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Multi-band MIM refractive index 
biosensor based on Ag-air grating 
with equivalent circuit and T-matrix 
methods in near-infrared region
Mohamad Nejat & Najmeh Nozhat*

In this paper, a multi-band metal-insulator-metal (MIM) perfect absorber with refractive index sensing 
capability has been investigated in near-infrared region. The proposed structure has been studied for 
biomedical applications such as detection of solution of glucose in water, diagnosis of different stages 
of malaria infection, bacillus bacteria and cancer cells. The MIM configuration improves the sensing 
parameters of the biosensor due to the good interaction with the analyte. The high sensitivity and 
figure of merit of 2000 nm/RIU and 100 RIU−1 have been achieved, respectively. Also, the Ag-air grating 
in the suggested plasmonic sensor helps the localized surface plasmons excitation and makes the 
structure sensitive to the incident lightwave polarization. Therefore, the presented biosensor behaves 
like a polarization switch with the high extinction ratio and fast response time of 25.15 dB and 100 fs, 
respectively. The methods of equivalent circuit model and transmission matrix have been utilized 
to verify the simulation results, as a new challenge in near-infrared region. The new idea of multi-
application plasmonic devices, the feasibility of fabrication for the presented structure and utilizing 
mentioned analytical methods in near-infrared region could pave the way for the future of plasmonic 
structures.

Surface plasmons (SPs), which are created by the interaction between the free electrons of metal and incident 
electromagnetic wave at metal-dielectric interfaces, have two kinds of localized surface plasmons (LSPs) and 
propagating surface plasmons (PSPs)1. While LSPs only oscillate on their own place, PSPs propagate in the form 
of an oscillating charge wave due to the large enough interface of the metallic layer2. Today, the theory of surface 
plasmon resonance (SPR) has been used in a lot of optical studies about food safety testing3, environmental 
monitoring4, medical diagnosis5, optical bistability6, surface-enhanced Raman spectroscopy (SERS)7, and second 
harmonic (SH) generation8. Subwavelength structures with metal films, which usually form a nanocavity, allow 
the hybridization of the cavity resonance modes with the LSP modes2. Overcoming the diffraction limit and field 
enhancement are other benefits of plasmonic structures9.

Over recent years, many SP-based structures have been studied and investigated such as perfect absorbers10, 
waveguides11, modulators12, lasers13, and sensors14. The unique properties of the SPRs such as strong dependency 
on the size, geometrical shape and refractive index of the surrounding medium make them good candidates for 
sensing applications15.

It is well known that the sensing performance of SPR-based sensors is due to the wavelength shift λ∆( ) of the 
response spectrum, when the refractive index of the test medium ∆n( ) changes. The sensitivity λ= ∆ ∆n(S / ), 
full-width at half-maximum (FWHM) and figure of merit (FOM = S/FWHM) are the main parameters for eval-
uating the sensing performance14,16. SPR-based sensors have attracted much attention because of good advantages 
like miniaturization, rapid response and high sensitivity17. Moreover, they have a key role in detection of bacte-
ria18, proteins19, DNA20, RNA21, viruses22, analytes23, and chemical and biological species24.

Widespread applications such as food quality control, health, diseases diagnosis, and environmental and 
molecular monitoring make the biosensors a hot topic for researchers in these years25–27. The label-based and 
label-free sensors are two main types of biosensors. The first one has lower reliability than the second one because 
it can change the molecule’s binding properties. The label-free biosensors, which have advantages such as real 
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time monitoring without any label, operate like other SPR-based sensors and detect the refractive index variation 
of the test medium28. Label-free detection, direct and rapid response, spectral tunability, strong enhancement of 
local electric field, and adaptability to modern nanotechnology architectures are some of the remarkable benefits 
of the SPR-based label-free biosensors that have been widely studied for medical applications28,29.

