al., 2010). Moreover, it should

be noted that endothelial cells even exhibit heterogenous

phenotypes within the microvasculature of distinct tissues

and they may change their behavior in angiogenesis assays

when stored for multiple passages (Stryker et al., 2019;

Hennigs et al., 2021). The latter problem can be overcome
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by establishing a master cell bank with cells in the identical

early passage and working cell banks for daily experiments.

Endothelial cell viability assays

The assessment of endothelial cell viability is often the initial

step in studies evaluating potential pro- or anti-angiogenic effects

of test compounds (Laschke et al., 2011; Gu et al., 2013). Indeed,

it is important to first identify non-cytotoxic dosages of such

compounds, which can then be applied for the treatment of

viable endothelial cells in subsequent angiogenesis assays. For

this purpose, several cytotoxicity assays exist, which are based on

the fact that dead cells lose their membrane integrity, allowing

the movement of otherwise non-permeable molecules into or out

of the cells (Riss et al., 2019).

Frequently used dyes that selectively penetrate damaged cell

membranes and, thus, stain dead cells are trypan blue or the

fluorescent DNA binding dye propidium iodide (Rusovici et al.,

2011). The number of stained cells can be analyzed by means of a

hematocytometer or automated cell counters. However, when

using this approach, it should be considered that the dyes

themselves can be toxic to the analyzed cell population

dependent on the duration of exposure and the susceptibility

of the used cells.

A commonly detected enzyme, which leaks from the

cytoplasm of dead cells into the culture medium, is lactate

dehydrogenase (LDH) (Becker et al., 2021). LDH catalyzes the

conversion of pyruvate to lactate, which is associated with the

conversion of NAD+ to NADH. The activity of NADH is finally

used to reduce specific substrates in the culture medium into

colored, fluorescent or luminogenic products for detection

purposes (Riss et al., 2019).

In general, the choice of an endothelial cell viability assay

depends on various factors, such as the experimental setting and

duration, the desired throughput, the costs of required reagents

or the available technical laboratory equipment. It is always

advisable to confirm the results from one assay by another

one or by combining different cytotoxicity markers. Moreover,

it is important to include adequate positive and negative controls.

Matrix degradation

Upon angiogenic activation, endothelial cells of pre-existing

vessels release different types of proteases, particularly MMPs,

which are necessary for the degradation of the vessels’ basement

membrane and the surrounding extracellular matrix (ECM)

(Quintero-Fabián et al., 2019). The activity of MMPs can be

analyzed by means of gel zymography assays (Wilkesman and

Kurz, 2012). For this purpose, protease-containing lysates or

supernatants from endothelial cells are electrophoresed through

SDS-PAGE gels, which consist of MMP substrates, such as

collagen or gelatin, and polyacrylamide. After stopping the

proteolytic process, these gels are stained with Coomassie Blue

to identify transparent, hydrolized areas in negative contrast as

correlates for the relative amount of present proteases (Lombard

et al., 2005; Heo et al., 2020). This inexpensive approach can be

used to detect qualitatively or semi-quantitatively the relative

FIGURE 2
In vitro angiogenesis assays indicating the anti-angiogenic
activity of the AKT inhibitor MK-2206. (A,B) Transwell migration
assay: Microscopic images of HUVECs after their migration
through the 8 µm pores of the polycarbonate filters of a
transwell migration assay to the lower membrane surface. The
cells were pre-cultivated for 24 h with vehicle (A) or 10 µM MK-
2206 (B) and then analyzed in the transwell migration assay for
additional 5 h. Scale bars: 80 µm. (C,D) Wound scratch assay:
Microscopic images of HUVEC monolayers, which were exposed
for 18 h to vehicle (C) or 10 µM MK-2206 (D), and then scratched.
Images of the scratched wounds were taken after 6 h. The initial
scratch borders are marked with broken lines. Scale bars: 160 µm.
(E,F) Tube formation assay: Microscopic images of tube-forming
HUVECs on Matrigel, which were exposed for 18 h to vehicle (E) or
10 µMMK-2206 (B). Scale bars: 450 µm. (G,H) Spheroid sprouting
assay: Microscopic images of sprouting HUVEC spheroids, which
were treated for 24 h with vehicle (G) or 10 µMMK-2206 (H). Scale
bars: 140 μm.
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levels of specific MMPs, but it should be noted that it is time-

consuming and not suitable for high-throughput screening.

