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Abstract

Very long-chain acyl-CoA dehydrogenase (VLCAD) deficiency is the most common defect of mitochondrial long-chain fatty
acid β-oxidation. Patients present with heterogeneous clinical phenotypes affecting heart, liver and skeletal muscle
predominantly. The full pathophysiology of the disease is unclear and patient response to current therapeutic regimens is
incomplete. To identify additional cellular alterations and explore more effective therapies, mitochondrial bioenergetics and
redox homeostasis were assessed in VLCAD-deficient fibroblasts, and several protective compounds were evaluated. The
results revealed cellular and tissue changes, including decreased respiratory chain (RC) function, increased reactive oxygen
species (ROS) production and altered mitochondrial function and signaling pathways in a variety of VLCAD-deficient
fibroblasts. The mitochondrially enriched electron and free radical scavengers JP4-039 and XJB-5-131 improved RC function
and decreased ROS production significantly, suggesting that they are viable candidate compounds to further develop to treat
VLCAD-deficient patients.
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Introduction

Very long-chain acyl-CoA dehydrogenase (VLCAD, EC: 1.3.99.3)
controls the first transformation in the fatty acid oxidation (FAO)
pathway and is a key enzyme for the energy metabolism in mito-
chondria. Individuals deficient in this enzyme (OMIM #609575)
can present with a variety of clinical symptoms and a spectrum
of severity that ranges from acute life-threatening illness in
the newborn period to relatively mild disease first developing
late in childhood or early adulthood. Two major phenotypes of
VLCAD deficiency (VLCADD) in childhood have been recognized
(1). The first consists of severe neonatal or early onset disease
with recurrent episodes of hypoglycemia, acidosis, hepatic dys-
function and cardiomyopathy. Patients who survive their initial
presentation can exhibit progressive cardiomyopathy, and have
a reported 75% mortality rate in the first few years of life (2). In
the second phenotype, children have later onset symptoms and
can have repeated episodes of hypoketotic hypoglycemia, but are
at low risk of developing cardiomyopathy, with a resultant lower
mortality and better long-term prognosis. Regardless of the ini-
tial phenotype, recurrent rhabdomyolysis becomes a dominant
feature in older children and adults. Multiple mutations have
been identified in patients with VLCADD and some correlation
of genotype with phenotype has been suggested (3). Patients
with null mutations, leading to complete absence of VLCAD, tend
to have more severe symptoms than those with some residual
enzymatic activity (4).

The cellular pathophysiology responsible for causing the
symptoms observed in patients with VLCADD has not been
completely determined, but energy deficiency seems to play an
important role, especially in the development of hypoglycemia
and cardiomyopathy. In this regard, studies performed in
animal models and patient cells indicate impairment of cellular
energy metabolism and redox homeostasis (5,6). Other findings
implicate an augmented inflammatory process related to
rhabdomyolysis in VLCADD patients (7).

Treatment of patients consists mainly of restriction of dietary
long-chain fats, and frequent meals to prevent catabolism (1,4).
The replacement of long-chain natural fats by medium-chain
triglycerides is also helpful since their metabolism bypasses
the enzymes of long β-oxidation pathway (8–10). However, most
patients continue to experience exercise intolerance and myal-
gia, with risk of episodic rhabdomyolysis (1,4). Carnitine is some-
times prescribed, but its use is controversial (11,12). Trihep-
tanoin, a seven-carbon chain triglyceride shown to replenish tri-
carboxylic acid cycle (TCA) cycle intermediates in patients with
VLCADD, is currently under clinical investigation (8,9). While this
compound is effective in addressing hypoglycemia in patients,
it is less so in treating or preventing cardiomyopathy, and only
has a minor effect on recurrent rhabdomyolysis (8,13). These
findings suggest that alternative cellular mechanisms may be
relevant in the development of the latter two symptoms.

A new class of mitochondria-targeted electron and reactive
oxygen species (ROS) scavengers has been recently described
(14). These molecules consist of a nitroxide portion, with
electron-, radical- and ROS-scavenging activities, and a targeting
moiety that promotes their selective accumulation within
mitochondria. Among these molecules, the two analogs JP4-
039 and XJB-5-131 are based on the natural product gramicidin
S and covalently linked to the antioxidant 4-amino-tempol
(15–17). The mitochondrial-targeting sequence is reduced in
JP4-039 compared with other GS-nitroxides, such as XJB-5-131,
resulting in a lower degree of mitochondrial enrichment. Recent
publications have shown that JP4-039 and XJB-5-131 are able to

scavenge ROS and electrons escaping from the respiratory chain
(RC), mitigate radiation damage, and prevent lipid peroxidation,
apoptosis and ferroptosis (18–21). However, these compounds
have not been evaluated as a potential therapy for inborn errors
of energy metabolism.

The present study investigated potential additional mech-
anisms involved in the pathophysiology of VLCADD, including
mitochondrial function and oxidative stress in fibroblasts of
patients diagnosed with this disorder. Additionally, the effects of
JP4-039 and XJB-5-131 on these parameters were examined as a
test of the influence of redox homeostasis and as potential new
treatment strategies for this disorder.