Sun et al. have suggested a plasmonic sensor based on Mach-Zehnder interferometer with a double-slot hybrid 
plasmonic waveguide and the high sensitivity of 1061 nm/RIU has been attained30. Also, a horizontal slot wave-
guide biosensor for detection of DNA hybridization with the sensitivity of 893.5 nm/RIU has been investigated31. 
Another label-free plasmonic biosensor has been studied by Hameed et al.28. Their suggested structure consists of 
a hybrid plasmonic slot waveguide based on silicon-on-insulator (SOI) and the high sensitivity of 1890.4 nm/RIU 
has been achieved for detection of DNA hybridization. Another group of plasmonic sensors are metamaterial 
based ones. Kabashin et al. have presented a metamaterial based plasmonic sensor for biosensing applications32. 
They have illustrated an improvement in biosensing technology using a plasmonic metamaterial, which supports 
a guided mode in a porous nanorod layer. Moreover, a microfluidic sensor for dielectric characterization has been 
studied and presented in ref. 33. The proposed sensor consists of a split ring resonator, which can help the use of 
microfluidic sensors for identification, classification, and characterization of chemical and biochemical analytes.

There are different methods to excite SPs in plasmonic structures. The nanoparticle usage for LSPs excitation 
is the primary method1. It is worth noting that according to the definition of LSPs, an arbitrary dielectric-metal 
interface with smaller length than the resonance wavelength can provide a context in which the excitation of 
LSPs occurs. Prism-coupling, waveguide-coupling, and grating-coupling are some well-known methods for PSPs 
excitation. A conventional plasmonic structure for PSPs excitation is Kretschmann configuration, which has a 
thin metal layer coated over the base of a prism34. For a long time, the Kretschmann structure has been studied 
and commercialized, but the need for the prism makes it bulky. Therefore, a compact and portable sensor with 
the ability of integration with other plasmonic devices is needed. The grating-based plasmonic structure that has 
been studied in many researches can satisfy the mentioned requirements9,35.

Metal-insulator-metal (MIM) configuration which has been utilized former in many structures such as wave-
guides, filters, switches and interferometers can enhance the sensing performance of plasmonic sensors17. For 
example, Xie et al. have suggested a plasmonic sensor based on MIM waveguide with side-coupled hexagonal 
cavity36. They have achieved the high sensitivity of 1562.5 nm/RIU and good FOM of 38.6 RIU−1 at λ = 1550 nm.

In this paper, a hybrid plasmonic four-band perfect absorber has been investigated as a biosensor for detection 
of malaria infection, cancer cells, bacillus bacteria, and 25% solution of glucose in water in near-infrared region. 
First, the design procedure of the multi-band absorber with sensing capability has been studied based on the 
MIM configuration and Ag-air grating. Then, the effects of geometrical parameters on the absorption and sensing 
performances, the physical insight of perfect absorption and the fabrication process have been investigated. Also, 
two analytical methods of equivalent circuit model and transmission (ABCD) matrix have been utilized to verify 
the simulation results. Moreover, the switching performance of the proposed structure has been shown. Here, our 
new idea of multi-application plasmonic devices has been utilized to have sensing and switching performances in 
the designed structure, simultaneously. The achievements can pave the way for utilizing two mentioned analytical 
methods to validate the simulation results of any arbitrary plasmonic structure at near-infrared wavelengths. In 
addition, the good performances of our proposed structure in sensing and switching capabilities can open a new 
window for development of plasmonic applications.

Design and Simulation Results of Four-band Perfect Absorber with Sensing 
Performance
A unit cell of the proposed structure that is composed of a dielectric substrate, a layer of silver (Ag) and silver 
walls is depicted in Fig. 1. The Ag walls help the perfect absorption of the structure by trapping the incident light-
wave and causing more SPRs. More importantly, these walls provide a context in which the fluid test substance 
can cross in the designated path. To have good interaction with the analyte, four Ag cubic resonators are located 
inside the suggested sensor, where is filled with the test material. The arrangement of the Ag cubic resonators and 
other parts of the structure causes the MIM coupling effect in the presented structure. Also, an Ag-air grating 
with the period of wg + g = 130 nm is used on top of the structure to help the SPs excitation, when the incident 
lightwave impinges on the structure.

