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Glioblastoma (GBM) is an aggressive type of brain cancer with a poor prognosis for
affected patients. The current line of treatment only gives the patients a survival time of
on average 15 months. In this work, we use genome-scale metabolic models (GEMs)
together with other systems biology tools to examine the global transcriptomics-data
of GBM-patients obtained from The Cancer Genome Atlas (TCGA). We reveal the
molecular mechanisms underlying GBM and identify potential therapeutic targets for
effective treatment of patients. The work presented consists of two main parts. The
first part stratifies the patients into two groups, high and low survival, and compares
their gene expression. The second part uses GBM and healthy brain tissue GEMs to
simulate gene knockout in a GBM cell model to find potential therapeutic targets and
predict their side effect in healthy brain tissue. We (1) find that genes upregulated in the
patients with low survival are linked to various stages of the glioma invasion process,
and (2) identify five essential genes for GBM, whose inhibition is non-toxic to healthy
brain tissue, therefore promising to investigate further as therapeutic targets.

Keywords: glioblastoma, GBM, genome-scale metabolic models, GEMs, systems biology

INTRODUCTION

Glioblastoma (GBM) is an aggressive type of brain cancer. Compared to other tumors originating
in the brain or central nervous system (CNS), GBM has a high incidence rate (3.14 in 100,000) and
low survival estimate, less than 5% of all patients survived 5 years after diagnosis (Ostrom et al.,
2013). Hence, there is an urgent need to reveal the molecular mechanisms underlying GBM and
identify potential therapeutic targets for effective treatment of GBM patients.

Accumulating evidence indicate that GBM is a highly heterogeneous disease, both in terms
of genetic differences and cell of origin (Alcantara Llaguno and Parada, 2016; Wirsching et al.,
2016). However, what seems to be shared among all malignant gliomas is their aggressive and
unique invasion pattern, where single tumor cells migrate away from the primary tumor and invade
surrounding tissue (Goldbrunner et al., 1999). One consequence of this invasion pattern is the
difficulty to surgically remove all tumor cells and the high extent of tumor recurrence (Holland,
2000). In 2000 Hanahan and Weinberg published their first work about the Hallmarks of Cancer,
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where they specify six features acquired during tumor
development that distinguish malignant cancers in general
from normal cells. One of these hallmarks concerns invasion and
metastasis (Hanahan and Weinberg, 2000). Firstly, malignant
cancers have the ability to invade the neighboring tissue.
Secondly, they can spread to other organs and form secondary
tumors, often taking advantage of the bloodstream or lymphatic
system (Strachan et al., 2014). While it is extremely rare to
observe metastasis of gliomas outside the brain, they are
proficient at intra-organ invasion. Glioma cells interact with
their microenvironment and migrate along the pre-existing
architecture in the brain, such as blood vessels and nerve tracts,
adapting their shape to the structure they are moving along.
Hence, invading glioma cells originating from the same tumor
can vary greatly in shape (Cuddapah et al., 2014).

Many of the cell’s systems undergo major reprogramming
as part of the tumorigenesis of GBM, some of the most
significant alterations can be observed in the metabolic system
(Agnihotri and Zadeh, 2016; Ozcan and Cakir, 2016). Metabolism
is the collective name for the many integrated biochemical
reactions in the body that are responsible for the uptake and
conversion of nutrients to energy and building blocks for
the cell as well as elimination of cellular waste. Metabolism
can be divided into catabolism, the breakdown of nutrients
to smaller subunits, and anabolism, the build-up of vital
cellular building blocks such as proteins and nucleic acids
(Maarleveld et al., 2013). In 2011 Hanahan and Weinberg
updated their previous observations about the Hallmarks of
Cancer with four new characteristics shared by all cancers. One
of the new proposed features was reprogramming of energy
metabolism, which includes phenomena such as the well-known
Warburg effect and enhanced glutamine absorption (Hanahan
and Weinberg, 2011). The observed alterations in metabolism as
part of tumorigenesis makes the systems biology tool metabolic
modeling a suitable approach to studying cancer. Systems
biology is an interdisciplinary research field combining both
experimental and computational approaches to study complex
biological systems as a whole, instead of just the constituting
parts (Bosley et al., 2017; Mardinoglu et al., 2018). Advances
within biotechnology has led to the development of new high
throughput analytical techniques producing large amounts of
data. These techniques are often focused on analyzing the
genome, transcriptome and proteome, hence generating various
types of omics data. Interpreting omics data to gain biological
insight is an essential part of systems biology and is done
using statistical analysis, network generation and mathematical
modeling (Nielsen and Hohmann, 2017).