Results
Oxygen consumption and ATP production

The bioenergetic state of the patient fibroblasts (FB671, FB773,
FB833, FB777, FB774 and FB780) was measured by monitoring
oxygen consumption in a Seahorse flux analyzer. Since cells
grown in medium that contains high glucose can generate
ATP through glycolysis that may mask deficiencies in oxidative
phosphorylation (OXPHOS) in VLCAD patient samples, we used
glucose-free medium for 72 h prior to these experiments.
Basal respiration and reserve capacity were decreased in all
VLCAD-deficient fibroblasts in normal media and without
glucose (Fig. 1A). We have previously evaluated multiple control
fibroblasts and settled on this sample as a consistent standard
(22). A decrease of these parameters was also detected in
FB671, FB773 and FB833 in normal media (Fig. 1A, B, C and D).
ATP production was measured in FB671 cells to assess the
consequences of reduced oxygen consumption. As shown
in Figure 1E, a marked reduction in steady-state levels ATP
levels was seen when cells were grown in the absence of
glucose. Oxygen consumption linked to ATP production was also
markedly decreased (Fig. 1D). Taken together, these data show
energy homeostasis impairment in VLCAD-deficient fibroblasts.
Since we observed altered mitochondrial function in VLCAD-
deficient cells, we next assessed whether mitochondrial-
targeted electron-scavenging compounds could ameliorate
this mitochondrial dysfunction. To this end, FB671 and FB773
fibroblasts were treated with JP4-039 or XJB-5-131 for 24 h
before evaluating basal respiration and reserve capacity. Both
mitochondrial targeted antioxidants significantly increased
basal respiration (Fig. 2A) and reserve capacity (Fig. 2B) in the
two cultured fibroblasts. When we compared the averages of
VLCAD-deficient cells with controls, we observed significant
decrease in respiratory parameters (Fig. 3A, B and C), and an
improvement of basal respiration and reserve capacity with JP4-
039 and XJB-5-131 treatments (Fig. 3D and E, respectively).

Mitochondrial mass, dynamics, membrane potential
(��) and citrate synthase activity

Mitochondrial mass was evaluated in FB671 fibroblasts using the
probe MitoTracker green. Figure 4A shows an increase in mito-
chondrial mass as compared to control human diploid fibrob-
lasts (wild type; WT) cells when grown without glucose. Con-
sistent with these results, the activity of citrate synthase (CS),
the regulatory enzyme of the citric acid cycle, was increased in
FB671 cells cultured in the absence of glucose (Fig. 4B). Since
alterations in mitochondrial mass might occur due to changes in
mitochondrial dynamics, we also measured the levels of MFN1,
one of the main proteins involved in mitochondrial fusion. MFN1
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Figure 1. Mitochondrial respiration rates are lower in fibroblasts from VLCAD patients. Representative OCR of FB671, FB773, FB833, FB774, FB777 and FB780 fibroblasts

cultured in media without glucose for 72 h prior to Seahorse analysis (A). Basal respiration (B), reserve capacity (C), steady-state levels of ATP production (D) and oxygen

consumption linked to ATP production (E) of FB671 fibroblasts cultured in media with or without glucose for 72 h (A, B, C and D) or 48 h (E). Data are means ± SD.
∗P < 0.05, ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001, compared with WT (t-test for unpaired samples).

content was increased in FB671 cells regardless of the presence
of glucose (Fig. 4C). Next, we used the probe MitoTracker Red to
assess the �� in FB671 fibroblasts. No significant alterations on
�� were verified with or without glucose in the growth media
(Supplementary Material, Fig. S1).

FAO flux, VLCAD content and activity

VLCADD has been shown to severely reduce flux through the
FAO pathway. We sought to confirm this deficit in patient cells
and evaluate the effect of treatment on flux. Flux through the
FAO pathway in FB671 fibroblasts was decreased in the presence
or absence of glucose as demonstrated by reduced oxidation
of palmitate (Fig. 5A). In line with this finding, VLCAD pro-
tein (Fig. 5B) was markedly decreased in FB671 cells as was its
activity (Fig. 5C), regardless of the presence of glucose during
growth. It is important to note that VLCAD enzyme activity
was measured with its optimum substrate palmitate (C16-CoA)
using the highly specific and sensitive electron transfer flavo-
protein (ETF) fluorescence reduction assay (23). No other acyl-
CoA dehydrogenases are present in fibroblasts that can utilize
palmitate as substrate, and the very low residual activity in the
absence of a visible VLCAD on western blotting is an indication
of the high sensitivity of the enzyme assay. Treatment with JP4-
039, but not with XJB-5-131, slightly increased VLCAD activity
(Fig. 5C).