Figure 1.  The schematic view of a unit cell of the proposed biosensor.
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The dielectric layer is quartz with the permittivity of εr = 2.25 and the silver is modeled according to the 
Johnson and Christy data37,38. The absorption coefficient (A) can be given by39:

= − −A R T1 (1)

where T and R are the transmission and reflection coefficients, respectively.
The CST Microwave Studio software has been used to perform the full-wave simulation based on the three 

dimensional (3D) finite element method (FEM) with open boundary condition along the z direction and peri-
odic boundary condition along the x and y directions. The open boundary condition is one of the most useful 
boundary conditions in this software which has been used along the direction of the incident lightwave (z-axis) to 
provide the stimulation conditions and consequently the source can be applied in this direction. The tetrahedral 
mesh in the frequency domain with the size of 10 tetrahedrons per wavelength has been utilized to calculate the 
scattering parameters and absorption spectrum according to Eq. (1). All the remained parameters in the simula-
tion are selected as the default setting of the software.

When an electromagnetic wave illuminates the structure from the top, it will be trapped in the absorber, 
since the thickness of the Ag layer is larger than its skin depth in near-infrared region (T = 0). The y-polarized 
incident wave excites the SPs by means of the Ag-air grating. The SPs excitation and the MIM coupling help the 
perfect absorption by absorbing the energy of the incident lightwave. Consequently, by selecting the values of the 
geometrical parameters according to Table 1, the structure can behave as a multi-band perfect absorber, as it will 
be shown.

According to the dependency of SPRs properties on the surrounding medium, a change in the refractive 
index of the analyte results in a change in the absorption spectrum of the structure. Here, the absorption spec-
trum experiences a wavelength shift by changing the refractive index of the test medium from nw = 1.3198 to 
ng = 1.3594, as shown in Fig. 2.

The proposed structure has four near-unity absorption peaks at the wavelengths of 745, 935, 1207.5 and 1800 
nm. The sensitivity and FOM of the presented biosensor are 479.79, 686.86, 878.78 and 1457.57 nm/RIU and 
239.89, 171.71, 109.84 and 85.71 RIU−1, respectively, for the four mentioned wavelengths. It is noteworthy that 
nw and ng are the refractive indices of water and 25% solution of glucose in water, respectively2. Here, the four 
near perfect absorption are due to the MIM configuration and SPs excitation by utilizing the cubic resonators and 
Ag-air grating, and also proper values for geometrical parameters of the structure. The physical insight of the light 
absorption will be discussed explicitly in the following.

The variation of the sensitivity and FOM at the resonance wavelengths is illustrated in Fig. 3. It should be 
noticed that the resonance modes of the structure are decreased by increasing the operating wavelength as a result 
of the cavity behavior of the structure. Therefore, the sensitivity is improved for higher wavelengths, in which the 
structure has few resonances and all the absorbed electromagnetic energy contributes to the stronger resonance. 
However, the loss of the structure is increased and hence the FOM is decreased. In contrast, at lower wavelengths 
the structure has more resonance modes and so the incident wave energy is divided between more resonance 

Parameter Value (nm) Parameter Value (nm)

ws 500 gy 250

ls 1010 gz 125

ts 200 h 200

tm 100 w 200

t1 850 lg 50

t2 800 wg 100

Table 1.  The values of the geometrical parameters of the proposed four-band biosensor.

Figure 2.  The absorption spectra of the suggested biosensor when the analyte refractive index changes for 
detection of 25% solution of glucose in water.
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modes and the strength of resonance and sensitivity are decreased. It is obvious that the energy of the incident 
lightwave for each resonance mode has a particular value.

