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Educational aims

The reader will be able to:

� Understand the classification of mucoactive medications based upon their proposed mechanism of action
� Identify medications that have been approved for secretion clearance therapy and their specific indications
� Appreciate how to evaluate the effectiveness of mucoactive medications for different airway diseases
� Recognize that medications that are effective for one disease may not be effective or may even be harmful for treating other

diseases.
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Many airway diseases in children, notably bronchiolitis, cystic fibrosis (CF), non-CF bronchiectasis includ-
ing primary ciliary dyskinesia, pneumonia, and severe asthma are associated with retention of airway
secretions. Medications to improve secretions clearance, the mucoactive medications, are employed to
treat these diseases with varying degrees of success. This manuscript reviews evidence for the use of
these medications and future directions of study.

� 2020 Elsevier Ltd. All rights reserved.
INTRODUCTION: DEFINITIONS AND TAXONOMY

Normal mucus is the lining fluid that protects the airway by
entrapping and clearing inhaled particulate matter, and prevents
fluid loss from the airway surface. Normal mucus is comprised of
approximately 95% water, with polymeric mucins particularly
MUC5B secreted from submucosal glands and MUC5AC secreted
from mucous or goblet cells, providing the gel structure [1,2].
The mucous gel layer sits atop a periciliary layer of lower viscosity
that contains attached mucins. The polymeric mucins form a gel
through entanglement of long mucin chains. There is a relative
paucity of cross-linking among discrete mucin polymers (Fig. 1
and Table 1).

During infection and inflammation, airway secretions also con-
tain inflammatory and shed epithelial cells, particulates, microor-
ganisms, secreted peptides and products of inflammation. This
complex mix is called phlegm when it is in the airway and sputum
when expectorated [3]. Mucoactive drugs are meant to improve
the clearance as well as decrease the production of phlegm. In
some disorders, as discussed later, airways are obstructed by atyp-
ical secretions, such as lymphatic leakage as in plastic bronchitis. In
some diseases, notably CF, reduction in the height of the periciliary
fluid layer and increased adhesivity of the mucous gel can lead to
poor mucus clearance causing accumulation within the airway that
eventually can become infected phlegm.

Mucoactive medications are defined by their presumed mecha-
nism of action [4]. The term mucolytic, a medication that breaks
down polymer bonds within the secretions, has sometimes been
incorrectly used interchangeably with the term mucoactive medi-
cation. Mucolytics can be classic mucolytics that break down
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Fig. 1. (A) Regulators of goblet cell mucus secretion. Anticholinergics decrease mucus secretion by inhibition of neutrophil elastase driven mucin production (11). Anti-
inflammatory agents such as corticosteroids and macrolides decrease mucus hypersecretion in airway inflammation. (B) Mucolytic agents break down mucus network
structures to favorable biophysical properties for improved mucociliary clearance. Dornase-alfa hydrolyzes extracellular DNA in sputum and N-acetylcysteine reduces
disulfide bonds in mucus networks. (C) Airway surface liquid (ASL) rehydrators reverse ASL height reduction to improve mucociliary clearance. These also increase mucus
secretion as expectorators hypertonic saline and dry powder mannitol rehydrate ASL by hyperosmolar action. Epithelial sodium channel (ENaC) inhibitors prevent ASL
depletion by hyperabsorption of sodium and water through ENaC.

Table 1
Mucus therapies in cystic fibrosis lung disease management.