ROS production

Mitochondrial RC dysfunction has been shown to lead to
increased ROS generation (22), but ROS production has not been
examined in the context of FAO deficiency. Given the impaired
oxygen consumption in VLCAD deficient-cells, we measured
superoxide levels with MitoSOX Red in patient fibroblasts FB671,
FB773 and FB833. A significant increase of superoxide levels
was observed in all VLCAD-deficient cells when cultured in the
absence of glucose (Fig. 6A). We next evaluated the effect of
treatment of VLCAD-deficient cells with bezafibrate (BEZ), N-
acetylcysteine (NAC), resveratrol (RESV), MitoQ, trolox, JP4-039
and XJB-5-131 on superoxide production. While JP4-039 and XJB-
5-131 decreased superoxide anion radical generation in FB671,
FB773 and FB833 (Fig. 7A and B), the other compounds did not
change the levels of this free radical (Supplementary Material,
Table S2). Increased cellular ROS was confirmed in FB671, FB773
and FB833 cell extract with the probe dichlorofluorescein (DCFH)
(Fig. 6B), which is sensitive to all ROS, not just superoxide (24),
and JP4-039 and XJB-5-131 similarly decreased the DCFH signal
(Fig. 7C).

Protein expression of the transcription factors Nrf2 and
NF-κB

In light of the evidence of oxidative stress in the VLCAD-deficient
patient fibroblasts, we evaluated the level of nuclear factor

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy403#supplementary-data
https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy403#supplementary-data
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Figure 2. Effect of JP4-039 and XJB-5-131 on basal respiration (A) and reserve capacity (B) of FB671 and FB773 fibroblasts cultured in media without glucose for 72 h.

Cells were exposed to DMSO (D), JP4-039 or XJB-5-131 (40 nM or 200 nM) for 24 h. Data are means ± SD. ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001, compared with WT; ##P < 0.01,
####P < 0.0001, compared with FB671 or FB773 cells (Tukey multiple range test).

Figure 3. Representative OCR averaging three different VLCAD-deficient fibroblasts cultured in media with and without glucose for 72 h prior to Seahorse analysis.

Basal respiration (A), reserve capacity (B), oxygen consumption linked to ATP production (C) and the effect of JP4-039 (D) and XJB-5-131 (E) on basal respiration and

reserve capacity. Cells were exposed to DMSO (D), JP4-039 or XJB-5-131 (40 nM or 200 nM) for 24 h. Data are means ± SD. ∗∗∗P < 0.001, ∗∗∗∗P < 0.0001, compared with

WT; ##P < 0.01, ###P < 0.001, ####P < 0.0001 compared with VLCAD cells (t-test for unpaired samples).
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Figure 4. Mitochondrial mass (A), CS activity (B) and mitofusins 1 and 2 (MFN1 and MFN2) protein content (C) in FB671 fibroblasts cultured in media with or without

glucose for 48 h. For mitochondrial mass, VLCAD-deficient fibroblasts were incubated with MitoTracker Green. Data are means ± SD. ∗P < 0.05, compared with WT;
#P < 0.05, compared with FB671 cells (t-test for unpaired samples).

Figure 5. FAO flux (A) and VLCAD protein content (B) and activity (C) in FB671 fibroblasts cultured in media with or without glucose for 48 h. FAO flux was measured in

fibroblasts cultured in a 6-well plate (A). VLCAD content was measured in mitochondria prepared from fibroblasts. The image was electronically adjusted to optimize

comparisons within a single gel but not for comparisons across different gels. High contrast and overexposed images were not utilized (B). VLCAD activity was measured

in whole cell lysates. Cells were exposed to JP4-039 or XJB-5-131 (40 nM or 200 nM) during 24 h (C). Data are means ± SD. ∗P < 0.05, ∗∗P < 0.01 compared with WT or

untreated (t-test for unpaired samples).

(erythroid-derived 2)-like 2 (Nrf2) and nuclear factor kappa-light-
chain-enhancer of activated B cells (NF-κB)—two important
transcription factors involved in redox homeostasis and
control of inflammation. Increased nuclear Nrf2 (Fig. 8A)
and NF-κB (Fig. 8B) protein levels were observed in FB671

fibroblasts as compared with WT fibroblasts. The cytosolic
content of Nrf2 was also increased in FB671 cells (Fig. 8A),
while the NF-κB cytosolic levels were not altered (Fig. 8B). JP4-
039 treatment of cells led to a slight intensity decrease of these
transcription factors (Fig. 8).



Human Molecular Genetics, 2019, Vol. 28, No. 6 933

Figure 6. Superoxide production in FB671 (A), FB773 (B) and FB833 (C) fibroblasts cultured in media with or without glucose for 48 h. ROS in FB671 (D) and FB833 (E)
fibroblasts cultured in media with or without glucose for 48 h. VLCAD-deficient fibroblasts were incubated with MitoSOX Red (A, B and C) or the probe DCFH (D and E).

Data are means ± SD. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, compared to WT (t-test for unpaired samples).

Figure 7. Effect of JP4-039 and XJB-5-131 on ROS levels in FB671, FB773 and FB833 fibroblasts cultured in media without glucose for 48 h. VLCAD-deficient cells were

exposed to JP4-039 or XJB-5-131 (40 or 200 nM) during 24 h (A–C). ROS levels were measured with probe MitoSOX Red (A and B) or the probe DCFH (C). Data are means

± SD. ∗∗P < 0.01, ∗∗∗P < 0.001, compared with WT; #P < 0.05, ##P < 0.01, compared with FB671, FB773 or FB833 cells (t-test for unpaired samples).