To have a better insight of the cubic resonators effect, we have considered the same structure of Fig. 1 with two 
resonators while the structural parameters are the same as Table 1. The proposed structure of Fig. 4(a) does not have 
good resonances due to the large distance between the resonators and other metallic parts of the structure. In this 
case, the structure has only one perfect absorption peak at λ = 900 nm with the sensitivity of 546.71 nm/RIU, as shown 
in Fig. 4(b). In the second case, the structure of Fig. 1 with six cubic resonators has been considered, as depicted in 
Fig. 4(c). Since the resonators are so close to each other, the LSPs interaction with the analyte and the sensitivity are 
enhanced compared to the former state. But, the analyte portion is decreased and the sensitivity is not as good as 
Fig. 1. According to the absorption spectrum of Fig. 4(d) the sensitivity is obtained as 689.39 nm/RIU at λ = 1100 nm. 
Many other arrangements like Fig. 4(e) have been also simulated and studied. But, as shown in Fig. 4(f), there is no 
enhancement in the absorbing and sensing performances and the multi-band behavior of the structure is diminished. 
In this state, the best sensitivity and FOM are 1401.51 nm/RIU and 202.02 RIU−1, respectively. The achieved sensing 
parameters in this state are lower than the reported values for Fig. 1. Therefore, the geometrically optimized structure 
of Fig. 1 has been chosen in the following. Moreover, the space between the resonators has been tuned by changing the 
parameters of gy and gz and the optimized values have been selected and reported in Table 1.

Here, the effect of Ag-air grating has been investigated. As mentioned before, the grating helps the SPs excita-
tion and the absorption diminishes without the grating, as shown in Fig. 5. It is considerable that the resonances 
in this case are partly because of the four cubic resonators.

To better understand the effect of MIM configuration and coupling of metallic parts, the test medium thick-
ness (t2) has been tuned when the other parameters are remained constant. Increasing t2 results in an increase 
in the portion of analyte in the structure. Since the proposed structure behaves like a cavity, increasing t2 leads 
to improving the sensing performance by providing more space for more resonances and so more interaction 
between the test medium and excited SPs in the structure. But, as shown in Fig. 6, further increase of the test 
medium thickness decreases the sensitivity and FOM, due to the less MIM coupling as a result of further gap 
between the metal parts of the structure. To have good sensing performance t2 is selected as 800 nm for the fol-
lowing simulations.

Moreover, the effects of the length (h) and width (w) of the cubic resonators on the absorbing performance 
have been studied. According to Fig. 7, it is obvious that increasing the dimensions of the resonators causes a 
redshift in the resonance wavelength. Since h is orthogonal to the electric field of the incident lightwave and the 
LSPs are almost excited in this interface of metallic cubic resonators and test medium14, changing the value of h 
has more effect on the absorption spectrum compared to the variation of w. The dimensions of cubic resonators 
have been chosen 200×200 nm2 to create good absorption with proper resonance wavelength.

The dielectric substrate has been utilized for fabrication feasibility and it does not affect the absorption spec-
trum, when the Ag layer thickness is more than its skin depth at the desired wavelengths. Therefore, ts does not 
have any effect on the absorbing and sensing performances, as shown in Fig. 8.

Figure 9 demonstrates the E-field distribution →
E( ) of the proposed structure for four wavelengths of 745, 935, 

1207.5 and 1800 nm. The excitation and interaction of LSPs, which are due to the MIM configuration and Ag-air 
grating, can be seen in this figure. The MIM coupling of the structure, which has a key role in the performance of 
the biosensor, causes a good interaction with the test medium as an insulator in the MIM configuration. The cubic 
shape has been selected for resonators because of the concentration of surface charges at the corners to make the 
coupling stronger. To have better insight, the MIM parts of the presented structure have been written on Fig. 9. 
The cubic resonators and the Ag walls and layer are the metal parts, and the test medium is considered as the 
dielectric part of the structure. Furthermore, all the above mentioned help the perfect absorption performance at 
four resonance wavelengths. It is obvious from Fig. 9 that the incident lightwave traps in the structure by means 
of SPRs and good interaction of LSPs which are shown as concentrated E-field distribution at the desired 
wavelengths.