Therapy Mechanism Form of Administration

Hypertonic Saline Restoration of ASL Height Aerosol mist
Mannitol Restoration of ASL Height Dry-power inhalation
ENaC Inhibitors Restoration of ASL Height N/A
Dornase alfa DNA hydrolysis Aerosol mist
N-acetylcysteine Disulfide bond Aerosol mist
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mucins at the cross-linked disulfide bonds across adjacent cysteine
residues. These classic mucolytics, of which N-acetyl L-cysteine
(NAC) is the archetype, contain free sulfhydryl (thiol) groups that
hydrolyze these disulfide bonds. Peptide mucolytics of which dor-
nase alfa (Pulmozyme, Genentech, South San Francisco) is the
archetype, depolymerize the secondary gel network comprised of
polymeric DNA and filamentous (F-) actin. Because F-actin inhibits
the effectiveness of dornase alfa, studies are underway evaluating
the potential use of actin-protected dornase for more effective
depolymerization of the DNA network (eg alidornase).

Expectorants are medications that increase the water content of
secretions with the goal of improving clearance. One of the most
widely studied of these is guaifenesin, but nearly all studies have
shown guaifenesin and related compounds are no more effective
than placebo [5]. Hyperosmolar medications such as hypertonic
saline (HS) or dry powder mannitol are effective in increasing the
hydration or fluid content of airway secretions and improving air-
way clearance in diseases such as CF and non-CF bronchiectasis
[6,7].

Mucokinetic medications are intended to improve the effective-
ness of ciliary propulsion or cough in secretion clearance. Although
beta-agonists such as salbutamol increase ciliary beat frequency,
there is little evidence that they are effective mucokinetic drugs
[8]. It could also be argued that by inducing effective coughing,
hyperosmolar medications also have mucokinetic properties.
Inhaled surfactant decreases the adhesivity of airway secretions,
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which potentially improves the effectiveness of ciliary and cough
clearance [9].

Mucoregulatory medications decrease secretions by inhibiting
mucus production or by decreasing inflammation. These medica-
tions include macrolide antibiotics that decrease mucin production
by inhibiting the extracellular regulating kinase ERK1/2 [10], anti-
cholinergic medications that may decrease mucus production by
inhibiting neutrophil elastase driven mucin production [11], and
corticosteroids which can decrease airway inflammation.

Mucospicic drugs (e.g. tetracycline) increase secretion viscosity.
Secretions that are too thin might not be well cleared either by
cough or by cilia, which is why mucus exists as a gel. Some
patients, such as those with bronchorrhea, have extremely thin
and liquid-like mucus. Mucospicic drugs may improve mucus
clearance in these patients.
VIRAL BRONCHIOLITIS

Viral bronchiolitis is a clinical diagnosis in children character-
ized by obstructive dyspnea with increased respiratory effort,
cough and - sometimes in young infants- apnea [12,13]. It is most
frequently caused by respiratory syncytial virus (RSV), but other
respiratory viruses such as human metapneumovirus, bocavirus,
human rhinovirus, para-influenza virus, coronavirus, enterovirus
can be implicated as well [12,13]. The pathobiology of bronchiolitis
consists of edema of the small airways, increased local mucus pro-
duction, and epithelial cell injury (necrosis and apoptosis) with cil-
iary dysfunction [14,15]. The sloughing of dead airway cells
together with an influx of leukocytes contributes to the thick
mucus plugs that obstruct the smaller airways. Due to their small
airways, especially young infants are prone to airway obstruction
and at increased risk for hospitalization [16–19]. Treatment for
bronchiolitis is mainly supportive and as such there is need for
an effective treatment targeting airway mucus obstruction.