934 Human Molecular Genetics, 2019, Vol. 28, No. 6

Figure 8. Nrf2 (A) and NF-κB (B) protein content in nucleus and cytosol prepared from FB671 fibroblasts, normalized by the content of the proteins lamin B1 (nucleus) or β-

actin (cytosol). Fibroblasts were cultured in media without glucose for 48 h and treated with DMSO or JP4-039 (40 nM) for 24 h. Representative images show colocalization

of Nrf2 or NF-κB protein visualized with green fluorescently tagged antibody and nuclei visualized with DAPI staining as yellow (white arrows). Calibration bar indicates

50 μm (C). ∗∗P < 0.01, compared with WT; #P < 0.05, compared with FB671 (t-test for unpaired samples).

Protein content of ER-mitochondria crosstalk

Alterations in endoplasmic reticulum (ER)-mitochondria crosstalk
and ER stress are closely related to impairment of mitochondrial
function (25). Thus, we measured the quantity of proteins
involved in this crosstalk [inositol 1,4,5-trisphosphate receptor 3
(IP3R), voltage-dependent anion channel 1 (VDAC1) and glucose-
related protein 75 (Grp75)], as well as ER stress [DNA damage
inducible transcript 3 (DDIT3) and Grp 78 (Grp78)], in VLCAD-
deficient fibroblasts FB671 and FB773 grown without glucose.
VDAC1 and IP3R were decreased, whereas DDIT3 was increased
in both cultured fibroblasts as compared with WT fibroblasts
(Fig. 9A). In contrast, Grp75 and Grp78 were not altered in either
cell line (Fig. 9A). JP4-039 or XJB-5-131 treatment did not modify
IP3R expression in FB671 fibroblasts, but slightly decreased
DDIT3 content (Fig. 9B).

Cell viability and apoptosis

The ultimate cause of muscular symptoms in patients with
VLCADD is unknown. Treatment with triheptanoin is hypoth-
esized to replete the TCA cycle and restore more normal

bioenergetics in long-chain FAO defects. However, patients still
experience muscular symptoms (rhabdomyolysis) and to a lesser
extent, cardiomyopathy. Given the reduction of (OXPHOS) and
production of ROS, we hypothesized that cells with VLCADD
would be prone to apoptosis, regardless of the availability of
glucose for glycolysis. To study this possibility, we evaluated cell
viability in FB671 fibroblasts with a 3-(4,5-dimethylthiazol-2-yl)-
5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium
(MTS) reduction assay. Decreased cell viability was seen in
these fibroblasts regardless of the presence of glucose in the
growth media (Fig. 9C). Apoptosis measured with an annexin
V assay was increased in FB671 fibroblasts in the absence of
glucose, as compared with WT cells, and treatment with JP4-039
significantly decreased cell death (Fig. 9D).

Discussion
In this study, we demonstrated direct impairment of global mito-
chondrial bioenergetics and function in fibroblasts from patients
with VLCADD. Regardless of mutation, VLCAD-deficient cells
showed a marked decrease of mitochondrial RC function and
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Figure 9. IP3R, Grp75, VDAC1, Grp78 and DDIT3 protein content in cell lysates prepared from VLCAD-deficient fibroblasts cultured in media without glucose (A). VLCAD-

deficient cells were exposed to JP4-039 or XJB-5-131 (40 or 200 nM) during 24 h before evaluating protein content (B). Cell viability (C) and apoptosis (D) in FB671 fibroblasts

cultured in media with or without glucose for 48 h. Cell viability were measured spectrophotometrically in fibroblasts cultured in a 96-well plate (B). Apoptosis was

measured by flow cytometry after incubation with Annexin V and PI. VLCAD-deficient cells were exposed to JP4-039 (40 nM) during 24 h before evaluating apoptosis

(D). Data are means ± SD. ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001, compared with WT; #P < 0.05, compared with untreated FB671 cells (t-test for unpaired samples).

ATP levels that tended to be exaggerated by growth in glucose-
free media. Although the ACADVL gene mutations were het-
erogeneous in the examined fibroblasts, impairment in oxygen
consumption was observed in all cultured cells, which is in line
with observations showing that long-chain fatty acids accumu-
lated in VLCADD impairs bioenergetics in mitochondria of rat
brain (26). These findings are accompanied by increased ROS
production measured with an in vivo probe and an in vitro tech-

