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Measurement of respiratory rate using wearable devices and
applications to COVID-19 detection
Aravind Natarajan 1✉, Hao-Wei Su1, Conor Heneghan1, Leanna Blunt1, Corey O’Connor1 and Logan Niehaus1

We show that heart rate enabled wearable devices can be used to measure respiratory rate. Respiration modulates the heart rate
creating excess power in the heart rate variability at a frequency equal to the respiratory rate, a phenomenon known as respiratory
sinus arrhythmia. We isolate this component from the power spectral density of the heart beat interval time series, and show that
the respiratory rate thus estimated is in good agreement with a validation dataset acquired from sleep studies (root mean squared
error= 0.648min−1, mean absolute error= 0.46min−1, mean absolute percentage error= 3%). We use this respiratory rate
algorithm to illuminate two potential applications (a) understanding the distribution of nocturnal respiratory rate as a function of
age and sex, and (b) examining changes in longitudinal nocturnal respiratory rate due to a respiratory infection such as COVID-19.
90% of respiratory rate values for healthy adults fall within the range 11.8−19.2 min−1 with a mean value of 15.4 min−1. Respiratory
rate is shown to increase with nocturnal heart rate. It also varies with BMI, reaching aminimum at 25 kg/m2, and increasing for
lower and higher BMI. The respiratory rate decreases slightly with age and is higher in females compared to males for age <50
years, with no difference between females and males thereafter. The 90% range for the coefficient of variation in a 14 day period for
females (males) varies from 2.3–9.2% (2.3−9.5%) for ages 20−24 yr, to 2.5−16.8% (2.7−21.7%) for ages 65−69 yr. We show that
respiratory rate is often elevated in subjects diagnosed with COVID-19. In a 7 day window from D−1 to D+5 (where D0 is the date
when symptoms first present, for symptomatic individuals, and the test date for asymptomatic cases), we find that 36.4% (23.7%) of
symptomatic (asymptomatic) individuals had at least one measurement of respiratory rate 3 min−1 higher than the regular rate.
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INTRODUCTION
It is well known that heart rate varies with respiration, increasing
during inhalation, and decreasing during exhalation. This modula-
tion of the heart rate in response to respiration is known as
Respiratory Sinus Arrhythmia (RSA), and is associated with the
efficiency of pulmonary gas exchange1–3. RSA thus manifests as
excess power at the respiration frequency, making it possible to
infer the respiratory rate from heart beat interval data.
Unlike other vital signs such as pulse rate and blood pressure,

the respiratory rate can be consciously altered by a patient who is
aware of the measurement being made, potentially resulting in
flawed recordings. The respiratory rate is a valuable metric in
determining clinical deterioration4,5 and an increase of 3–5min−1

can indicate deterioration4. The heart rate to respiratory rate ratio
and respiratory rate to oxygen saturation ratio have been shown
to be useful indicators in predicting the duration of hospitaliza-
tion6. In a study of patients admitted to the hospital with
pneumonia from 2010 to 2012, it was shown that those with a
respiratory rate in excess of 27 min−1 had an odds ratio of 1.72 for
in-hospital death7. The respiratory rate factors into the CURB-65
score for predicting mortality in community-acquired pneumonia8,
as well as during epidemics9. Elevated respiratory rate values
(>27min−1) have been shown to be predictive of cardiopulmon-
ary arrest10. Increased respiratory rate factors into early warning
scores meant to assess the likelihood of a patient needing critical
care11–13. The respiratory rate has also been shown to be a useful
biomarker for COVID-19 detection14,15. Despite these findings, the
respiratory rate is not always recorded while monitoring patients,
and may be considered a neglected vital sign6,16,17.

The clinical value in measuring respiratory rate, and the growing
interest in wearable devices provides a valuable opportunity in the
field of digital health. Wearable devices can compute the
respiratory rate during sleep, thus obtaining measurements that
are made without the conscious knowledge of the user.
Commercial wearable devices accomplish this through photo-
plethysmography (PPG)18–20, usually at a single point of contact,
either on the wrist (smartwatches, trackers, straps) or the finger
(rings). Respiration modifies the PPG time-series signal in a
number of ways21–23. In this work, we focus on the RSA feature,
i.e., the frequency modulation of the PPG.
Karlen et al.22 computed the respiratory rate from PPG from

short time segments of 32s, with applications in the diagnosis of
childhood pneumonia. In a study involving both children and
adults, they found agreement with capnometry measurements up
to respiratory rates of ~45 min−1, and reported a root mean
squared error of 3 ± 4.7 min−1 over the range of their measure-
ments. Schäfer and Kratky23 compared different techniques to
estimate respiratory rate from time segments of 5 min, and found
a mean absolute error of 0.84 min−1 in young subjects, and
1.5 min−1 in elderly individuals. Bian et al.24 used deep learning
techniques to estimate the respiratory rate using PPG, from 1min
long time segments, obtaining a mean absolute error of 2.5 ±
0.6 min−1. Shuzan et al.25 used a machine learning approach and
extracted features from PPG segments of size 32s, to estimate the
respiratory rate, with a mean absolute error of 1.91 min−1. Dubey
et al.26 used a spectral kurtosis based method to estimate the
respiratory rate from PPG segments of size 32s, yielding a root
mean squared error of 1.2 ± 0.3 min−1. Dai et al.27 have described
an algorithm to estimate the respiratory rate on smart watches in
the presence of motion. Prinable et al.28 employed a Long Short
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Term Memory architecture to obtain respiratory parameters such
as respiratory rate, interbreath interval, inspiration, and expiration
time. Berryhill et al.29 showed that the respiratory rate computed
by WHOOP wearable devices compared well with polysomno-
graphy (PSG) measurements during sleep in a study involving 32
participants, with low bias (1.8%) and precision error (6.7%).
In the present work, we describe how the respiratory rate may