Alternatively, it is possible to perform substrate assays by

incubating endothelial cells or their supernatants with MMP

substrates that are fluorescently labeled, biotinylated or

succinylated for the measurement of their hydrolysis (Menges

et al., 1997; Baragi et al., 2000; Ratnikov et al., 2000). This allows

rapid, quantitative and large-scale screening experiments of

potential MMP stimulators and inhibitors (Goodwin, 2007).

However, it is difficult to differentiate between the activity of

individual MMPs, because multiple MMPs may contribute to the

degradation of a single substrate. To overcome this problem,

additional steps can be included, such as the isolation of distinct

MMPs by means of specific antibodies (Hawkins et al., 2013).

Endothelial cell migration assays

The migration of endothelial cells towards a chemotactic

stimulus crucially determines angiogenic sprout formation.

Accordingly, angiogenesis studies usually include endothelial

cell migration assays. The most frequently used assays are

transwell migration assays and wound scratch assays

(Figure 2).

Transwell migration assays are based on the principle of the

Boyden chamber assay, which has originally been established by

Steven Boyden in 1962 to monitor the chemotaxis of immune

cells (Boyden, 1962). Nowadays, many versions of these assays

are commercially available. They all share the common design of

a chamber or well with an upper and a lower medium-filled

compartment, which are separated from each other by a filter

membrane with pores of 3–8 µm in diameter. The lower

compartment contains chemotactic factors or factor-producing

cells (Hilkens et al., 2014; Wang X. et al., 2021). Hence, when the

upper compartment is loaded with endothelial cells, they migrate

through the porous filter membrane towards the lower

compartment. After a few hours, the membrane is harvested

and the migrated endothelial cells at its bottom side are stained to

count them (Gu et al., 2016). Of interest, this rather simple

approach can be further modified to mimic the invasion of

endothelial cells into ECM compounds, for which the

endothelial secretion of MMPs is necessary. For this purpose,

the filter membrane is coated with collagen, fibronectin or

Matrigel (Albini and Benelli, 2007; Xu et al., 2019). While

transwell migration assays can be rapidly performed in less

than 24 h, it should be considered that the required filter

membranes are rather expensive. Moreover, these assays are

crucially dependent on a chemical gradient, which may

equilibrate throughout the chamber over longer time periods.

This can result in random motion instead of directed migration

of the analyzed endothelial cells. Accordingly, pilot experiments

are often required to define the ideal observation period for

transwell migration assays depending on the used chemotactic

stimulus as well as the used cell type and its physiological

migratory capacity.

In contrast to transwell migration assays, wound scratch

assays do not assess chemotaxis towards an angiogenic stimulus,

but only undirected, lateral migration of endothelial cells in

response to test compounds in the culture medium (Nowak-

Sliwinska et al., 2018). For this purpose, the cells are first grown to

a confluent monolayer in a culture dish. Subsequently, a “wound”

is manually scratched into the monolayer by means of a pipette

tip or a cell scraper (Gu et al., 2021). Because this may result in

wounds of unequal size, it is also possible to put standardized

silicon templates as placeholders in the culture dish prior to cell

seeding, which are removed at the beginning of the experiment

(Cappiello et al., 2018). The endothelial cells at the wound edges

begin to migrate into the scratched area and progressively close

the wound gap. This usually requires 2–4 days and quantitative

assessment of wound closure over time can be analyzed by time-

lapse microscopy or by microscopy at defined observation time

points (Gu et al., 2017; Korybalska et al., 2017). It should be noted

that this process is not solely dependent on the migration but also

on the proliferative activity of endothelial cells. To exclude this

bias, the cells can be exposed, additionally to the test compounds,

to a proliferation inhibitor, such as mitomycin (Taniguchi et al.,

2018). Meanwhile, several companies offer systems for the fully

automated, high-throughput performance and analysis of wound

scratch assays during large-scale screens (Nowak-Sliwinska et al.,

2018). This indicates that this type of assay is well-established

and broadly used, not only to investigate the migratory activity of

endothelial cells, but also of various other benign and malignant

cell types (Ideta et al., 2021; Wiegand et al., 2021; Fong et al.,

2022).