nique. Indirect evidence has previously suggested that VLCAD-
deficient cells have increased ROS production, and other indirect
evidence of energy dysfunction associated with FAO defects
has been published (6,27–31). FAO is a major energy-producing
pathway during times of stress that provides electrons directly
to the electron transport chain (ETC) for ATP production. In
addition, FAO is particularly critical for cardiac tissue, which
uses fatty acids for ∼80% of its energy needs even in the fed
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state. Thus, secondary impairment of (OXPHOS) will exacerbate
the primary energy deficit of VLCADD. It is well established
that mitochondria generate superoxide and/or hydrogen per-
oxide from various sites associated with substrate catabolism
and (OXPHOS), and that these different sites have various roles
in signaling and disease (32,33). The main sources of cellular
superoxide are the mitochondrial ETC complexes I and III, from
which small leaks of electrons occur during OXPHOS, but leaks
from ETF/ETF-QO have also been implicated (34,35). High levels
of superoxide lead to molecular damage that exceeds cellular
repair capacity, triggering cellular dysfunction (32). The potential
clinical implications of a more complex energy defect in cells
and tissue in the face of VLCADD are considerable, as they
suggest a pathophysiology beyond the scope of the primary FAO
defect. We have previously reported that the proteins involved
in FAO and ETC are physically associated, suggesting that the
induced ETC deficiency in VLCADD could result from disrup-
tion of an energy complex as well as simple reduction of ETC
substrates (32,36). Moreover, previous works have shown cellular
toxicity induced by the major accumulated long-chain fatty
acids and acylcarnitines in VLCADD. At high concentrations,
these metabolites provoke mitochondrial dysfunction by differ-
ent mechanisms, including calcium homeostasis disturbance,
mitochondrial membrane potential dissipation, OXPHOS uncou-
pling and apoptosis (26,37).

Since mitochondria are dynamic organelles whose morphol-
ogy is maintained at least in part by the equilibrium between
fusion and fission, we investigated the protein content of MFN1,
the main protein involved in the fusion process and mitochon-
drial mass. VLCAD-deficient cells had a significant increase in
MFN-1 levels and mitochondrial mass compared to WT fibrob-
lasts. These changes may represent an adaptation to decreased
energy production (38). This is in accordance with data show-
ing that intracellular fatty acid accumulation as occurs in FAO
deficiency results in cell toxicity and promotes activation of
the PPARα promotor, thus inducing mitochondrial biogenesis
(39). Corroborating our data, a recent publication also showed
mitochondrial morphology and connectivity changes in fibrob-
lasts from VLCAD patients (40). Mitofusins can also transiently
increase the permeability of the outer mitochondrial membrane,
and facilitate formation of the mitochondrial transition pore if
it occurs concomitantly with loss of permeability at the inner
mitochondrial membrane under stress conditions (41,42).

The increase in the activity of CS reinforces the hypothesis
that mitochondrial biogenesis is induced in VLCAD-deficient
cells. An increase in this Krebs cycle enzyme that provides
additional reducing equivalents for the ETC may also be a com-
pensatory mechanism for the bioenergetics failure in the FAO
pathway and the ETC as suggested by the reduced oxygen con-
sumption in VLCAD-deficient cells (43,44).

Activation of Nrf2 and NF-κB signaling pathways may also
be triggered in VLCAD-deficient cells by alterations in the redox
state related to ETC dysfunction. Nrf2 is a transcription factor
that behaves as a primary sensor of oxidative stress and as a
regulator of the antioxidant system due to its ability to modulate
the expression of numerous antioxidant and detoxifying genes
(45). We observed increased Nrf2 expression in both cellular
compartments, cytosol and nucleus, which indicates that this
transcription factor is being translocated to the nucleus. This
is in accordance with our results showing increased ROS pro-
duction, which is known to oxidize Keap1, an Nrf2 inhibitory
protein, and therefore induce nuclear translocation of this tran-
scription factor (46). Increased expression of NF-κB was also seen
in VLCAD-deficient cells, mainly in the nucleus; NF-κB belongs to

Figure 10. Seminotti et al. describe mitochondrial and redox homeostasis dys-

function in VLCAD-deficient fibroblasts, as well as impairment of endoplasmic

reticulum-mitochondria crosstalk, induced by the primary FAO defect. Treatment

with the mitochondrially enriched free radical and electron scavengers JP4-039

and XJB-5-131 improved RC function and decreased ROS production.

a family of transcription factors that mediates several different
immune responses. The NF-κB signaling pathway is activated
with intracellular redox state disturbances and inflammatory
processes (47,48), implying inflammation induction in VLCAD-
deficient cells.

Mitochondrial bioenergetic disturbance has recently been
shown to disrupt communication between the rough ER
and mitochondria in cells, inducing ER stress (25,49,50). This
crosstalk plays an important role in calcium homeostasis,
mediating calcium translocation from ER to mitochondria
through the interaction of mitochondrial VDAC with IP3R on
the ER via the chaperone Grp75 (Fig. 10) (51,52). In our VLCAD-
deficient cells, we observed decreased levels of VDAC1 and
IP3R, suggesting a disruption of ER-mitochondria crosstalk. ER
stress, reflected by increased levels of DDIT3, was also seen in
VLCAD-deficient cells. Upregulation of DDIT3 is consistent with
the apoptosis increase observed in these cultured fibroblasts
since it is a transcription factor that modulates this process.
Therefore, we speculate that mitochondria in VLCAD-deficient
cells undergo irreversible morphologic changes that lead to
apoptosis (53).