be inferred from the RSA feature in the power spectral density of
heart beat interval time series data. In contrast with several
previous works, we restrict our analysis to periods of time when
subjects are asleep. We compute power spectra from 5min
segments of data, and average the different 5 min windows over
the course of a night. The respiratory rate estimate is made from
the averaged power spectral density. We thus obtain a single
measurement of respiratory rate, along with an estimated spread,
over the course of a night. We compare our measured values with
validation data obtained from ground truth measurements, and
show that there is good agreement. We examine how the
respiratory rate varies with age and sex, and how much it varies
relative to the mean value over the course of 14 days. We also
investigate its dependence on BMI and heart rate. Finally, we build
upon earlier work15 and show that longitudinal changes in
nocturnal respiratory rate can be a valuable biometric in the
detection and monitoring of COVID-19.

RESULTS
Sleep stages, heart rate variability, and respiratory rate
Sleep consists of three main stages: Light sleep (stages N1 and N2),
deep sleep (stage N3), and REM sleep. Fitbit has developed a
validated algorithm that estimates a person’s different sleep stages
over a night. Fitbit heart rate and sleep measurements have been
studied by an external group who found that Fitbit Charge HR
devices showed a 97% sensitivity and a 91% accuracy in detecting
sleep30. It is known that different stages of sleep are likely to have
varying magnitudes of respiratory sinus arrhythmia31. We believe
that an estimate of respiratory rate during non-REM sleep, or solely
taken from deep sleep (N3) may be more physiologically representa-
tive than an all-stages nocturnal respiratory rate. The sinus
arrhythmia component is contained within the HF band for
respiratory rate values > 9min−1. Thus the HF power can serve as a
proxy for the magnitude of sinus arrhythmia. Let us define the
dimensionless metric HFν=HF/(HF + LF). The value of HFν averaged
over all individuals in deep sleep is found to be HFν,deep= 0.40 ± 0.17
(stated values are mean and standard deviation). In Light sleep, the
equivalent HFν,light= 0.27 ± 0.13, while in REM sleep, we find HFν,REM
= 0.19 ± 0.11. We thus find with our data that HF power is largest in
deep sleep, and least during REM sleep. For the following results, we
ignore REM sleep, and estimate the respiratory rate primarily during
deep sleep if SNRdeep ≥ 2.5 is obtained and during light sleep
(provided SNRlight≥ 2.5) if SNRdeep < 2.5. We note that in the
validation test described in the Methods section, we computed
respiratory rate during all sleep stages since we did not have sleep
stage information for the data collected with the PSG and home
sleep test (HST). A large difference in respiratory rate between sleep
stages is not expected according to Ref. 32–34. However, Ref. 35 found
a statistically significant increase from 16.1 ± 2.0min−1 in non-REM
sleep to 17.9 ± 2.7min−1 in REM sleep (p < 0.05). Ref. 36 also found a
statistically significant difference in respiratory rate among sleep
stages (p < 0.001), with REM sleep having the highest rate (p < 0.01).
We estimated the probability of the algorithm taking 0, 1, 2, 3, 4,

and 5 iterations to estimate the respiratory rate, using a subset of
1000 randomly selected individuals on one night of data (0
iterations means there was either no data, or the signal-to-noise
ratio was found to be too low for a reliable estimate. 14.6% of
measurements had 0 iterations, i.e., no result with deep sleep data,
6.1% of measurements had no result with light sleep data, and

2.6% of measurements had no result with either deep or light
sleep data). For measurements in deep sleep, the fraction of
estimates taking 1, 2, 3, 4, 5 iterations were respectively, 50.8%,
22.6%, 4.2%, 1.3%, and 6.5%. For measurements in light sleep, the
fractions were found to be 50.7, 28.6, 5.7, 1.2, and 7.7%. These
results assume a convergence threshold of 1% between
successive iterations. Note that respiratory rate estimates that
take five iterations may not have attained the required level of
convergence (if the convergence threshold is relaxed to 5%, only
1% of measurements in deep sleep and 0.9% in light sleep
required five iterations).