Endothelial cell proliferation assays

Proliferation can be analyzed by simply counting the number

of cultivated endothelial cells by means of a hematocytometer to

create growth curves (Lou et al., 1997). For standardized

measurements, it is important that the cell density of the

culture is carefully controlled, since loss of cell-cell contacts

may markedly promote proliferation, whereas confluency may

result in contact inhibition and, thus, a non-proliferative,

quiescent state of the cells (Staton et al., 2009). Although this

approach is straightforward and does not require expensive

equipment, it is time-consuming and prone to sampling error.

Alternatively, several automated platforms are meanwhile

available, which allow high-throughput cell counting in

microplates over time (Nowak-Sliwinska et al., 2018).

DNA synthesis assays for the assessment of cell proliferation

take advantage of modified nucleotides, which are added to the

culture medium and are incorporated into the newly synthesized

DNA during the S phase of the cell cycle. For this purpose, the

radioactive compound 3H-thymidine in combination with liquid
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scintillation counting has been classically used (Lou et al., 1997;

Nishizuka et al., 2001). More recently, non-radioactive

nucleotide analogs, such as 5-bromo-2′-deoxyuridine (BrdU)

or 5-ethynyl-2′-deoxyuridine (EdU), offer more

environmentally friendly alternatives, which can be detected

by flow cytometry, enzyme-linked immunosorbent assay

(ELISA) or immunohistochemistry (Becker et al., 2021;

Hillenmayer et al., 2022; Zhang et al., 2022).

Other frequently used proliferation assays are based on the

exposure of endothelial cells to tetrazolium salts, such as 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT assay)

or 2-(4-iodophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-

tetrazolium (WST-1 assay) (Gu et al., 2013; Laranjeira et al., 2013;

Amoorahim et al., 2020). These salts are converted by the cells’

mitochondrial dehydrogenase to purple formazan, which is then

spectrophotometrically detected in the culturemedium and correlates

with the number of viable cells. However, this is a rather indirect

approach tomeasure cell proliferation. In fact, it should be considered

that the results of these so-called metabolic assays may be markedly

biased by compounds that directly affect mitochondrial function or

cell viability. Accordingly, it is highly recommended to combine these

assays with other proliferation and viability assays for the generation

of robust data sets on the proliferating activity of endothelial cells.

Tube formation assays

Tube formation assays have been established to investigate the

morphogenesis and differentiation of endothelial cells, which

contribute to the formation of microvascular networks in later

stages of angiogenesis. They are based on the observation that

endothelial cells spontaneously develop interconnected tubular

structures within a few hours, when they are seeded and

cultivated on different types of ECM (Figure 2). These structures

are considered as rudimentary capillary-like tubeswith tight junctions

between individual endothelial cells (Auerbach et al., 2003), which,

under certain conditions, are also able to form a lumen as

demonstrated by light and electron microscopy (Connolly et al.,

2002). Of interest, this lumen formation is closely associated with

apoptotic cell death outside and inside the tubular structures (Segura

et al., 2002).

There are several issues, which need to be considered when

setting up a tube formation assay. The seeding density of endothelial

cells crucially determines their capacity of developing tubular meshes.

In fact, too low seeding densities prevent tube formation, whereas too

high densities can result in large, undifferentiated cell clusters (Staton

et al., 2004). The kinetics and extent of endothelial tube formation is

further determined by the used matrix (Zimrin et al., 1995).