Accumulation of ROS in mitochondria is a common pathogenic
finding in many disorders of the ETC but has not been
broadly recognized in FAO disorders. Unfortunately, treatment
with traditional antioxidants has not been effective in ETC
deficiencies, at least in part due to their poor penetration into
mitochondria and mitochondrial membranes. In contrast, JP4-
039 and XJB-5-131 have structural motifs that target them with
much higher efficiency to mitochondria, and have been shown
to ameliorate cellular damage induced by mitochondrial ROS
accumulation diseases in vitro and in vivo (19,54–57). Treatment
with JP4-039 and XJB-5-131 considerably improved the oxygen
consumption rate (OCR) and reduced ROS in VLCAD-deficient
fibroblasts, but not to the same extent in all cases. While JP4-
039 shows significantly lower enrichment into mitochondria
compared with XJB-5-131 (21), the variability in response among
the different fibroblasts may also reflect other factors, such
as the extent of structural perturbations in the fatty acid β-
oxidation complex induced by the various mutations, as well
as the pharmacodynamics of these compounds and the rate of
their interactions with ROS. Furthermore, expression of Nrf2 and
NF-κB was decreased after JP4-039 treatment, presumably due to
neutralization of pro-inflammatory and pro-apoptotic cellular
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responses. More importantly, JP4-039 partially increased VLCAD
activity. To our knowledge, this is the first demonstration of an
improvement in important cellular functions that reflect energy
homeostasis by treatment with an antioxidant, and highlights
the potential use of these compounds as a therapy for VLCADD,
as well as potentially other long-chain FAO disorders.

The nitroxide moieties in JP4-039 and XJB-5-131 are effective
in catalyzing the dismutation of superoxide anions and other
reactive species generated in mitochondria, including those
formed by electron leakage from OXPHOS (58,59). Our data
suggest that the excess production of ROS in VLCAD enzyme
could establish a negative feedback loop by damaging the ETC
and further exacerbating ROS production. In this context, a
previous report demonstrated that decreasing mitochondrial
detectable reactive species prevents mitochondrial DNA damage
and ultimately improves ETC function (60). Moreover, in
accordance with our results, prior studies demonstrated that
targeted nitroxides, including JP4-039, work at the level of the
mitochondria to inhibit caspase-3 expression and apoptosis
(19,61,62).

In summary, we demonstrate a marked bioenergetic impair-
ment in fibroblasts from patients with VLCADD with a sig-
nificant increase in superoxide production. Our findings also
implicate a redox status disturbance and inflammation in the
cellular injury observed in this disorder. Due to the molecular
heterogeneity VLCADD (2), multiple strategies for therapy are
likely to be helpful and may need to be guided by genotype.

Materials and Methods
Experiments were performed in accordance with the approved
guidelines and regulations. Experimental human protocols were
approved by the Institutional Review Board at the University of
Pittsburgh, protocol #404017.

Subjects

Cultured skin fibroblasts (FB671, FB773, FB833, FB777, FB774
and FB780) with different mutations in the ACADVL gene were
obtained from patient skin biopsies, while control fibroblast cells
(WT) were obtained from three anonymous healthy individuals
(Supplementary Material, Table S1). Biopsies from patients were
performed on a clinical basis with written informed consent
from patients and/or parents.

Cell culture and treatments

Cells were routinely grown in Dulbecco’s Modified Eagle Medium
(DMEM; Corning Life Sciences, Manassas, VA), containing 10%
glucose, or in DMEM devoid of glucose for 48–72 h. Both media
were supplemented with 10% fetal bovine serum, 4 mM glu-
tamine, 100 IU penicillin and 100 μg/mL streptomycin (Corning
Life Sciences). The passage number of the fibroblasts used in the
experiments was 3–5 for WT cells and 4–7 for VLCAD-deficient
cells.

After measuring the respiratory parameters in six differ-
ent VLCAD-deficient fibroblasts, we decided to perform further
experiments with FB671. We also examined ROS levels in FB773
and FB833 for measuring.

Cells were treated with experimental compounds at vari-
ous concentrations 24 or 48 h before the assays. The com-
pounds used were NAC (1 mM) (Sigma-Aldrich, St Louis, MO),
BEZ (600 μM) (Sigma-Aldrich), RESV (75 μM) (Sigma-Aldrich),

MitoQ (200 nM) (MitoQ Ltd, Auckland, New Zealand), Trolox (a
hydrosoluble analogue of vitamin E; 1 mM) (Sigma-Aldrich), JP4-
039 (40 and 200 nM) and XJB-5-131 (40 and 200 nM), obtained
from Dr Peter Wipf, Department of Chemistry, University of
Pittsburgh (16,17). All compounds were prepared in dimethylsul-
foxide (DMSO), except for NAC that was prepared in media.