Variation of respiratory rate with age and sex
Figure 1 shows the distribution of respiratory rate values, with a
bin size of 1 min−1. 90% of values fall in the range 11.8
−19.2 min−1. The 95% range is 11.2−20.0 min−1. The mean of
the distribution is 15.4 min−1 and the standard deviation is
2.35 min−1.
Figure 2a shows the variation of respiratory rate with age and

sex. The black points show the measurements for female
participants, while the green dots represent males. The age
bin size is 5 years, and the error bars are one standard deviation.
The respiratory rate for females is higher than for males for age
<50 yr (p value < 0.001). There is no statistically significant
difference between males and females for age > 50 yr. The mean
respiratory rate for females (males) decreases from 16.7 (15.5)
min−1 in the age group 20–24 yr, to 14.8 (14.8) min−1 in the age
group 65–69 yr, a difference of 1.9 (0.7) min−1 for females
(males) over a span of 50 yr. For age below 50 yr, the Pearson r
correlation coefficient comparing the dependence of mean
respiratory rate with age for females (males) is −0.145(−0.104).
For ages >50 yr, we find r=−0.031(−0.043) for females (males).
Figure 2b shows the coefficient of variance (CoV) (ratio of
standard deviation to the mean) measured over a 14 day period,
and only considering subjects with 10 or more nights of data.
The CoV increases with age, with a Pearson r-correlation
coefficient of 0.132 (0.172) for females (males). The CoV varies
from 4.65% (4.98%) in the age range 20–25 yr to 6.14% (7.41%)
in the age range 65–69 yr for females (males). The difference
between male and female participants is most significant above
age 60 yr (p value < 0.001).

Fig. 1 Distribution of respiratory rate. Distribution of average
nocturnal respiratory rate. 90% of values are between 11.8 and
19.2 min−1.
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Variation of respiratory rate with BMI and nocturnal heart rate
The dependence of respiratory rate with BMI (measured in kg/m2)
is shown in Fig. 3a. The bin size of BMI= 1 and the error bars
represent the standard error of the mean. The respiratory rate
reaches a minimum at BMI ≈ 25. For BMI < 25, the respiratory rate
decreases with increase in BMI, with a Pearson r-correlation
coefficient ≈−0.04. For values 25 ≤ BMI < 35, we see an increase
with BMI, with r ≈ 0.09. For BMI ≥ 35, the correlation coefficient r ≈
0.17. The low correlation is due to a large amount of scatter in the
data. Note that the correlation coefficient was determined from all
the data points, while Fig. 3 shows the average respiratory rate.
Expanding in a Taylor series about the minimum, we find that the
mean respiratory rate R measured in min−1 may be reasonably
modeled as:

R ¼ αBMI þ γBMI ξ
2
BMI; (1)

where αBMI= 15.24, γBMI= 2.95. ξBMI ¼ BMI�25
25 . Eq. (1) is a useful

model over the range of BMI 18−45. Eq. (1) was fitted to the data
points shown in Fig. 3a in the range 18−45 and the fit is shown by
the dotted line (coefficient of determination R2= 0.902).
The variation of respiratory rate with nocturnal heart rate is

shown in Fig. 3b. The heart rate in beats per minute (bpm) is
measured in non-REM sleep. The mean respiratory rate (for all
participants) increases with increase in heart rate. For average
nocturnal heart rate values HR < 65 bpm, the Pearson r-correla-
tion ≈ 0.07, while for H ≥ 65 bpm, we find r ≈ 0.14. It is possible to
model the mean respiratory rate R (measured in min−1)

dependence on heart rate as:

R ¼ αHR þ βHRξHR þ γHR ξ2HR; (2)

where αHR= 15.14, βHR= 1.88, γHR= 4.17. ξHR ¼ HR�60
60 . Eq. (2) was

fitted to the data points shown in Fig. 3b for all participants (male
and female), and is useful over the range 45−85 bpm (coefficient
of determination R2= 0.915). The black and green dashed lines
shown in Fig. 3b are plotted for female and male participants
respectively.

Effect of COVID-19 on nocturnal NREM respiratory rate
In this section, we present results from a subset of the Fitbit
COVID-19 data survey. Let μ and σ be the mean and standard
deviation of the respiratory rate for a specific user, estimated
several days prior to the onset of illness. The Z− score on a given
day Dn may be defined as

ZðDnÞ ¼ RðDnÞ � μ

σ
; (3)

where R(Dn) is the respiratory rate for a specific user on day Dn. For
symptomatic individuals, let D0 be the date when symptoms
present. For asymptomatic users, we set D0 to the test date. Mean
and standard deviation of the respiratory rate are computed using
data from D−90−D−30, only considering users with at least 30 days
of data in this date range. There were 1247 symptomatic
individuals (from a total of 2939) and 133 asymptomatic
individuals (from a total of 297) satisfying this requirement. Figure
4a shows the average z-score measured for symptomatic

Fig. 2 Variation of respiratory rate with age and sex. a This shows
the variation of respiratory rate with age and sex. Females have a
higher respiratory rate on average for ages <50 yr, and no difference
thereafter. b This shows the coefficient of variation over a 14 day
period. Error bars are 1 standard deviation.