The fabrication feasibility of the proposed structure has been considered in our design process and conse-
quently some dielectric parts have been added to keep the cubic resonators and make the structure feasible for 
fabrication. Also, a 50 nm dielectric layer with the refractive index of n = 1.4 which can be replaced by LiF in this 

Figure 3.  The sensing parameters of the proposed structure at resonance wavelengths.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.  The proposed structure with (a) two cubic resonators, (c) six cubic resonators, and (e) five cubic 
resonators. The absorption spectra of the biosensor with (b) two cubic resonators, (d) six cubic resonators, and 
(f) five cubic resonators, when the refractive index changes from nw = 1.3198 to ng = 1.3594.

Figure 5.  The absorption spectrum of the proposed biosensor without the Ag-air grating for detection of 25% 
solution of glucose in water.
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wavelength range40, has been placed under the grating layer to prevent the suspension of Ag-air grating, as shown in 
Fig. 10(a). The effect of the width of dielectric parts on the absorption spectrum has been also studied in Fig. 10(b) 
and observed that the added dielectric parts have no significant effect on the performance of the proposed structure.

The fabrication process of the proposed structure of Fig. 10(a) can be described as follows. At first, an Ag layer 
with the thickness of tm is evaporated on a 200 nm quartz layer. Then, the process goes on with depositing other 
layers from bottom to top, as shown in Fig. 11(a). According to Fig. 11(b), by means of a mask, deep UV stepper 
and reactive ion etching (RIE), when a photoresist is placed above the structure, the proposed shape of Fig. 11(c) 
can be obtained through the lithography method. Afterwards, the test medium of Fig. 10(a) is filled with pho-
toresist as a sacrificial layer and a 50 nm dielectric layer is deposited above the structure, as shown in Fig. 11(d). 
Next, as depicted in Fig. 11(e), the desired grating and Ag walls are grown and patterned on the top and sides of 
the structure utilizing lithography and etching. Finally, the sacrificial layer can be removed through the acetone 
to have the structure of Fig. 11(f).

The Biomedical Applications of the Proposed Plasmonic Sensor
In this section, the sensing parameters of the proposed plasmonic refractive index sensor in biomedical appli-
cations have been investigated. As it was mentioned before, the 25% solution of glucose in water changes the 
refractive index of water from nw = 1.3198 to ng = 1.35942. According to ref. 41, different stages of malaria infection 
decrease the refractive index of a healthy red blood cell that is 1.4. Ring, trophozoite and schizont are three stages 

Figure 6.  The effect of the test layer thickness on the sensing parameters of the proposed biosensor.

(a) (b)

Figure 7.  The effects of the (a) length and (b) width of the resonators on the absorbing function of the proposed 
biosensor, when the analyte refractive index is 1.3594.

Figure 8.  The absorption spectra of the suggested biosensor for different values of the substrate thickness.
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of malaria infection. Based on the simulation results, our suggested biosensor has the high sensitivity of 2000 nm/
RIU and high FOM of 100 RIU−1 for detection of the first stage of malaria infection, which can be so useful for 
quick treatment of infected people. It is considerable that 250 million people are affected by malaria annually41. 
The bacillus bacteria change the average refractive index of a healthy cell from 1.4 to 1.539. Also, the cancer cells 
have higher refractive index of 1.370 than the healthy cells (1.353)41. The sensing parameters of the proposed 
biosensor for all mentioned applications are listed in Table 2.