In this work, we defined and systematically investigated
the transcriptomic differences between high and low survival
subgroups of GBM patients from The Cancer Genome Atlas
(TCGA) project using systems biology tools. In addition,
we employed 139 personalized patient-derived genome-scale
metabolic models (GEMs) generated in our previous studies
(Uhlen et al., 2017) and performed network dependent analysis,
reporter metabolite analysis and gene essentiality analysis to
further understand patient heterogeneity from a metabolic
perspective. Finally, we integrated the personalized GEMs into

a generic GEM for GBM and identified new drug targets that
could be used for development of efficient treatment strategies
and validated them with publicly available in vitro and in vivo
experimental results. The workflow of this study is depicted
in Figure 1.

MATERIALS AND METHODS

RNA-Seq Data
We retrieved RNA-seq data of GBM from TCGA project at
the time of the initial release of the Genomic Data Commons
(GDC) platform on June 6, 2016 (Grossman et al., 2016). The
data set included normalized mRNA expression levels for all
protein-coding genes and clinical information (gender, race,
disease status, age, and days lived after diagnosis) for 153 patients.
To ensure anonymity, each patient is only represented by a
TCGA-ID. These IDs are presented in Supplementary Table S5.
Mutational status for the genes EGFR, PDGFR alpha, PTEN, and
TP53 as well as transcriptomic expression the genes EGFR and
PDGFR alpha for each sample was obtained from the cBioPortal
(Brennan et al., 2013).

Differential Gene Expression (DGE)
Analysis
We performed DGE analysis between patients with high and low
survival. At first, the data set was filtered based on the patient’s
status, and only patient’s with vital status “dead” were kept. The
survival grouping was done based on the patient’s number of
registered living days after diagnosis. The low survival group
consisted of the lowest 33% (<231 days) and high survival of
the highest 33% (>465 days). The reason for splitting the data
as such and not at mean survival was to obtain two groups with a
substantial difference in survival, to be able to analyze possible
transcriptomic differences due to differing survival times. The
expression of all protein-coding genes was compared and results
with a pvalue < 0.05 were considered significant. The analysis was
done using the R package DESeq2 (Love et al., 2014) in R (R Core
Team, 2017). The differentially expressed genes were separated
into genes upregulated in the low survival group (log2 fold
change < 0) and genes downregulated in the low survival group
(log2 fold change > 0). Each list of genes were uploaded to the
Database for Annotation, Visualization and Integrated Discovery
(DAVID) (Huang et al., 2009) for functional enrichment analysis.

Co-expression Networks
In order to create co-expression networks, we generated a
similarity matrix by pairwise comparison of all genes in the
initial data set and calculated the Pearson correlation coefficient
for each gene pair. A cutoff for which genes to include in
the correlation network was set to 0.99, meaning that only
the top 1% correlated gene pairs were kept. The network was
constructed from the similarity matrix using the R package
igraph (Csardi and Nepusz, 2006). The same package was
used for clustering highly co-expressed genes by applying the
clustering algorithm Walktrap. Walktrap is a random walk-based
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FIGURE 1 | Overview of study workflow (A) 139 patient-derived genome scale metabolic models (GEMs) were generated by integrating each patient’s expression
data to a generic human metabolic model (Uhlen et al., 2017). The 139 individual GEMs were merged to a generic GBM model. (B) The expression profiles used to
derive the individual GEMs were analyzed to understand the difference between low survival and high survival patients. (C) Essentiality analysis was performed on
the generic GBM GEM to find potential therapeutic targets.

method for computing communities in large networks (Pons and
Latapy, 2006). Clusters containing a minimum of 5 genes with
a correlation coefficient above 0.5 were kept. The co-expression
network was visualized using the open source software platform
Cytoscape, version 3.6.1 (Shannon et al., 2003).

Genome-Scale Metabolic Modeling
We downloaded the 139 patient-derived genome-scale metabolic
models, each specific to one individual patient (Uhlen et al.,
2017) from the BioModels Database (Chelliah et al., 2015) on
January 29, 2018. The models were reconstructed using the
same set of RNA-seq data from TCGA as used for the DGE
analysis above. The reconstruction procedure is described in
Uhlen et al. (2017). These 139 models were merged to generate
a generic GBM model. For import and all subsequent work with
the models the Reconstruction, Analysis and Visualization of
Metabolic Networks (RAVEN) Toolbox (Agren et al., 2013) was
used. RAVEN runs within MATLAB (version 9.3). Additional
installation requirements were MOSEK (version 8.1.0.37, https://
www.mosek.com/downloads/) and libSBML (http://sourceforge.
net/projects/sbml/files/libsbml/5.4.0/stable/).