Fig. 3 Variation of respiratory rate with BMI and heart rate. a
Respiratory rate dependence on BMI. The lowest value occurs at a
BMI of ~25. b Respiratory rate variation with nocturnal heart rate
measured in non-REM sleep (black and green curves are for females
and males, respectively, the red curve is for all participants). Error
bars show the standard error of the mean.
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individuals. The Z-score ≈ 0 for days <D−14, but increases there-
after, reaching a peak on D+2, i.e., two days following the day
when symptoms first present. Interestingly Z does not fall off to
zero, but instead approaches a constant between D+14 and D+28.
Next, we investigate the likelihood that a randomly selected

symptomatic individual will receive an anomalously high respira-
tory rate value on a specific day. Let us consider a 7 day window,
and compute the probability that a subject will receive N ≥ N*

respiratory rate values satisfying Z ≥ 2.326 (this threshold corre-
sponds to a p-value of 0.01 for a 1-tailed test. We are only
concerned with values above the mean). Figure 4b shows the
results for 7-day windows centered from D−28 to D+28, only
considering subjects with all 7 days of valid data in the window.
Shown are probabilities for N*= 1, 3, and 5. Figure 4c shows the
effect of fever which is known to increase the respiratory rate37.
The red data points show the probability for N*= 1 for
symptomatic individuals who presented with a fever, while the
black data points show the same probability for individuals who
did not list fever as a symptom. Figure 4d considers the respiratory
rate measured for asymptomatic individuals. The plot shows the
probability for N*= 1, as a function of window center. In all cases,
the error bars represent the standard error of the mean. For plots
(b), (c), and (d), we approximated the standard error of a count as
the square root of the count.
The increase in respiratory rate may also be quantified by

means of the effect size. Let us consider data from symptomatic
individuals, in a 7 day window several days prior to the
appearance of symptoms. The period from D−24 to D−18 serves

as the control. Let us also consider a 7 day window during which
symptoms are likely to manifest, i.e., D−1 to D+5. The effect size
(Cohen’s d) for each individual may be computed as38,39:

d ¼ μ1 � μ2
σ

; (4)

where μ1 and μ2 are the mean respiratory rate values for the two
time windows, and σ is the pooled standard deviation:

σ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N1 � 1ð Þσ2
1 þ N2 � 1ð Þσ2

2

N1 þ N2 � 2

s

: (5)

N1 and N2 are the number of days of data in each window. σ2
1 and σ2

2
are the variances of the data in the two windows. We computed the
effect size for each individual (provided they had at least 5 days of
data in the selected 7 day period) and the distribution of effect sizes
is shown in Fig. 5 (normalized to unit area). The mean effect size is
+0.70 and the standard deviation is 1.2.
We have earlier computed typical values of coefficient of

variance (CoV) over a 14 day period and found mean values in the
range 4–6% for age <60 yr. It is instructive to compare the CoV of
healthy individuals with those with symptomatic COVID-19. We
use data in the date range D−27−D−14 to simulate a 14 day
healthy period. Let us also consider the date range D−6−D+7 as a
14 day period during which COVID-19 symptoms may affect
biometrics. We computed the CoV for each individual in these
time windows provided they had 10 or more data points in the
selected window. The comparison of the CoV for these periods is

Fig. 4 Impact of COVID-19 on respiratory rate. a This shows the dimensionless z-scored respiratory rate in symptomatic individuals, with day
relative to the start of symptoms (Day 0 is the day when symptoms present). b Measures the probability of receiving N ≥ N* anomalously high
values in a 7 day window centered on day D, for N*= 1, 3, 5. The effect of fever is seen in c. The variation of respiratory rate for asymptomatic
individuals is shown in d. Error bars show the standard error of the mean.
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shown in Fig. 6 (both curves are normalized to unit area). The blue
curve shows the CoV when the participants are presumed healthy,
and peaks around ≈4% (mean= 5.05%, std dev= 2.7%). The red
curve is the CoV during illness, and shows a larger spread in values
compared to the blue curve (mean= 7.9%, std dev= 4.3%).

DISCUSSION
The key findings of the present work may be summarized as follows:

1. The respiratory rate during sleep may be reliably obtained
from photoplethysmography using a smartwatch or tracker.
90% of nocturnal respiratory rate values lie in the range 11.8
−19.2 min−1.

2. There is a statistically significant difference in respiratory
rates between male and female subjects for age <50 yr, with
no difference in sex thereafter.

3. The coefficient of variance in a 14 day period is small, with
mean values between 4% and 6% for age <60 yr. The
coefficient of variance shows a statistically significant
difference between males and females for age > 60 yr with
no difference in sex for younger individuals.

4. There exists a correlation between respiratory rate and
nocturnal heart rate, and with body mass index (BMI). On
average, the respiratory rate is elevated for larger values of
nocturnal heart rate, and for larger values of BMI. The
respiratory rate is also slightly elevated for underweight
individuals (low BMI).

5. On average, the respiratory rate is elevated during illness.
Using COVID-19 as an example, we found that 36.4% (23.7%)
of symptomatic (asymptomatic) individuals had a respira-
tory rate ≥3min−1 in excess of their mean value in the time
window D−1–D+5 (where D0 is the date when symptoms
present for symptomatic individuals, or the test date
for asymptomatic cases). Comparing respiratory rates for
symptomatic individuals in the time window D−1−D+5 to
values in the period D−24−D−18, we find a mean effect size
of +0.70, implying that the median value of respiratory rate
during illness would rank at the 76th percentile among
respiratory rate values in the healthy period40.