Measurement of mitochondrial respiration

OCR was measured with a Seahorse XFe96 Extracellular Flux
Analyzer (Agilent, Santa Clara, CA). Cells were seeded in 96-
well Seahorse tissue culture microplates in growth media at a
density of 80 000 cells per well. To ensure equal cell numbers,
cells were seeded in cell culture plates pre-coated with Cell-
Tak (BD Biosciences, San Jose, CA). All cultured fibroblasts
were measured with four to six wells per cell. Then, the entire
experiment was repeated. Before the Seahorse assay, cells
were incubated for 1 h without CO2 in unbuffered DMEM.
Initial OCR was measured to establish a baseline at the resting
state (basal respiration) followed by injection of oligomycin (an
inhibitor of ATP synthase) that reduces OCR, representing ATP
turnover. Subsequent injection of 300 nM carbonyl cyanide 4-
(trifluoromethoxy)phenylhydrazone (FCCP, Seahorse XF Cell
Mito Stress Test Kit; Agilent, Santa Clara, CA) dissipates the
proton gradient and allows maximum respiration. The rise
in OCR upon FCCP addition represents mitochondrial reserve
capacity. Finally, rotenone and antimycin A were added to
effectively disable the ETC and inhibiting the total mitochondrial
respiration. The remaining OCR represents non-mitochondrial
respiration. The difference between oligomycin- and rotenone
and antimycin A-responsive OCR reflects proton leak (see Fig. 1A
for more details). Data are reported in pmol of O2 reduced/min.

ATP assay

Steady-state levels of ATP were measured with a biolumines-
cence assay kit (ATPliteTM; PerkinElmer Inc., Waltham, MA),
according to the manufacturer’s instructions. Luminescence
was quantitated in a SpectraMax® i3x Platform multi-mode
microplate reader system (Molecular Devices, LLC, Sunnyvale,
CA). Data are reported in μmol of ATP/mg of protein.

Mitochondrial membrane mass and superoxide
production

Cell suspensions containing 1 × 105 cells/mL were incubated for
25 min at 37◦C with 150 nM (Mitotracker Green; Invitrogen, Grand
Island, NY) for mitochondrial mass evaluation or for 15 min at
37◦C with 5 μM (MitoSOX Red; Invitrogen) for superoxide produc-
tion measurement (63). After incubation, samples of 10 000 cells
were analyzed in a Becton Dickinson FACSAria II flow cytometer
(BD Biosciences).

ROS production

Cell suspensions containing 1 × 105 cells/mL were incubated
for 30 min at 37◦C with 150 nM DCFH (Invitrogen) for reactive
species production. After incubation, samples of 10 000 cells
were analyzed in a Becton Dickinson FACSAria II flow cytometer
(BD Biosciences).

https://academic.oup.com/hmg/article-lookup/doi/10.1093/hmg/ddy403#supplementary-data
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Western blot

Cells were grown in T175 flasks and, at 90–95% confluence,
were harvested by trypsinization, then pelleted and stored at
−80◦C for western blot analysis. Protein content in samples was
quantified for data normalization using DCTM Protein Assay kit
(Bio-Rad Laboratories, Hercules, CA).

Mitochondria preparation

Cell pellets were resuspended in 150–250 μL of 5 mM Tris
buffer; pH 7.4, containing 250 mM sucrose; 2 mM EDTA, protease
inhibitor cocktail (Roche Diagnostics, Mannheim, Germany); and
0.5 μM trichostatin A (Sigma-Aldrich), then homogenized and
centrifuged at 1000 × g for 5 min at 4◦C. The pellet was discarded
and the supernatant centrifuged at 12 000 g for 15 min at 4◦C. The
pellet containing mitochondria was resuspended in 50 mM Tris
buffer and pH 7.4, sonicated and centrifuged again at 14 000 × g
for 15 min at 4◦C. The supernatant was then used for western
blotting as previously described (64). Briefly, 10–20 μg of protein
was loaded onto the gel. Following electrophoresis, the gel was
blotted onto a nitrocellulose membrane, which was incubated
with mouse anti-mitofusin 1 (MFN1) monoclonal antibody
(1:100) (Abcam, Cambridge, MA), mouse anti-mitofusin 2 (MFN2)
monoclonal antibody (1:100) (Abcam), mouse anti-dynamin-
related protein 1 (DRP1) monoclonal antibody (1:100) (Abcam),
rabbit anti-VLCAD antiserum (1:1000) (Cocalico Biologicals Inc.,
PA), rabbit anti-VDAC1 monoclonal antibody (1:1000) (Abcam),
mouse anti-Grp75 monoclonal antibody (1:250) (Abcam), rabbit
anti-Grp78 polyclonal antibody (1:250) (Abcam), mouse anti-
DDIT3 monoclonal antibody (1:250) (Abcam), goat anti-IP3R
polyclonal antibody (1:50) (Santa Cruz Biotechnology, Dallas, TX)
or IgG-HRP conjugated antibody (Bio-Rad Laboratories). Staining
of the membranes with Ponceau S (Sigma-Aldrich) or mouse
anti-β-actin monoclonal antibody (1:10 000) (Sigma-Aldrich),
or mouse anti-glyceraldehyde 3-phosphate dehydrogenase
monoclonal antibody (1:15 000) (Abcam), was used to verify equal
loading.