To explore the similarity between the 139 models, the
Hamming distance between each pair of models was calculated
based on the number of differing reactions (reactions only
present in one of the models). All distances were collected in a
distance matrix (139 × 139) and visualized as a heatmap using
the R-package gplots. Hierarchical clustering was performed on

the distance matrix and the models were divided into two clusters
based on the top split in the dendrogram. Differential expression
analysis between the two clusters was performed as described
above. The significantly differentially expressed genes (p < 0.05)
were divided into those upregulated in cluster 1 (log2FC > 0) and
those upregulated in cluster 2 (log2FC < 0). The lists of genes
were uploaded to the Database for Annotation, Visualization and
Integrated Discovery (DAVID) (Huang et al., 2009) for functional
enrichment analysis.

Essentiality Analysis
In silico gene knockout, essentiality analysis (EA), was performed
on the chosen models (individual and merged GBM GEMs).
Before EA, the model was extended using logic transformation
of model (LTM) to ensure that each reaction in the model was
only associated to one gene (Zhang et al., 2015). Thereafter, EA
was performed using the FastGeneSL command (Zhang et al.,
2015) with maximization of biomass (“growth”) as objective
function. After a list of essential genes was received, it was
investigated whether the knockout of these genes affected the
normal brain GEM, obtained from the Human Metabolic Atlas
(Pornputtapong et al., 2015). As growth and proliferation is
not necessarily the objective of a healthy brain cell another
strategy was used to determine the effect on the normal brain.
The reactions coupled to the essential genes were iteratively
removed from the normal brain GEM and for each removal it
was investigated if the cell was able to carry out 77 pre-defined
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metabolic tasks (Supplementary Table S1; Agren et al., 2014).
These tasks include functions that a working cell should be able
to perform, such as protein and nucleotide synthesis. If the cell
failed to carry out any of the tasks after removal of a gene,
this knockout was considered toxic for the normal brain cell in
addition to the GBM cell.

Reporter Metabolite and Subnetwork
Analysis
A reporter metabolite analysis (Patil and Nielsen, 2005) was
performed based on the results of DGE analysis between the
low and high survival GBM patients. In brief, this method is
used to identify significantly affected metabolites based on the
significance of changes in genes and topology of GEMs. The
DGE results were obtained as described above, and the generic
GBM model generated in house was used as input for reporter
metabolite analysis. The reporter subnetwork was also retrieved
using the previously published method (Patil and Nielsen,
2005) with removal of 20 currency metabolites which connected
to too many reactions. The deleted currency metabolites are
“H2O”, “CO2”, “O2”, “H+”, “HCO3−”, “Na+”, “CoA”, “Pi”,
“PPi”, “AMP”, “ADP”, “ATP”, “NAD+”, “NADH”, “NADP+”,
“NADPH”, “PAP”, “PAPS”, “FAD, ” and “FADH2.”

Gene Knockout Validation
The Avana gene-knockout effects data set was retrieved from
the Supplementary Material of Meyers et al. (2017). The data
set initially contained gene-knockout effects scores estimated
using the algorithm CERES for 342 cancer cell lines. The gene-
knockout effects were obtained by screening with the Avana
sgRNA library. The data set was filtered to only keep the 31
glioma cell lines. The median gene dependency score for each of
the 5 target genes CMPK2, CRLS1, PGS1, SLC22A5, and SOAT1
was calculated and whether these deviated from the average
median gene dependency score for all genes was investigated
using Student’s t-test.

Code
The scripts for analysis of the RNAseq data and the essentiality
analysis are provided at our dedicated GitHub-repository
through the link https://github.com/idalarsson/GEM-for-
GBM.git.

RESULTS

Differential Gene Expression and
Enrichment Analysis
The data set, in its unfiltered format, consisted of expression and
clinical data from 153 GBM patients. The mutation frequency
and transcriptomic expression for a selection of often altered
genes in GBM (TP53, PTEN, EGFR, and PDGFR alpha) for
this data set can be seen in Supplementary Figure S2. The
percentage of samples affected by mutations in these genes are
in accordance with numbers reported for larger GBM cohorts
(Brennan et al., 2013). To investigate if there are any significant

differences in the gene expression between GBM patients with
high and low survival, the data set was divided based on
survival time after GBM diagnosis. Stratification generated two
groups, low (<231 days) and high (>465 days) survival, holding
40 and 41 patients, respectively. The DGE analysis indicated
that 1981 genes were differentially expressed between the two
groups. Out of these, 1154 were upregulated and 827 were
downregulated in the group with low survival compared to the
group with high survival.