Nowadays, Matrigel is the most frequently used substrate for this

assay. It contains angiogenic growth factors, ECM and basement

membrane proteins from murine Engelbreth-Holm-Swarm sarcoma

(Schuetz et al., 1988). Matrigel is also commercially available in a

growth factor-reduced form, which may be particularly useful when

investigating a potential pro-angiogenic activity of test compounds

(Tan et al., 2010).However, it should be noted that besides endothelial

cells also other cell types, such as fibroblasts and cancer cells, are able

to develop tubular structures onMatrigel (Donovan et al., 2001). This

complicates the interpretation of tube formation assays that use

mixed cell populations. On the other hand, such a modified co-

culture approach bears the opportunity to study the interaction of

endothelial cells with pericytes during the process of tube formation

(Schmitt et al., 2020).

Another interesting modification is the transfer of the classical

two-dimensional (2D) tube formation assay to a three-dimensional

(3D) level. This can be achieved by embedding endothelial cell-coated

microspheres in a fibrin gel, also named fibrin bead assay (Nehls and

Drenckhahn, 1995; Carpentier et al., 2020), or by cultivation of

confluent endothelial cells in between different layers of ECM

components (Gagnon et al., 2002).

2D and 3D tube formation assays allow the analysis of multiple

parameters, such as the total tube length and mesh area or the total

number of tubes, junctions and meshes. These parameters can be

manually assessed, which is time-consuming, operator-dependent

and not suitable for large-scale screenings. Alternatively, a variety of

image analysis programs for an automated analysis are on themarket

(Boizeau et al., 2013; Carpentier et al., 2020). However, they should be

used with caution, because they are usually based on thresholding to

discriminate cells and tubes from background. Hence, the validity of

such an automated analysis is always dependent on the quality of the

used images.

Spheroid sprouting assays

Spheroids are multi-cellular aggregates, which mimic the 3D

environment with intensive cell-cell contacts of natural tissues.

Accordingly, they react more physiologically to external stimuli

and exhibit improved biological functions when compared to two-

dimensional single cell systems (Laschke and Menger, 2017a).

Spheroids of defined size and cell number can be rapidly

fabricated in large amounts by various methods, including

hanging drop and cell suspension cultures or the liquid overlay

technique (Fonoudi et al., 2015; Neto et al., 2015; Costa et al.,

2018). In 1998, Korff and Augustin introduced collagen-embedded

endothelial cell spheroids as vascularization units in angiogenesis

research (Korff and Augustin, 1998). The endothelial cells on the

surface of these spheroids exhibit a quiescent phenotype (Korff and

Augustin, 1998). However, cultivation in ECM activates the cells and

stimulates the growth of angiogenic sprouts out of the spheroids

(Figure 2), which can be quantitatively assessed over time.

During the last 2 decades, this approach has been diversely

modified to serve as a versatile tool for the analysis of molecular

and cellular determinants of blood vessel development, including

different endothelial cell phenotypes, pro- and anti-angiogenic factors

as well as cell-matrix interactions (Laschke and Menger, 2017b). Of

interest, it also allows for the investigation of complex co-culture
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FIGURE 3
Microfluidic vascularized micro-organ platform for the analysis of tumor angiogenesis and the evaluation of anti-angiogenic compounds
according to Sobrino et al. (2016). (A) Schematic of the microfluidic platform. The vascularized micro-organ platform consists of a thick layer of
polydimethyl siloxane (PDMS) containing patterned tissue chambers, which can be loaded with endothelial cells, perivascular cells, tumor cells and
ECM, andmicrofluidic channels, bonded to a thin PDMSmembrane and a glass cover slip. Three tissue chambers at the center are connected to
two adjacent channels by two capillary burst valves that retain the mixture of cells and ECM inside the chambers. At the two ends of the tissue
chambers are two gel loading ports, through which the cell-ECM suspension is introduced. Four media reservoirs are attached to the inlets and
outlets of the microfluidic channels. (B) Representative tissue chamber with a fully-developed vascular network on day 7. Lentivirally transduced
endothelial cells (red) are visualized by confocal microscopy. Supporting stromal cells are unlabeled. Endothelial cells migrate outward and
anastomose with the microfluidic channels. Scale bar: 100 μm. (C) Representative time course of vascular network development (day 2, 4 and 6).
Scale bar: 100 μm. (D) Representative time course of 70 kDa fluorescein isothiocyanate-dextran perfusion through the vascular network on day 7.
Inflow is top left and outflow bottom right. The vascular network is fully perfused within 15 min. Endothelial cells were labeled with mCherry. Scale
bar: 100 μm. (E) Confocal imaging of lentivirally transduced endothelial cells (red) and stromal cells (yellow) reveals that stromal cells take up a
perivascular position. High magnification views on the right. (F) Immunostaining for platelet-derived growth factor receptor (PDGFR)-β and nerve/
glial antigen (NG)2 (both green). Endothelial cells are expressing mCherry. (G) Collagen IV staining (blue) identifies basement membrane deposition.
(H) Anti-cancer drugs that target tumor, vasculature, or both. Lentivirally transduced colorectal cancer HCT116 cells (green) in a vascularized micro-
organ platform exposed to Pazopanib (1 μM), Oxaliplatin (5 μM) and Vincristine (10 nM). Images before and after drug exposure are of the same
vascularized micro-organ platform. Scale bar: 100 μm. Reproduced with permission from Nature under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
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spheroids by combining endothelial cells with other cell types (Baal