The mucus plugs obstructing airways in viral bronchiolitis con-
tain a large amount of polymerized, extracellular DNA [20]. As
such, the use of the mucolytic dornase alfa, has been of interest
[21,22]. Two randomized, placebo-controlled studies of nebulized
dornase alfa in hospitalized children with mild to moderate bron-
chiolitis and a Cochrane review did not show a decrease in length
of hospital stay or respiratory effort [20,23,24]. However, one study
did show an improvement in chest radiograph defined atelectasis
compared to placebo in young children with severe bronchiolitis
[20]. Although chest X-ray abnormalities as a single finding are
clinically less relevant, this finding is consistent with case series
of mechanically ventilated children that reported radiological and
clinical improvement after the use of dornase alfa [25]. A more
prominent role for mucus plugging in the severe cases of bronchi-
olitis is suggested. For example: large amounts of neutrophils have
been shown to be present in the airway of children who were
mechanically ventilated or died from severe bronchiolitis [26–28]
and excessive formation of neutrophil extracellular traps may con-
tribute to increased DNA content in mucus, further increasing its
viscoelasticity [29,30]. The current guideline from the American
Academy of Pediatrics (AAP) on the treatment of bronchiolitis does
not include a recommendation for using dornase alfa [31]. Future
studies might focus on the use of dornase alfa in severe bronchioli-
tis and the possibilities for combined use with other aerosol agents
to enhance small airway deposition.

The mucolytic NAC can be administered either by nebulization
or orally, but has a low bioavailability as it undergoes first pass
metabolism [32]. Although the use of NAC is carefully being
explored for respiratory diseases in experimental settings, the clin-
ical use of NAC for respiratory diseases is not recommended [33].
Despite one abstract reporting improvement of clinical severity
scores when comparing nebulized NAC to salbutamol in children
with viral bronchiolitis (full text article could not be retrieved),
no studies have evaluated the role of NAC in viral bronchiolitis
patients [34]. A possible beneficial effect for NAC can be hypothe-
sized, as NAC functions as a free radical scavenger with anti-
oxidative properties [35,36]. Oxidative stress is implicated in the
pathophysiology of bronchiolitis. Laboratory studies showed
increased levels of intracellular H2O2 in pulmonary epithelial cells
after RSV infection [37] and the addition of NAC to RSV infected
airway cultures reduces MUC5AC expression in vitro [37].

Nebulized HS decreases mucus plugging through the osmotic
hydration of mucus, improving mucociliary clearance [38] and
stimulates effective cough through an irritant effect. The use of
3% HS has been extensively studied in viral bronchiolitis. An in
2017 updated Cochrane review on a total of 4195 children, showed
that the use of nebulized hypertonic saline compared to normal
(0.9%) saline resulted in a slightly shorter length of hospitalization,
but also reported low quality evidence [39,40]. Three randomized
trials have been published since 2017. From them, only one study
showed clinical improvement after three days of HS compared to
one day of HS treatment but was underpowered [41], while two
trials showed no beneficial effects for HS treatment compared to
standard supportive care [42,43]. In most studies, HS was adminis-
tered in combination with bronchodilator agents because of the
fear for HS induced bronchospasms. But a retrospective cohort
study focusing on the use of 3% HS without bronchodilators
reported only one bronchospasm among 377 included children
[44]. In severe bronchiolitis, one retrospective study including
104 children admitted to pediatric intensive care unit (PICU) for
mechanical ventilation reported both a decreased duration of res-
piratory support and length of PICU stay in favor of HS [45]. Again,
this might implicate a more prominent role for mucus obstruction
in the pathobiology of viral bronchiolitis in children necessitating
PICU admission. The AAP guideline on the treatment of bronchioli-
tis takes a neutral position on this topic and does not give recom-
mendations on the use of HS in hospitalized children [31].

Although children suffering from bronchiolitis may present
with wheezing in the acute phase, the respiratory distress origi-
nates from to small airway inflammation with extensive mucus
plugging and (in most cases) not from bronchospasms. Random-
ized controlled trials show no significant benefits from nebulized
albuterol for bronchiolitis and a Cochrane review from 2014
reported no benefits in terms of oxygen saturation or clinical
scores [46]. A single study evaluating the effects of epinephrine,
levalbuterol, and racemic albuterol/salbutamol in mechanically
ventilated children with bronchiolitis found a statistically signifi-
cant, but clinically futile effect on airway peak pressures [47]. As
such, the AAP advises against the use of bronchodilators for viral
bronchiolitis [31] and a recent clinical study reporting no nega-
tively affected clinical outcome after decreased use of albuterol
affirms this recommendation [48].