Analytical Methods
The simulation results of the proposed biosensor can be evaluated by analytical methods. The equivalent circuit 
model is the first method that is utilized to verify the simulation results. The dielectric substrate is modeled by the 
transmission line 1 (TL-1) with the characteristic impedance of η ε=Z /s r0 , the propagation constant of 
β π λ= 2 /s g , and the electrical length of β=E t2s s s, where η0, εr, and λg  are the free space impedance, the relative 
permittivity of the dielectric layer, and the guided wavelength, respectively14. Also, the test medium, modeled by 
the transmission line 2 (TL-2), has the same parameters of the TL-1, in which εr  should be replaced by 
ε = na analyte

2 .
The parallel branches that consist of different elements are used to model the MIM and grating configurations, 

as shown in Fig. 12(a). The Ag impedance can be calculated trough the well-known formula42:

Figure 9.  The E-field distributions of the suggested plasmonic sensor at the wavelengths of (a) λ = 745 nm, (b) 
λ = 935 nm, (c) λ = 1207.5 nm, and (d) λ = 1800 nm.

(a) (b)

Figure 10.  (a) The schematic view and (b) the absorption spectra of the proposed structure with added 
dielectric parts.
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where σ and µ are the conductivity and permeability of the metallic layer, respectively.
The second analytical method is the transmission (ABCD) matrix. In this case, the T-matrix of each element 

of the equivalent circuit is extracted and calculated. The T-lines of the substrate and test medium can be modeled 
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transmission matrix of the whole structure can be achieved by cascading the T-matrix of each section. Therefore, 
the scattering parameters and optical response of the T-matrix model can be obtained by43:
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where A, B, C and D are the elements of the main T-matrix of the proposed structure.

Figure 11.  Schematic view of the fabrication process of the suggested plasmonic sensor.

The test material
Refractive 
index S (nm/RIU)

FOM 
(RIU−1)

25% solution of glucose in water nw = 1.3198, 
ng = 1.3594 1457.07 85.71

Malaria infection

Ring stage n1 = 1.4, 
n2 = 1.395 2000 100

Trophozoite stage n1 = 1.4, 
n2 = 1.383 1523.53 67.17

Schizont stage n1 = 1.4, 
n2 = 1.373 1344.44 67.22

Bacillus bacteria n1 = 1.4, 
n2 = 1.539 876.26 43.81

Cancer cells n1 = 1.353, 
n2 = 1.370 1407.59 77.40

Table 2.  The sensing parameters of the proposed plasmonic sensor in biomedical applications.
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The extracted circuit model is simulated in the Advanced Design System (ADS) software to calculate the scat-
tering parameters. By setting the values of Table 3, the absorption spectrum of the suggested biosensor according 
to the mentioned analytical methods is calculated through Eq. (1).

As shown in Fig. 12(b,c), both analytical methods have good agreement with the simulation results for four 
resonance wavelengths. Since the dielectric layers of the structure have been modeled by the T-lines, the electrical 
lengths of the T-lines affect the scattering parameters of the extracted model and the absorption spectra of Fig. 12. 
The results of the analytical methods can be tuned through the optimization and changing the values of the extracted 
parameters of Table 3 around their initial values. Therefore, the absorption spectra of the analytical methods can 
be changed to have more resonances and match with all resonance wavelengths of the simulation results. But, the 
absorption value may be diminished. Therefore, there is a trade-off between the resonance wavelengths and their 
absorption values. Here, we have focused on the four resonance wavelengths that their sensing performance have 
been considered and so in the extracted circuit model we have tried to match these four resonance wavelengths well.

The Switching Capability of the Proposed Biosensor
According to the design procedure, the presented structure can be illuminated by an incident lightwave with 
y-polarized E-field, which is perpendicular to the Ag-air grating. Consequently, the change of incident wave 
polarization from y- to x-axis changes the performance of the absorber and leads to total reflection of the incident 
wave. Therefore, the absorption coefficient becomes near-zero for the whole wavelength range of 700 to 1900 nm, 
as depicted in Fig. 13. This figure shows the switching capability of the proposed biosensor from “ON” to “OFF” 
state.