et al., 2009;Walser et al., 2013; Shah et al., 2019). Thus, it is possible to

study angiogenesis in tissue-specific microenvironments. Given the

fact that tumor cells behave different in co-culture with endothelial

cells (Upreti et al., 2011), this can be advantageous for the screening of

novel anti-angiogenic cancer drugs. Moreover, it can provide deeper

insights into the regulation of blood vessel development by disease-

related factors. For instance, Maracle et al. (2017) exposed co-culture

spheroids composed of endothelial cells and fibroblast-like

synoviocytes to rheumatoid arthritis synovial fluid to demonstrate

that inflammatory synovial angiogenesis is primarily induced by NF-

κB signaling and can be inhibited by the anti-angiogenic agent

anginex.

Microfluidic assays

During the last 15 years, the number of microfluidic

angiogenesis studies has rapidly increased, because

microfluidic assays ideally bridge the gap between the

aforementioned approaches and the later on discussed in

vivo models. In fact, they offer the unique possibility to

investigate in vitro the dynamic process of blood vessel

development with special attention to fluid mechanical

stimuli, such as shear forces and interstitial flow, which

are important determinants of angiogenic sprouting and

network formation (Song and Munn, 2011; Winkelman

et al., 2021). For this purpose, sophisticated

microfabrication techniques have been established. They

allow the generation of user-defined 2D and 3D

microchannel networks and interconnected compartments

to mimic complex in vivo environments that can be analyzed

over weeks (Morgan et al., 2013; Sobrino et al., 2016; Akbari

et al., 2017; Wang et al., 2017; Yue et al., 2021) (Figure 3).

These systems provide easily accessible, standardized

conditions with spatiotemporal control of (bio)chemical

and physical stimuli (Nishimura et al., 2020). In basic

angiogenesis research, they have been broadly used to

study the impact of hemodynamic forces (Akbari et al.,

2019; Arpino et al., 2021; Zhao et al., 2021) as well as cell-

cell (Amemiya et al., 2021; Bai et al., 2021; Walji et al., 2021)

and cell-matrix interactions (Wang W. Y. et al., 2021; Liu

et al., 2021) on the mechanisms of blood vessel development.

Moreover, they represent attractive tools for the high-

throughput screening of anti-angiogenic drugs (Kim et al.,

2015; Sobrino et al., 2016; Kim et al., 2021) (Figure 3).

However, despite these advantages and the versatility of

microfluidic assays, they are still not routinely used in

most biology laboratories. This is due to the fact that

microfluidic studies require special expertise and the

appropriate equipment for microsystems engineering. To

overcome this problem, it is necessary to establish more

user-friendly microfluidic systems, which are commercially

available and can be run without extensive technical training

(Young, 2013). If this succeeds, these systems bear the

potential to replace more classical in vitro approaches in

angiogenesis research.