We computed the power spectral density from the heart rate
interbeat interval time series every 5 min. These individual spectra
were then aggregated over a night, and the respiratory rate was
estimated from the averaged power spectral density. We validated
our technique with the help of nasal cannula data consisting
of 52 measurements obtained from 28 participants with apnea-
hypopnea index < 30. The bias (mean of the predicted rate—true
rate) was found to be −0.244min−1 (−1.67%) while the RMS
error was 0.648min−1 (4.18%). The mean absolute error was
0.460min−1, and the mean absolute percentage error was 3%. The
absolute value of bias is larger for low values of respiratory rate.
For rates lower than 16min−1, the bias is −0.41min−1, while for
rates ≥16min−1, the bias is 0.
We also reported on respiratory rate data for 10,000 partici-

pants, ranging in age from 20 to 69 years, for both male and
female participants. Respiratory rates measured in deep sleep (or
light sleep when deep sleep data was unavailable) for adults
commonly ranges from 11.8 min−1 - 19.2 min−1 (90% range, see
Fig. 1). For both males and females, respiratory rate values are
inversely correlated with age. From ages 20 to 50 yr, the Pearson r
correlation coefficient for female (male) participants was found to
be −0.145(−0.104), while for ages > 50 yr, the corresponding
values for females (males) was −0.031(−0.043). The coefficient of

Fig. 5 Effect size distribution. Distribution of Cohen’s d effect sizes
comparing respiratory rates in two-time windows, for symptomatic
individuals: A 7-day period from D−24 to D−18, and a 7 day window
from D−1 to D+5. We only consider subjects with at least 5 days of
data in the 7 day period. The curves are normalized to unit area. Also
shown is a gaussian fit to the data. The vertical line indicates the
mean value of the effect size distribution (+0.70).

Fig. 6 Distribution of coefficient of variance. Distribution of coefficient of variance, for symptomatic individuals. The blue points are for the
14 day time window (D−27−D−14), while the red points are computed for the time period (D−6−D+7). We only consider subjects who have at
least 10 days of the data in the 14 day window. The curves are normalized to unit area.
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variation on the other hand, increases with age (Fig. 2b). The
coefficient of variation is higher in males compared to females, for
ages greater than 60, with no difference for age <60 yr. From age
20–24 yr, the coefficient of variation measured over a 14 day
period range for female (male) participants ranges from 2.3 to
9.2% (2.3–9.5%) (90% range). For subjects in the age range 65−69
yr, the 90% ranges for female (male) participants are 2.5–16.8%
(2.7–21.7%). Respiratory rate varies with BMI, reaching a minimum
at a BMI of 25 kg/m2. It also varies with heart rate, increasing with
increase in heart rate measured during non-REM sleep. We note
however that BMI and heart rate are not independent of each
other41.
We see an interesting behavior in the way the respiratory rate

varies with age for female and male participants (see Fig. 2a).
Female subjects have a higher respiratory rate than males for age
< 50 yr, while for age > 50 yr, there is no difference between males
and females. Female participants on average, have a higher heart
rate than males42, and we have shown that the respiratory rate is
elevated in individuals with a higher heart rate (Fig. 3b). To
determine whether the increased heart rate in females could
contribute to the increased respiratory rate, we use Eq. (2) to
obtain

ΔR ¼ ΔH60 βHR þ 2γHR H60 � 1ð Þ½ �; (6)

where HR is the heart rate, H60= HR/(60 bpm), βHR and γHR are as
defined in Eq. (2), and R is the mean respiratory rate for individuals
with a heart rate HR. For the age group 20−24 yr, we find those
male participants have 〈H60〉= 1.0031. For female participants in
the same age group, we find 〈H60〉= 1.1123, giving us 〈ΔH60〉=
0.1092. The correlation between heart rate and respiratory rate
implies that the increased heart rate can account for at most an
excess of ΔR ≈ 0.208 min−1. The true difference in respiratory rates
between females and males in this age group is 1.2 min−1 (Fig. 2
(a)). The increased heart rate in females can thus account for only
17.3% of the difference between the respiratory rates of females
and males. As a further test, we considered heart rate bins of 5
bpm, and selected male and female individuals within the same
age bin, and the same heart rate bin. With 280 female, and 357
male participants in the heart rate bin 57.5−62.5 bpm, and the
age bin 20−24 yr, we find a mean respiratory rate of 16.5 min−1

for females, and 15.6 min−1 for males, with an effect size of 0.38,
and a p-value of 1.54 × 10−6. Similar computations can be made
for other heart rate bins and age groups. While the effect size is
slightly decreased compared to the case where the heart rate is
unrestricted, the increased nocturnal heart rate in females cannot
solely explain the increase in respiratory rate. A striking feature
seen in Fig. 2(a) is the rapid decrease in the mean respiratory rate
in female participants around the age ≈50 yr. This leads us to
hypothesize that sex hormones are responsible for the difference
in respiratory rates between men and women. It is well known
that some sex hormones such as progesterone act as respiratory
stimulants43–45. Since progesterone secretion decreases after
menopause43,45, it is likely that the change in mean respiratory
rate seen in females at age ≈50 yr is associated with menopause.
Finally, we studied how respiratory rate is affected by COVID-19.