The response time of the suggested plasmonic switch can be calculated by applying a continuous wave (CW) 
at the resonance wavelength to the structure and time monitoring of the output port, when the output signal 
approaches the steady state. The process of changing the incident lightwave polarization does not be considered 
in calculation of the response time. Another main parameter of a plasmonic switch is extinction ratio that exhibits 
the difference between the absorption values in “ON” and “OFF” states37:

η =












A
A

(dB) 10 log
(4)

on

off

To have a better insight of simultaneous sensing and switching performances of the presented perfect absorber, 
the parameters of both capabilities for detection of glucose in water are listed in Table 4.

(a)

(b) (c)

Figure 12.  (a) The equivalent circuit model of the proposed four-band perfect absorber, the comparison 
between the simulated and analytical methods of (b) equivalent circuit model and (c) T-matrix.

Parameter Value Parameter Value

Zs Ω.251 32( ) β=E t2s s s . 132 51

Za Ω.285 64( ) β=E t2a a 2 . 524 68

RAg Ω35( ) LAg .0 4(fH)

Table 3.  The Parameters values of the analytical methods.
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Our suggested biosensor has the capabilities of sensing and switching, simultaneously. To the best of our 
knowledge, there is not any reported plasmonic structure with two mentioned abilities in one designed structure. 
Therefore, our proposed structure is compared with the plasmonic sensors and switches in near-infrared region, 
separately. Table 5 shows the comparison between the performances of our suggested structure with previous 
works. Some reported structures may have high sensitivity or FOM in sensing performance and high extinction 
ratio or fast response time in switching performance, but not simultaneously. In contrast, our suggested structure 
not only has two capabilities, simultaneously, but also has high sensing and switching performances.

Conclusion
In summary, we have investigated a plasmonic biosensor with switching capability in near-infrared region. The 
suggested structure has the high sensitivity of 2000 nm/RIU and high FOM of 100 RIU−1 due to the MIM cou-
pling and interaction between the Ag cubic resonators and test medium. The simulation results show the ability of 
the proposed plasmonic sensor in detection of glucose in water, diagnosis of malaria infection, bacillus bacteria 

Figure 13.  The absorption spectra of the proposed plasmonic biosensor for “ON” and “OFF” states when the 
electric field polarization changes from y- to x-axis, respectively.

λ (nm) S (nm/RIU) FOM (RIU−1) η (dB) Response time (fs)

745 479.79 239.89 21.50 180

935 686.86 171.71 21.20 170

1207.5 878.78 109.84 21.88 150

1800 1457.07 85.71 25.15 100

Table 4.  The sensing and switching performances of the proposed biosensor for detection of glucose in water.

Reference
S (nm/
RIU)

FOM 
(RIU−1) λ (nm) η (dB)

Response 
Time (fs)

28 1890.4 — 1535.7 — —
30 1061 — 1554 — —
31 893.5 — 1550 — —
36 1562.5 38.6 1550 — —
44 557 6.1 1000 — —
45 503 63 930 — —
46 223 19.5 1170 — —
47 250 28 1100 — —
48 600 28 1100 — —
49 1100 224 1000 — —
50 1200 15 1550 — —
37 — — 1550 9.27 —
51 — — 1550 13.96 90
52 — — 1550 11.14 —
53 — — 1550 14.36 —
54 — — 1550 20 14e9

This work
2000 100 1880 22.13 200

1457.07 85.71 1800 25.15 100

Table 5.  Comparison of the sensing and switching performances of our proposed biosensor with other 
reported plasmonic sensors and switches.
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and cancer cells. The Ag-air grating, which has been used to excite the SPs in the plasmonic sensor, helps the 
structure to have switching capability with high extinction ratio of 25.15 dB and fast response time of 100 fs. 
Therefore, the implemented structure has better performance than the other reported plasmonic sensors and 
switches in two considered capabilities of sensing and switching, simultaneously. The simulation results have 
been validated by two analytical methods. The equivalent circuit model and T-matrix methods are two utilized 
analytical methods, which have been used in near-infrared region in this work. The multi-application idea of this 
manuscript, considering the fabrication feasibility and verifying the simulated results with analytical methods can 
be used for plasmonic devices in the future.
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