Surfactant (mucokinetic) is essential for normal small airway
function and prevention of alveolar collapse. In health, surfactant
decreases the adhesive interaction between the cilia and mucus.
This enables effective mucociliary clearance as it allows the cilia
to beat without becoming entangled in the airway mucus [49]. A
decreased amount of airway phosphatidylcholine and impaired
surfactant function in children suffering from bronchiolitis is
reported [50,51]. This may be worse in severe cases of children
who are in need of mechanical ventilation, as they suffer from
more extensive airway inflammation [52]. A relationship between
clinical recovery from bronchiolitis and improved surfactant activ-
ity is suggested [52]. To date, no clinical trials on the efficacy of
exogenous surfactant administration in children hospitalized for
mild to moderate bronchiolitis have been published. For children
admitted to the PICU for bronchiolitis necessitating invasive venti-
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lation, three randomized controlled trials have been published. A
2015 Cochrane review indicated favorable effect for duration of
mechanical ventilation and PICU stay [52,53], but only included a
low number of subjects. The current AAP guideline does not
include a recommendation regarding the use of nebulized surfac-
tant for bronchiolitis [31].
PLASTIC BRONCHITIS

Plastic bronchitis is a rare airway disorder defined by the pres-
ence of cohesive (rubbery) and branching casts that fill the airways
[54]. This is different from mucus plugging where large, friable,
non-branching phlegm contains mucin, inflammatory cells, and
often bacteria. Although mucus plugs can be quite large, they do
not have the extensive branching characteristics and rubbery tex-
ture of plastic bronchitis casts. They represent completely different
etiologies. As one example, although extensive mucus plugging is
common in patients with both CF and non-CF bronchiectasis, plas-
tic bronchitis has never been reliably reported in patients with
either of these disorders.

Plastic bronchitis is now identified as either being lymphatic or
non-lymphatic in origin. The older classification systems that
include inflammatory vs. non-inflammatory casts or Type 1 vs.
Type 2 plastic bronchitis [55] were abandoned over 15 years ago
when it was demonstrated that all forms of plastic bronchitis have
some degree of inflammation. However, it is true that the non-
lymphatic (or eosinophilic) plastic bronchitis has more inflamma-
tory cells than classic or lymphatic plastic bronchitis [56].

Lymphatic plastic bronchitis appears to be the most common
form of this disorder. It is most often reported in children and
young adults with congenital heart disease, often after Fontan sur-
gery and repair of single ventricle physiology. Plastic bronchitis is
reported to occur in 3–4 % of these patients although the preva-
lence is probably under recognized [53]. As well described in
another paper in this issue by Dr. Itkin and colleagues, there are
characteristic abnormalities of the thoracic duct and lymphatic
drainage that lead to plastic bronchitis when pulmonary vascular
pressures are compromised.

Plastic bronchitis casts can be seen in some patients with sickle
cell acute chest syndrome [57], primary lymphatic abnormalities,
and following primary lymphatic malignancy. These lymphatic
associated casts contain some cells, almost no fibrin, but extensive
and congealed lymph. Because of this, classic mucolytics, peptide
mucolytics, and fibrinolytic drugs are only partially effective in
treating this disorder.

Eosinophilic plastic bronchitis produces branching casts that
contain eosinophils and eosinophil degradation products including
Charcot-Leyden crystals. Eosinophilic plastic bronchitis tends to
occur in older children and young adults most of whom have a his-
tory of asthma and allergies [53]. These casts tend to occur in one
branch of the airway and to reoccur only in that airway branch.
Although this condition bears some resemblance to severe asthma
where there is extensive mucus obstruction, even those patients
have asthma tend to have relatively mild disease. In some respects,
this disease is more like other eosinophilic diseases such as eosino-
philic esophagitis.