We computed respiratory rates for 3236 uses of Fitbit devices with
test dates ranging from Feb 28–Nov 13, 2020, consisting of
2939 symptomatic and 297 asymptomatic individuals. Let D0 be
the data when symptoms first present, for symptomatic indivi-
duals, and the date when the COVID-19 test was taken, for
asymptomatic individuals. We estimated the mean and standard
deviation of the respiratory rate from D−90 to D−30, only
considering individuals with 30 or more days of data within this
date range. We obtained the mean and standard deviation for
1247 symptomatic individuals (677 who presented with a fever,
and 570 who did not) and 133 asymptomatic individuals. The
Z− scores for each day from D−28 to D+28 are shown in Fig. 4(a)
averaged over participants. For days up to D−14, the Z-scores are

consistent with zero, but increase thereafter, reaching a maximum
around ~D+2. The Z-scores decrease for larger Dn, but interest-
ingly, they do not fall to zero.
In Fig. 4b, we computed the probability of obtaining N ≥ N*

measurements satisfying Z ≥ 2.326. Let us estimate the noise floor
by averaging the probability in the 14 day period D−28 ≤ d < D−14.
For N*= 1,3, and 5, we find noise floor values equal to 13.4%,
0.88%, and 0.092%, while the peak values are respectively, 59.3%,
23.9%, and 11.1%, yielding peak-to-noise ratios of 4.42, 27.1, and
120.4 respectively. Setting the noise floor as the false positive rate,
and assuming a disease prevalence of 1 per 1000 individuals
per day, we obtain positive predictive values for N*= 1,3,5 to be
0.440%, 2.641%, and 10.76% respectively. For symptomatic
individuals presenting with a fever (Fig. 4(c)), the P(N ≥ 1) plot
peaks at 71.5%, while for symptomatic individuals who do not
present with a fever, the plot peaks at 47.3%. For asymptomatic
individuals (Fig. 4(d)), the plot for N*= 1 peaks at 33.3%. This is
smaller than for symptomatic individuals (59.3%) and for
individuals who present with a fever (71.5%).
Considering the excess respiratory rate ΔR= respiratory rate for

a user on a given day relative to the normal value for that user, we
find that 36.4% (23.7%) of symptomatic (asymptomatic) indivi-
duals recorded a value of ΔR ≥ 3min−1 on at least one day in the
7 day window from D−1 and D+5 (as before D0 is the date when
symptoms present, for symptomatic individuals, and the test date
for asymptomatic individuals). For a larger excess respiratory rate
ΔR ≥ 5min−1, the equivalent percentages for symptomatic
(asymptomatic) individuals are 12.3% (5.1%). It is instructive to
compare these numbers to the excess respiratory rate expected in
a 7 day window, for a population of healthy individuals. Since we
do not have a separate dataset of confirmed healthy individuals,
let us examine the subjects in the symptomatic COVID-19 dataset
on dates far before the start of symptoms. When measured during
the 7 day window from D−24 to D−18, only 4.3% of individuals
received one or more values of ΔR ≥ 3min−1, and only 1.05%
showed one or more values with ΔR ≥ 5min−1. Comparing the
respiratory rate in the two time periods, we find a range of effect
sizes with a mean of+ 0.70 and a standard deviation of 1.2. This
implies that an average respiratory rate value in the sick window
would be greater than 76% of respiratory rate values in the control
window40. The distribution of effect sizes is show in Fig. 5. We also
showed that the coefficient of variance shows a broader
distribution when computed during illness (Fig. 6).
There are several limitations to the present work. The technique

we have described cannot be applied when there are motion
artifacts, i.e., when subjects are moving about. The algorithm only
generates one estimate of respiratory rate over the whole night
(as well as a measure of the spread), and we cannot, therefore,
make accurate estimates of quantities such as respiratory rate
variability. The signal quality derived from PPG is also likely to be
inferior to ECG from a chest strap, although trackers and
smartwatches are far more comfortable to wear. The dataset of
10,000 participants consisted of individuals who were randomly
selected. We did not attempt to exclude subjects with significant
sleep apnea (for whom "average” respiratory rate may be hard to
define). Age, sex, and BMI were provided by the user, and we are
unable to verify these demographic data. We have assumed that
participants were healthy during the 2 week period of study, but
we do not have evidence of this. This limitation is even more
important for the COVID-19 study. Although we have assumed
that individuals are healthy several days prior to being diagnosed
with COVID-19, we do not have any way to confirm this. The date
of COVID-19 diagnosis was provided by the participants them-
selves, and errors in this date can affect our results. Nevertheless,
the results presented in this work establish that respiratory rate is
a valuable health metric that can be reliably computed using
wearable devices.
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METHODS
This study uses three data sets (see Table 1 for a summary) to both validate
the core algorithm, and to report on interesting population and subject
level longitudinal trends. We first explain the origin and scale of the three
data sets.