In vivo models

At first glance, this section seems not to fit in the present

review article focusing on animal-free approaches. However, the

in vivo models described below share the common feature that

they are exclusively based on primitive organisms, i.e., fertilized

chicken eggs and zebrafish larvae. Due to the stage of their

development, these organisms lack pain perception. This is also a

major reason why by law in many countries these models do not

have to be registered as animal experiments and are even

recommended as suitable approaches for the reduction and

replacement of such.

Chick chorioallantois membrane assay

The chick chorioallantois membrane (CAM) assay is a

well-established in vivo approach, which has been widely

used in many different modifications and various areas of

research for decades (Ribatti, 2017; Chu et al., 2022). It uses

the CAM as target tissue for the analysis of angiogenic

processes. The CAM forms by the fusion of the allantois

and chorion in fertilized chicken eggs and serves as a

transient gas exchange surface for the embryo. It rapidly

develops between day 3 and 9 into a highly vascularized tissue

layer containing a dense network of arterioles, capillaries and

venules (Laschke et al., 2006). In the classic in ovo assay, a

circular, sealable observation window is prepared into the

eggshell for the repeated analysis of the CAM (Schmitd et al.,

2019). Alternatively, ex ovo assays with shell-less embryo

cultures have been introduced, which enable an easier access

to larger areas of the CAM (Vargas et al., 2009; Merlos

Rodrigo et al., 2021). On the other hand, these assays

require a more demanding preparation and complex

incubation environment and, thus, also bear a higher risk

of infection and embryo mortality.

In angiogenesis research, the CAM assay has been broadly used

to investigate basic mechanisms of blood vessel development,

including the migration, proliferation and differentiation of

endothelial cells (Ausprunk et al., 1974; Kurz et al., 1995) as well

as ECM remodeling (Ausprunk, 1986). Moreover, it is well suited to

study the pro- or anti-angiogenic effects of natural factors and

pharmacological compounds (Jacoby et al., 2010; Farina et al.,

2011). These can either be topically applied to the CAM (Liu

et al., 2022) or administered systemically by intravascular injection

(Storgard et al., 2005). In addition, the CAM frequently serves as host

tissue to study the vascularization of implanted biomaterials as well as
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benign and malignant tissue grafts (Gescher et al., 2005; Ademi et al.,

2021; Ara et al., 2022). The latter ones can be analyzed independently

of their species origin without the risk of immunological rejection,

because the early chicken embryo lacks a functional immune system

(Baiguera et al., 2012). However, the analysis of their vascularization is

only possible during a relatively short time period of ~10 days,

because chicken embryos already hatch on developmental day 21.

Correspondingly, inmost countries CAM-based studies are restricted

to developmental day 14–15 to fulfil the criterion of animal-free

experiments (Nowak-Sliwinska et al., 2018).

There are many possibilities to visualize and analyze

blood vessel formation and patterning in the CAM assay.

These range from simple macroscopic inspection, light and

fluorescence microscopy to sophisticated imaging

technologies, including ultrasonography, optical Doppler

tomography, microcomputed tomography and magnetic

resonance imaging (Nowak-Sliwinska et al., 2014;

Moreno-Jiménez et al., 2017; Eckrich et al., 2020).

Obviously, they markedly differ in many aspects, such as

resolution, required equipment and expense. Hence, the

choice of the right approach is crucially dependent on the

research question and the present laboratory conditions.

Furthermore, it should be considered that quantitative

analyses in the CAM assay (e.g., the measurement of

microvessel densities or branching points) are quite

challenging, because of the high variability of the

angiogenic response and embryo-induced movements of

the CAM. Therefore, multiple measurements need to be

performed to generate statistically valid data sets. This,

however, is not a major problem considering the fact that

FIGURE 4
Inhibition of tumor angiogenesis in zebrafish larvae according to Wu et al. (2017). (A) Typical confocal microscopic images of subintestinal
vessels of an uninjected transgenic fli-eGFP zebrafish larva at 3 days post fertilization. (B,C) Fluorescently labeled (CM-DiI) gastric cancer AGS cells
(B) and SGC-7901 cells (C)were injected to zebrafish larvae and induced angiogenesis at day 1 post injection. (D,E) 50 nM VRI inhibited angiogenesis
of the subintestinal vessels caused by the cell lines AGS (D) and SGC-7901 (E). The white boxes at lower right corner show the higher
magnification of the upper left white boxes. The arrows indicate the tumor cell-induced angiogenesis. Reproduced with permission from BioMed
Central under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
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chicken eggs are quite cheap and the technical preparation of

the CAM is easily feasible. Thus, this versatile assay is also

suitable for large-scale in vivo screenings.