To understand the functional importance of these genes,
an enrichment analysis was performed using KEGG pathways
and Gene Ontology (GO) biological process (BP) terms. The
significantly enriched KEGG pathways and a selection of the most
significantly enriched GO BP terms are shown in Figures 2, 3,
respectively. The result of the enrichment analysis for the
upregulated genes indicated that at least a subset of them
act in the glioma invasion process, mainly in the interaction
with the extracellular matrix (ECM) where detachment from
it and breakdown of its components are central (Dou et al.,
2012; Cuddapah et al., 2014; Kundu and Forsberg-Nilsson,
2014). GO BP terms relevant for the conclusion are for
instance “cell migration,” “collagen metabolic process” and
“positive regulation of cell motility.” In addition, the significantly
enriched KEGG pathways were important for the drawn
conclusion, including “ECM-receptor interaction,” “cytokine-
cytokine receptor interaction,” “proteoglycans in cancer” as well
as “focal adhesion.” Glioma cell movement is to a high degree
dependent on interaction with the ECM. The leading part of a
moving cell attach to the matrix through a process mediated by
receptors such as integrins and cadherins and the trailing end
detach from the matrix by secreting proteases such as matrix
metalloproteinases (MMPs). These MMPs also assist the cell by
breaking down the matrix when it is hindering the cell to migrate
(Cuddapah et al., 2014). On a gene level, genes central for the
invasion process such as BDKRB2, MMP2, and MMP9 were all
found to be upregulated in the low survival group. As mentioned
earlier, tumor recurrence after surgical resection due to GBM
cell migration is a major issue when treating GBM. A more
aggressive migration pattern, possibly leading to more rapid
tumor recurrence, could therefore be a reasonable explanation
for the shorter survival times of the low survival group. Attempts
to counteract the invasion process have been tried as therapeutic
strategies in clinical trials (Cuddapah et al., 2014) and the result
obtained here further motivate these endeavors.

Regarding the genes downregulated in the low survival group,
the enriched KEGG terms, e.g., “alcoholism” and “spliceosome”
(Figure 2B), weren’t as related to the oncological process
as those described above. The enriched GO BP terms for
the downregulated genes are to a high degree related to the
production and function of RNA (Figure 3B), e.g., “RNA
biosynthetic process,” “regulation of transcription,” and “RNA
metabolic process.”

To reveal the altered metabolism, we also performed reporter
metabolite analysis using the result of DGE analysis between
the low and high survival GBM patients and the generic GEM
for GBM (Figure 4A). We found that the top scoring reporter
metabolites associated with genes upregulated in the low survival
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FIGURE 2 | (A) Bar plot showing the enriched KEGG pathways for the genes upregulated in the low surival group. The x-axis indicate the fold enrichment for each
pathway term. Ordering is based on significance, with the top terms having the highest significance. (B) Bar plot showing the enriched KEGG pathways for the
genes downregulated in the low surival group. The x-axis indicate the fold enrichment for each pathway term. Ordering is based on significance, with the top terms
having the highest significance.
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FIGURE 3 | (A) Bar plot showing the enriched GO BP terms for the genes upregulated in the low surival group. The x-axis indicate the fold enrichment for each GO
BP term. Ordering is based on significance, with the top terms having the highest significance. (B) Bar plot showing enriched GO BP terms for the genes
downregulated in the low survival group. The x-axis indicate the fold enrichment for each GO BP term. Ordering is based on significance, with the top terms having
the highest significance.
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FIGURE 4 | (A) The top scoring reporter metabolites associated with up- and downregulated genes in the low survival group. The size of the dot indicate
significance (p-value) and the color whether the metabolite is associated with up- (blue) or downregulated (red) genes. (B) a detailed view of the part of the reporter
sub network with genes directly connected to the top-scoring metabolite glycine. (C) Heatmap of the distance matrix between all individual GEMs, where each line
at the end of the dendrogram corresponds to one individual GEM.

group are involved in the nucleotide biosynthesis and the pentose
phosphate pathway (PPP). It is a known fact that tumor cells
redirect their carbon metabolism from glycolysis to the PPP in
order to increase nucleotide synthesis to enable proliferation

(Agnihotri and Zadeh, 2016). Interestingly, we see that glycine is
the top scoring reporter metabolite for patients with low survival.
An increased uptake of glycine in high-grade gliomas, such as
glioblastomas, compared to low-grade gliomas have previously
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been demonstrated (Hattingen et al., 2009; Chinnaiyan et al.,
2012), leading to glycine being suggested as a potential marker
of tumor grade. Our results could indicate that there is a
further connection between glycine content and survival within
the high-grade glioma. Similar observations have been made
in a study made by Jain et al., which showed that uptake
and catabolism of glycine correlate with the rate of cancer cell
proliferation and poor survival of cancer patients across various
cancer types. Moreover, we performed reporter subnetwork
analysis to find the key genes and metabolites associated with
the low survival of the GBM patients. We found that glycine
is directly connected to 28 genes in the network (Figure 4B).
Enrichment analysis performed on these genes indicate that they
are involved in processes such as “protein catabolic process”
and “proteolysis.”