Sleep study respiratory rate validation data set
We conducted 2 experiments to validate the respiratory rate algorithm.
Experiment A was conducted at Sleep Med in Columbia, SC, from Oct 17,
2019 to Nov 6, 2019, and used a polysomnography device (Alice 5).
Experiment B was conducted remotely, by shipping equipment to the
homes of participants, from March 9, 2020 to May 29, 2020, and used a
Home Sleep Test (Resmed Apnealink). Both experiments were approved by
an Institutional Review Board (Solutions IRB). Participants provided
informed consent for their data to be collected and used for research
purposes. Participants in Experiment A wore Fitbit devices on both wrists,
while participants in Experiment B wore a Fitbit device on one wrist only.
We excluded participants with severe sleep apnea (Apnea-Hypopnea
Index ≥ 30). 52 measurements were obtained from 28 individuals (15
female, 13 male) between the ages of 32 and 71 (mean age was 48.9 yr
with a standard deviation of 9.5 yr). More details regarding the data
collection may be found in Supplementary Table I.

General population nocturnal respiratory rate data set
The dataset used to explore correlations between respiratory rate and age,
sex, BMI, and heart rate consisted of 10,000 users of Fitbit devices who
reside in the United States or Canada, and who wore their devices to sleep
in the date range Nov 1–14, 2020. We collected sleep and heart rate
variability data from these Fitbit users during this 14 day period. The data
were collected and anonymized consistent with Fitbit’s terms and
conditions. The dataset consisted of male and female individuals in the
age range 20–69 with 500 subjects of each sex and each of 10 equally
spaced age bins (5 year age bin size), yielding a total of 135,947 usable
measurements. The mean Body Mass Index (BMI) of the participants was
27.8 ± 5.2 for males and 27.5 ± 6.4 for females, where the quoted error bar
is 1 standard deviation. The main Fitbit devices used to collect these data
include Charge 3 (22.5%), Versa 2 (20.0%), Inspire HR (11.3%), Versa
(10.0%), Charge 2 (9.62%), and Charge 4 (7.68%), with a number of other
devices contributing <5% each.

Longitudinal nocturnal respiratory rate data set from COVID-
19 subjects
The Fitbit COVID-19 survey is an ongoing survey of Fitbit users residing in
the United States or Canada. Participants provide information on whether
they were diagnosed with COVID-19, and whether they experienced
symptoms. The data for the COVID-19 survey were collected with
Institutional Review Board approval (Advarra IRB), and participants
provided written consent for their data to used for research purposes.
The data used in the present study comprises a subset, consisting of 3236
individuals with COVID-19 PCR positive test dates (self-reported) ranging
from Feb 28–Nov 13, 2020, with 2,939 symptomatic and 297 asymptomatic
individuals. 77.6% of participants identified as female. The mean age was
42.25 ± 12.35 yr, and the mean BMI was 30.29 ± 7.25, where the stated
errors are 1 standard deviation. More details regarding the Fitbit COVID-19
survey may be found in Ref. 15.

Software
All statistical analyses were performed using standard Python packages
such as NUMPY and SCIPY. The respiratory rate code software was written
in Scala and uses the BREEZE library.

Computation of heart rate variability
Interbeat interval values are computed from the heart beat interval time
series data and assembled into non-overlapping 5min blocks. The data are
cleaned to remove noise due to motion artifacts, electronic artifacts,
missed heart beats, etc. For details on the cleaning and pre-processing
steps, we refer the reader to Ref. 46. Each 5min block of data is resampled
to obtain 512 equally spaced samples allowing us to resolve all frequency
components up to 0.5 × (512/300)= 0.85 Hz. The resolution in frequency
space is 1/300 Hz. The mean of the data in the time window is subtracted,
and the data smoothed with a Hann window. A Fast Fourier Transform is Ta
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applied, and properly normalized to give us the Power Spectral Density
(PSD), which is the power contained per unit frequency. Integrating the
PSD over the range 0.04 Hz - 0.15 Hz gives us the low frequency (LF)
power, while integrating the PSD over the range 0.15–0.4 Hz gives us the
high frequency (HF) power. The PSD for different 5 min segments are
aggregated. The PSD of HRV fluctuations is shown in Fig. 7 for a single
individual and for one night: The plot contains two main components:
background and RSA. To isolate the RSA component, we need to model
the background and subtract it from the power spectrum.

Modeling the background
We set a maximum frequency fmax = 0.5 Hz (corresponding to a respiratory
rate of 30min−1), and discard data at higher frequencies. We also set a
minimum frequency fmin = 0.1367 Hz (corresponding to a respiratory rate
of 8.2 min−1). The power spectrum at frequencies from f0= 1/300 Hz to
fmin is used to determine the noise level. The RSA feature is contained
between two frequencies f 1ð>fminÞ and f 2ð<fmaxÞ which we will determine
iteratively.

1. Low frequency background: The PSD from frequencies f0 to f1 is
modeled by a function of the form log 10½PSD� ¼ c1 þ c2f .

2. High frequency background: The PSD from frequencies f2 to fmax is
modeled by a similar function: log 10½PSD� ¼ c3 þ c4f .