Nuclear and cytosolic fraction preparation

Cell pellets were washed with cold phosphate-buffered saline,
lysed with a pre-cooled homogenizer in 300 μL cold buffer
(10 mM HEPES, 1.5 mM MgCl2, 1 mM KCl and 1 mM DTT)
plus 1 μg/μL protease, phosphatase inhibitor cocktail, 1 mM
phenylmethanesulfonyl fluoride (PMSF) and 0.5% Nonidet P-
40, and incubated on ice for 15 min. The homogenates were
centrifuged at 850 × g for 10 min at 4◦C and the supernatants
(cytoplasmic extracts, SN1) were collected and stored at −80◦C.
The pellets were resuspended in 200 μL of cold buffer, transferred
to pre-cooled microcentrifuge tubes and incubated on ice for
15 min. Then, 0.5% Nonidet P-40 was added and the samples
were incubated on ice for 5 min and mixed for 10 s. The
suspensions were centrifuged at 14 000 × g for 30 s at 4◦C
and the supernatants were collected in SN1, then, the pellets
were resuspended in 50 μL of complete lysis buffer (20 mM
HEPES, 1.5 mM MgCl2, 0.2 mM EDTA, 20% glycerol, 420 mM
NaCl and 1 mM DTT), plus 1 μg/mL protease, phosphatase
inhibitor cocktail and 1 mM PMSF, mixed for 10 s and incubated
on ice for 40 min (mixed for 10 s each 5 min). Finally, the
suspensions were mixed for 30 s and centrifuged at 14 000 × g
for 10 min at 4◦C. The supernatants (nuclear extracts, SN2) were
collected and stored at −80◦C. Inmunodetection was performed

using the following primary antibodies, according to datasheet
specifications: anti-Nrf2 antibody (1:500) (Abcam), anti-NF-κB
p-65 antibody (1:500) (Abcam), anti-Lamin B1 (1:1000) (Abcam)
and anti-β-actin (1:1000) (Santa Cruz Biotechnology).

Immunofluorescence microscopy

Fibroblasts were seeded at a concentration of 1 × 105 cells/mL
on glass cover slips pre-treated with poly-D-lysine in a 12-well
plate and allowed to grow overnight at 37◦C in a 5% CO2/95%
humidity incubator. After 80–90% confluence, cells were incu-
bated with the antibodies anti-VLCAD (1:1000), anti-Nrf2 (1:100)
or anti-NF-κB (1:1000) at 4◦C overnight. After brief washing with
TBST, cells were incubated with donkey anti-rabbit secondary
antibody Alexa Fluor 488 (Invitrogen). Nuclei were immunos-
tained with DAPI. The coverslips were then mounted before
acquiring images with an Olympus Confocal FluoroView1000
microscope at a magnification of 60×. Mitochondrial membrane
potential was determined by quantitation of MitoTracker Red
fluorescence (Invitrogen), using the software ImageJ (Bethesda,
MD) and the data were normalized by number of cells.

Spectrophotometric analysis of CS activity

CS activity was measured in mitochondrial extracts obtained
from fibroblasts (65,66), by determining 5,5"-dithiobis (2-
nitrobenzoic) acid (DTNB) reduction at λ412 nm and calculated
as nmol 2-nitro-5-thiobenzoate anion (TNB) min−1 · mg
protein−1.

FAO flux analysis

Flux through the FAO pathway was quantified by production
of 3H2O from [9,10−3H] palmitate (PerkinElmer, Waltham, MA),
conjugated to fatty acid-free albumin in fibroblasts cultured in
a 24-well plate, as previously described (67). Palmitate bound to
albumin was used at a final concentration of 12.4 μM (0.06 Ci/
mmol). For each cell, FAO flux was measured in triplicate.
The oxidation rates were expressed as pmol 3H-fatty acid
oxidized/h/mg protein).

ETF fluorescence reduction assay

The ETF reduction assay was performed using a Jasco FP-6300
spectrofluorometer (Easton, MD) with a cuvette holder heated
with circulating water at 32◦C. The assay was otherwise per-
formed as described (68), at the indicated substrate concentra-
tions. The enzyme was diluted 1200-fold into a buffer containing
50 mM Tris, pH 8.0, 5 mM EDTA and 50% glycerol, and 10 μL
were used for each assay. The ETF concentration in the reaction
mixture was 2 μM. Spectra Manager 2 software (Jasco, Inc.) was
used to collect data and calculate reaction rate and Microsoft
Excel was used to calculate the kinetic parameters.

Cell viability assay

Cell viability was evaluated according to the instructions
described using a 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymeth-
breakoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay
kit (Abcam). The absorbance was read in a FLUOstar Omega plate
reader at 490 nm.
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Apoptosis assay

Apoptosis was evaluated with an Alexa Fluor® 488 annexin
V/Dead Cell Apoptosis kit according to manufacturer’s instruc-
tions (Invitrogen). The kit contains annexin V labeled with a
fluorophore and propidium iodide (PI). Fluorescence was deter-
mined in a Becton Dickinson FACSAria II flow cytometer (BD
Biosciences).

Statistical analysis

Assays were performed in triplicate and the mean was used
for statistical calculations. Statistical analysis was performed
with GraphPad 5.0 software. Student’s t-test (independent) and
Tukey multiple range test were applied for simple comparisons
between groups. Differences were considered significant when
P < 0.05.
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Supplementary Material is available at HMG online.
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