It has been difficult to evaluate the effectiveness of mucoactive
medications for the treatment of plastic bronchitis. There are rela-
tively few subjects available for study in any one center leading to
reports of individual case interventions. Also, the frequent confu-
sion between plastic bronchitis and mucus plugging in those less
familiar with these conditions makes it unclear which disorder
has been treated.

Lymphatic plastic bronchitis does not respond to either classic
or peptide mucolytics which should not be surprising as there
appears to be little if any polymeric mucin or DNA in these casts.
Tissue plasminogen activator (tPA) has been used acutely to
degrade casts in patients with airway obstruction who are unable
to tolerate bronchoscopy [58]. However, tPA should be considered
a temporizing measure as it leads to extensive airway
inflammation.

Tissue Factor activation has been associated with plastic bron-
chitis and so inhaled heparin has been used as chronic therapy to
act both as an anti-inflammatory agent and to inhibit Tissue Factor.
This therapy has met with variable success and appears to be most
effective as a temporizing measure to prevent the formation of
casts following bronchoscopic removal. There is no evidence for
the effectiveness of inhaled hypertonic saline, NAC, steroids, salbu-
tamol, or other medications for the treatment of lymphatic plastic
bronchitis.

Eosinophilic or non-lymphatic plastic bronchitis often responds
to corticosteroids administered in high dose or as pulse therapy.
There is no proven effectiveness for the use of NAC, dornase alfa,
hypertonic saline or other mucoactive medications for the treat-
ment of non-lymphatic plastic bronchitis. Although it is possible
that some of the newer biologics, particularly those that inhibit
eosinophils, may be effective treatment of non-lymphatic plastic
bronchitis, to our knowledge this has not been studied.
CYSTIC FIBROSIS AND NON-CYSTIC FIBROSIS BRONCHIECTASIS

A major feature of cystic fibrosis lung disease is mucus accumu-
lation resulting in airway obstruction. Cystic fibrosis (CF) is caused
by mutations in the cystic fibrosis transmembrane ion regulator
(CFTR) protein gene, resulting in decreased chloride and bicarbon-
ate secretion at the apical cell membrane of airway epithelial cells.
This decreased anion secretion, coupled with CFTR-mediated
increased sodium absorption via the epithelial sodium channel
(ENaC), results in higher partial osmotic pressure and compression
of the airway surface liquid height [59]. This reduction of the air-
way surface liquid height results in reduced ciliary beat frequency
and thus impaired mucociliary clearance, in turn resulting in
mucus plug formation and small airway obstruction [59]. These
changes in the airway mucus clearance, together with the primary
CFTR defect, result in repeated cycles of infection and inflamma-
tion, bronchiectasis, and progressive loss of lung function [60].
Ameliorating these CFTR dysfunction related changes to airway
mucus is thus an important therapeutic strategy in CF.

The first class of therapeutics addressing abnormal airway
mucus in CF is those that directly hydrate the mucus. Depletion
of the airway surface liquid occurs through decreased CFTR-
mediated fluid secretion with concomitant fluid absorption via
the epithelial sodium channel (ENaC). Thus, one therapeutic strat-
egy in CF lung disease is ‘‘rehydration” of the airway surface liquid
by inhaling hyperosmolar agents. The premise of this class of ther-
apies is that the airway surface liquid is pulled into the airway
from the osmotic gradient generated [61]. The most widely used
is aerosol hypertonic saline as a 7% sodium chloride solution
[62]. Hypertonic saline, administered as an inhalation therapy
twice daily, increases mucociliary clearance but not lung function
in adults with CF [63]. In a double-blind, randomized control trial
of inhaled hypertonic saline and isotonic saline in adults with CF,
hypertonic saline failed to improve lung function but resulted in
reduction of pulmonary exacerbations [64]. More recently, in the
Saline Hypertonic in Preschoolers (SHIP) study, inhaled hypertonic
saline was shown to improve the lung clearance Index, a marker of
ventilation homogeneity, in children with CF aged 3–6 years [65].
Mannitol, which is a monosaccharide and is inhaled as a dry pow-
der, has also been used in a similar fashion in CF and it improves
lung function [66,67] and surface properties of CF sputum [68].
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In non-CF bronchiectasis, the role of inhaled hyperosmolar therapy
is less clear. Hypertonic saline failed to improvements in exacerba-
tion rate, lung function, and quality of life when compared to
inhaled isotonic saline in a 12-month clinical trial [69]. Similarly,
dry powder mannitol failed show improvement in function or res-
piratory symptom assessment over placebo [70].