Zebrafish model

The zebrafish (Danio rerio) is a versatile and widely used in vivo

model in angiogenesis research, which combines several essential

advantages. This fish is easy to keep under laboratory conditions and

produces hundreds of larvae per week throughmating, which enables

large-scale screenings (Lieschke and Currie, 2007). In early

developmental stages younger than 120 h, these larvae lack the

legal status of experimental animals, although they already exhibit

a rudimentary yet functional cardiovascular system 24 h after

fertilization (Isogai et al., 2001). Moreover, they are transparent,

which provides easy access to their microcirculation and internal

organs for microscopic in vivo imaging. Since ~70% of the human

genes have an orthologue in the zebrafish genome (Howe et al., 2013),

the prediction quality of pharmacological testings in zebrafish larvae

for human applications is good. In addition, the zebrafish is suitable

for genetic manipulation. Accordingly, numerous transgenic

zebrafish lines are available by now. They allow the visualization

of endothelial cells and their precursors, perivascular cells and blood

cells during vascular network development by means of cell-specific

expression of fluorescent reporter proteins (Chávez et al., 2016). On

the other hand, gene silencing and editing, which have originally been

widely performed by the application of morpholino antisense

FIGURE 5
Time-series of 3D tumor growth and angiogenesis according to a mathematical model of Shirinifard et al. (2009). (A) Day 0: The pre-existing
vasculature and the initial normal tumor cell. (B)Day 15: The tumor grows into a sphere with a maximum diameter of about 300 µm. The purple cells
are active neovascular cells. (C) Day 30: The tumor grows into a cylinder with a length of about 350 µm and a diameter of about 300 µm. The
vasculature is about to rupture. (D)Day 75: The developed vascularized tumor. The white arrowhead shows neovascular cells organized into 2D
sheets. Cell types: Green: normal; yellow: hypoxic; red: vascular; purple: neovascular. Axes are labeled in µm. Reproducedwith permission from PloS
ONE under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).
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oligonucleotides (Wyatt et al., 2015) and more recently by means of

TALEN (Bedell et al., 2012) and CRISPR/Cas9 (Cornet et al., 2018),

offer the opportunity to study the function of individual genes during

vasculogenesis, sprouting angiogenesis and vascular remodeling

(Eberlein et al., 2021). In this context, it should be mentioned that

zebrafish larvae are able to survive without a functional vascular

system by passive oxygen diffusion up to 5 days (Stainier et al., 1996).

This also enables the investigation of late phenotypes of vascular

malformations, which would be otherwise lethal in living mammals

(Isogai et al., 2001; Peterson et al., 2004; Chávez et al., 2016). In

addition, it is possible to inject human cells into the larvae without

immunological rejection. This allows the analysis of angiogenesis in a

humanized tissue-specific environment. For instance, Wu et al.

(2017) demonstrated a potent anti-angiogenic effect of VRI, a

pyridinyl-anthranilamide compound inhibiting the kinase activities

of both VEGF receptor-1 and 2, on the xenografted fluorescently

labeled gastric cancer cell lines AGS and SGC-7901 in transgenic fli-

eGFP zebrafish embryos (Figure 4).

Despite all these advantages, it has to be considered that zebrafish

larvae rapidly develop with major changes in their organ architecture

and cardiovascular system over time. Accordingly, they are not

suitable for long-term studies. Furthermore, they are aquatic

organisms and, thus, markedly differ in many physiological

aspects, such as their respiration, from mammals (Chávez et al.,

2016). Therefore, promising results achieved by means of zebrafish

larvaemay need to be further validated inmammalianmodels, which

represent closer substitutes for humans. Nonetheless, there is no

doubt that the number of complex experiments in mammals can be

markedly reduced by means of pharmacological and genetic

screening studies in the zebrafish model.