3. The PSD from f1 to f2 is modeled by a patching function:
log 10½PSD� ¼ p1 þ p2f þ p3f

2 þ p4f
3. The parameters p1, p2, p3 and

p4 are fixed to match the end points of the low frequency and high
frequency background regions, as well as the derivatives at the end
points, thus enabling a smooth transition.

Isolating the signal
To begin, we assign reasonable values to f1 and f2, which will be refined in
subsequent iterations. We initialize f 1 ¼ fmin and f2= 0.333 Hz (corre-
sponding to a respiratory rate of 20min−1). In practice, the choice of f1 and

f2 are determined by the expected range of respiratory rates in the
population under study. Signal estimation is performed using the following
steps:

1. The power spectrum is modeled as described earlier, and
parameterized by the variables (c1, c2, c3, c4, p1, p2, p3, p4).

2. The background function is subtracted from the data to obtain the
residuals. The residuals are low pass filtered (we use a median filter
of size 3) to reduce noise, and interpolated (we use a cubic spline) to
maintain the original frequency resolution.

3. The peak of the residuals is identified as ARSA, and the frequency
corresponding to the maximum value= fRSA. Assuming a gaussian
distribution for the RSA feature, we identify a frequency f− < fRSA
such that A(f−)= 0.6065ARSA, as well as a frequency f+ > fRSA such
that A(f+)= 0.6065ARSA. The mean of these two values fresp= 0.5 ×
(f++ f−) is identified as the mean respiratory frequency. The
standard deviation is σresp= 0.5 × (f+− f−). The mean μnoise
and standard deviation σnoise of the residuals from f0 to fmin

Fig. 7 Isolating the RSA component from the PSD. a HRV power
spectral density consisting of background and Respiratory Sinus
Arrhythmia. b Residuals after the background are subtracted.

Fig. 8 Comparison with ground truth measurements. a Respira-
tory rate estimated from the heart beat interval time series data
compared to ground truth measurements. b shows the Bland-
Altman plot comparing the true and predicted values. The bias
(mean of predicted value–true value) is −0.24 min−1 (−1.67%). The
RMS error= 0.65 min−1 and the mean absolute error= 0.46 min−1

(3.0%). The 95% region is shown in yellow.
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are calculated. The signal-to-noise ratio SNR is defined as
SNR ¼ ARSA � μnoiseð Þ=σnoise.

4. f1 is redefined as fresp− 3σresp, and f2 is set to fresp+ 3σresp.

Steps 1–4 are repeated until either successive estimates of fresp agree to
within 1%, or 5 iterations are completed. We restrict our range of
respiratory rates to between 10 and 26min−1. Frequencies much higher
than 26min−1 are hard to resolve due to the rapid fall-off of the power
spectral density with frequency, while resonances at frequencies lower
than 10min−1 may be confused with Mayer wave oscillations47. The values
of (fresp, σresp, SNR) are stored for each individual, for each day, provided
SNR ≥ 2.5. Figure 7b shows the residuals and estimation of the RSA feature.
Also shown is a gaussian with mean fresp and standard deviation σresp.
When aggregating respiratory rate measurements over multiple days,

we adopt a numerical approach: The respiratory rate measurement for any
given day for each individual is treated as a random variable drawn from a
gaussian distribution with mean fresp and standard deviation σresp. We
randomly choose 100 samples from this distribution for each day. The
mean and standard deviation over all samples is then computed. We
follow the same process for averages involving multiple subjects.

Validation of estimated respiratory rate data with ground
truth measurements
We obtained 52 measurements of airflow data, from 28 individuals through
PSG, or a HST. Data were collected from 1 to 3 nights for each participant,
with devices on either one or both wrists (data from the two experiments
were combined, see Supplementary Table I for details). Data from the air
flow sensor were band pass filtered with a fourth-order Butterworth filter
to retain frequencies between 10 and 30min−1. The data were then
analyzed with the help of a spectral peak detection algorithm with a
window size of 51.2s and a step size of 6.4s. The median of all respiratory
rate measurements over the night is computed, and serves as the true
respiratory rate.
Figure 8 shows the comparison between the true respiratory rate

(nocturnal average) and the rate estimated from the peak of the heart beat
interval power spectral density (nocturnal average). Plot (a) shows 52
measurements in the range (10min−1, 26 min−1) with SNR ≥ 2.5, obtained
from 28 individuals with apnea-hypopnea index < 30. The Pearson
correlation coefficient r= 0.9515. Plot (b) shows the Bland-Altman plot of
the difference in measurements (predicted value–true value) plotted
against the average of the two. The bias (mean of the difference between
predicted and true values) is −0.244min−1(−1.67%), and the root mean
squared error is 0.648min−1(4.2%). The mean absolute error is found to be
0.460min−1, and the mean absolute percentage error= 3.0%.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Fitbit’s privacy policy does not permit us to make the raw data or aggregate data
available to third parties including researchers, outside of our web API Oauth 2.0
consent process. For specific questions, contact Fitbit at https://healthsolutions.fitbit.
com/contact/.

CODE AVAILABILITY
We are unable to make our code publicly available. The code makes use of standard
Python and Scala libraries.
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