Another therapeutic strategy to rehydrate the airway surface
liquid is targeting the epithelial sodium channel (ENaC). ENaC is
an ion channel expressed on the apical surface of airway epithelial
cells that conducts the resorption of sodium ions and water from
the epithelial lumen into the epithelial cell [71]. In a CFTR deficient
state there is evidence to suggest hyperabsorption of sodium and
water via ENaC, which results in further depletion of the airway
surface liquid [72]. There are ongoing efforts to develop ENaC inhi-
bitors as potential therapeutics in CF to improve airway mucus and
mucus clearance, though none are approved at the time of this
review article.

CF airway mucus has abnormal viscoelastic properties [73] in
part due to increased DNA and filamentous actin [74]. Another
therapeutic strategy to improve airway mucus properties and
enhance mucus clearance is to ‘‘thin” airway secretions with muco-
lytic and sputum-lytic agents. Dornase alfa has been widely
adopted as an inhaled therapy in CF. Dornase alfa improves CF air-
way mucus properties by enzymatically degrading DNA, resulting
in a decrease in mucus viscosity [21] and improvement in lung
function [75]. While dornase alfa has been shown to be clinically
beneficial in CF lung disease, it has been shown to be harmful in
non-CF bronchiectasis, with increased risk of exacerbations and
decrease in lung function when compared to placebo [76]. Another
proposed mucolytic therapy in CF is N-acetylcysteine, which dis-
rupts the mucus architecture through hydrolysis of the disulfide
bonds tethering mucus strands. However, there are no studies to
date to show clinical benefit in CF lung disease [77].
ASTHMA

Asthma is a common, chronic inflammatory disorder of the air-
ways that is primarily associated with bronchial hyperresponsive-
ness and intermittent airflow obstruction. Mucus hypersecretion
and airway obstruction by mucus plugs often contribute to disease
symptoms, in particular during exacerbations and especially with
severe, life-threatening or fatal asthma attacks [78–80]. Current,
well-established, asthma medications, including both controller
and reliever therapies such as b2-agonists [81–83], anticholiner-
gics [32,84–86], and corticosteroids [87] have putative mucoregu-
latory activities. However, in the clinical evaluation of these agents,
any direct mucoregulatory effects (e.g. reduction of mucus secre-
tion or occurrence of mucus plugs) will be difficult to distinguish
from their other more primary bronchodilator and/or
immunomodulatory functions. On the other hand, macrolides,
have been shown to decrease mucus secretion both in vitro and
in vivo [88], and may have a role as an anti-inflammatory to treat
asthma, but their clinical benefit in both children and adults with
chronic asthma has not been established [89].

Mucolytic agents, including dornase alfa and NAC, are not used
in the management of asthma. There is no evidence of a clinical
benefit of dornase alfa in children [90] or adults [91] with moder-
ate to severe asthma. Nevertheless, some clinicians appear to use
dornase alfa in mechanically ventilated children,[92] fueled by
case reports showing improvement agent [93,94]. The administra-
tion of NAC in asthma has met with very limited success, as more
recently assessed in a systematic review and meta-analysis.[95]
Although expectorants, such as hypertonic saline, which is fre-
quently used for sputum induction during bronchial challenge,
have been shown to improve mucociliary and cough clearance in
asthmatics in small studies, [96,97] these agents are currently
not recommended in asthma management and indeed are known
to induce mucus secretion and bronchospasm.