Mathematical modeling

Mathematical modeling combines experimental data and

physical laws to simulate angiogenesis and tissue

vascularization in silico. Particularly in cancer research, this

approach has been continuously developed further since its

initiation by Anderson and Chaplain (1998) to gain detailed

information about tumor-driven blood vessel formation and

remodeling as well as intra-tumoral oxygen, nutrient and drug

distribution (Shirinifard et al., 2009; Welter and Rieger, 2016;

Suzuki et al., 2018) (Figure 5). In this context, it allows to

identify general biological principles of angiogenesis and to set

up predictive models for the testing of anti-angiogenic

therapeutic regimens (Venkatraman et al., 2016; Lai and

Friedman, 2019; Akbarpour Ghazani et al., 2020; Mousavi

et al., 2022). For this purpose, mathematical modeling of the

tumor vasculature can be performed at the cell or the tissue

scale by means of discrete (i.e., endothelial cells are treated as

individual objects), continuous (i.e., endothelial cells are

treated as concentrations) or hybrid (i.e., a combination of

discrete and continuous approaches) models, as recently

reviewed in detail by Hormuth et al. (2021). However, it

should be noted that many parameters in these models are

often assumed values (Pamuk et al., 2018), which may limit

the biological relevance and predictive power of the generated

results. Hence, it is necessary to continuously improve the

calibration and validation of mathematical angiogenesis

models by means of biologically based data. This can be

achieved by time-resolved imaging and quantification of

vascular dynamics under experimental in vivo conditions

(Perfahl et al., 2011). Although animal models may provide

such conditions, they are laborious and not suitable for high-

throughput experiments. Accordingly, in the future they may

be gradually replaced by microfluidic approaches, which allow

the isolated analysis of specific mechanisms during blood

vessel formation and drug testing in highly controlled,

repeatable but complex experimental settings (Hormuth

et al., 2021). This may also open the door for a broad

implementation of computer simulations in combination

with artificial intelligence into clinical practice and, thus,

for the establishment of personalized therapeutic regimens

with improved efficacy and less side effects (Bodzioch et al.,

2021).

Conclusion

The development of new blood vessels is a dynamic process,

which is not only dependent on the coordinated interaction of

endothelial and perivascular cells of the microvasculature, but also

crucially determined by hemodynamic forces, the local tissue

environment and systemic factors. In vivo angiogenesis studies

in animal models are considered to reflect these complex

conditions and, thus, to provide data of high physiological

relevance for human applications. On the other hand, they are

not suitable for large-scale screenings, because they are laborious

and expensive. Most particularly, however, they confront

researchers with serious ethical concerns. Indeed, in line with

the 3R principle of Russell and Burch, it is the obligation of the

scientific community to continuously establish and refine

approaches, which enable an animal-free research of highest

quality standards and relevance for basic science and clinical

practice. In the present narrative review, we discuss such

approaches without any claim to completeness, because we did

not perform a systematic literature search. Accordingly, we are

aware that we may have missed the one or other interesting assay

or model. Nonetheless, we feel that the herein selected and

discussed approaches provide an excellent blue print how an

animal-free research can be achieved. In fact, they demonstrate

that even complex processes, such as angiogenesis, can be analyzed

in detail from various viewpoints to gain a valid overall picture.

Currently, this usually implies the reasonable combination of

different assays in pre-screening studies assessing the pro- or

anti-angiogenic activity of test compounds. Such pre-screening
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studies already contribute to a drastic reduction of animal

experiments in early stages of modern drug development.

However, the future goal should be to analyze angiogenesis in

all its complexity by means of physiologically relevant animal-free

approaches without the additional need for a final validation of the

results in an animal model. Rapid progress in the generation of

tissue- and organ-mimicking microfluidic systems and

mathematical modeling may pave the way to turn this fiction

into reality.
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