Although these findings reduce the likelihood that mucoactive
agents in current use will play a role in the pharmacological
approach to (pediatric) asthma, increasing insight into asthma
endotypes (e.g. allergic, non-allergic, neutrophilic, cough-
dominant etc), in which different immune cells (e.g. eosinophils
vs neutrophils) function as the primary drivers of asthma patho-
physiology, may establish the relative importance of mucus in
defining clinical signs of illness, particularly in T17 dominant
(non-eosinophilic) asthma. As such, the concept of secretory
hyperresponsiveness, which has strong links to IL-13 and neu-
trophil elastase mediated responses, [11,98,99] may serve as an
anchor point for the use of mucoactive agents in asthma.
PEDIATRIC CRITICAL CARE: MECHANICALLY VENTILATED
CHILDREN

Children with acute respiratory failure undergoing invasive
mechanical ventilation in the pediatric intensive care unit (PICU)
comprise a patient group highly vulnerable for airway obstruction
by phlegm. Airway obstruction in these children increases the risk
of atelectasis, ventilator-associated pneumonia and need for high
peak airway pressures. At the same time, an indwelling endotra-
cheal tube provides an opportunity for new local drug delivery
for mucoactive agents [100,101].

Disappointingly, few randomized controlled studies have so far
studied the effectiveness of mucoactive agents during invasive
mechanical ventilation in an either specific or general PICU popu-
lation. McKinley et al. have investigated the effect of no saline ver-
sus 0.225% or 0.9% saline installation before routine endotracheal
suction to remove phlegm in 427 children receiving ventilator sup-
port [102]. However, in this non-blinded trial, no statistically sig-
nificant differences in duration of mechanical ventilation, oxygen
therapy or PICU stay between the groups were found. Similarly,
Shein et al. have focused on expectorants by studying routine neb-
ulization with hypertonic (3%) saline versus normal (0.9%) saline in
a pilot study [103]. With a very small sample size (n = 18), they
found no differences between the groups for a number of out-
comes, including duration of mechanical ventilation or chest X-
ray atelectasis score, as well as respiratory mechanics parameters
before and after intervention. Finally, Riethmueller and co-
workers studied the mucolytic agent aldornasfa versus normal sal-
ine in 88 mechanically ventilated children with an age of 0–2 years
after cardiac surgery [104]. Nebulization with dornase alfa resulted
in a statistically significant reduction in duration of ventilator sup-
port by approximately one day, as well as a trend (p = 0.051)
towards improved chest X-ray atelectasis scores. However, the pri-
mary endpoint of this study, re-intubation incidence, was not sig-
nificantly different between the groups.

These results do not make any recommendations on routine
mucoactive medication strategies for PICU patients possible. They
merely reveal the need for further randomized trials in this field.
With this, we need to realize that subgroups of PICU patients either
with or without active respiratory inflammation and infection may
react differently to expectorants versus pure mucolytics. As such,
better insight into the dynamics of mucus and phlegm viscoelastic
properties and contents (e.g. extracellular DNA, proteins) during
the course of mechanical ventilation for pediatric critical illnesses
is highly relevant.
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CONCLUSION & FUTURE RESEARCH DIRECTIONS

A characteristic of many airway diseases is secretion retention.
Although various mucoactive medications, with diverse mecha-
nisms of action, have been studied as potential therapies, there
are few well controlled clinical studies supporting their use; espe-
cially for older medications. There has been a renewed interest in
testing existing drugs and developing new medications targeting
specific abnormalities in mucus clearance. This is driven, in large
part, by a better understanding of the importance of secretion
clearance and the mechanism(s) of action of mucoactive medica-
tions as well as a better understanding of how mucus secretion
and clearance changes with disease type and disease activity.
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