Essentiality Analysis Using GEMs for
GBM
To further investigate GBM from a metabolic perspective, we
employed 139 patient-derived GEMs from our previous study
(Uhlen et al., 2017) and performed network and GEM based
analysis. First of all, we calculated the Hamming distance
between each pair of models and compiled a distance matrix
in order to explore the difference between the individual
models. As shown in Figure 4C, it is evident that a cluster
of 18 models differs from the rest of the models. Based
on the top split in the dendrogram, these 18 models were
assigned to one cluster (cluster 2) and the remaining ones
to another one (cluster 1). Functional enrichment analysis
on differentially expressed genes between the two clusters
revealed that genes upregulated in cluster 1 were associated
with the cell’s immune response, e.g., the GO BP terms
“defense response,” “T cell activation” and “immune system
response,” suggesting a link between tumor metabolism and
immune response. We also observed that the patients in
cluster 2 had a higher mean survival (487 days) than those
in cluster 1 (375 days), but the difference was not statistically
significant (Student’s t-test, p = 0.23), which suggests that
survival outcome of the patients is not decided by the tumor
metabolism alone. However, for the interested we did perform
gene essentiality analysis on GEMs from high and low survival
patients separately. The result from this analysis can be seen in
Supplementary Table S3.

Essentiality analysis to find potential therapeutic targets was
performed on a generic GEM for GBM. The generic GEM for
GBM was generated by merging 139 patient-derived GEMs, and
thus, the essentiality analysis is expected to find therapeutic
targets with the potential of being effective in all GBM patients
rather than just a subset of them. The essentiality analysis
generated a list of 24 genes that when removed from the GBM
model each caused the cell to fail fulfilment of its objective
function, growth (Supplementary Table S2). To ensure that these
identified gene targets are in fact essential in all 139 models, we
extended the essentiality analysis and performed it on each of the
139 patient-derived GEMs individually, which resulted in a list
of 96 unique genes that are to a minimum essential in one GEM.

The 24 essential genes mentioned above were indeed essential for
100% of the patient-derived GEMs (Supplementary Table S2).

Since the goal of this simulation was to find potential
therapeutic targets, one important consideration is that a future
treatment should be as gentle as possible toward the normal
brain tissue. The reactions coupled to the 24 essential genes
were therefore iteratively removed from a healthy brain GEM
to evaluate their potential toxicity. For each removal it was
investigated if the normal brain cell could carry out essential
metabolic tasks that were previously defined (Agren et al., 2014),
such as protein and nucleotide synthesis. If the cell failed any
of the tasks after the in silico gene knockout, this gene was
considered a toxic target for the normal brain cell in addition to
the GBM cell, and thus abrogated as a drug target. Consequently,
the 24 genes could be narrowed down to five genes including
SOAT1, PGS1, CRLS1, CMPK2 and SLC22A5, which did not
affect the essential metabolic tasks in the GEM for the healthy
brain. The model was still capable of carrying out 77 pre-defined
common biological tasks for a cell even though lacking the
reactions coupled to the removed gene.

Validation and Function of the Found
Essential Genes
We used CRISPR derived CERES gene dependency scores
(Meyers et al., 2017) as a first step to validate our predictions.
The median gene dependency score is −1 and 0 for essential
and non-essential genes, respectively. All five genes have
a negative median gene dependency score (Supplementary
Figure S1), indicating some degree of essentiality for all
five genes in the 31 glioma cell lines included. In addition,
comparing the five genes against the distribution of all genes,
PGS1 and CRLS1 have significantly smaller CERES gene
dependency scores (Student’s t-test, pPGS1 < 2.2 10−16 and
pCRLS1 = 0.01455), which indicates that these two genes are
particularly essential for glioma cell lines and together with our
model based predictions, suggests they could be promising novel
drug targets.

Previous associations between the five genes and GBM
were also examined by performing a combined PubMed-
search on the five gene names and “glioblastoma.” The only
gene that had previously been clearly connected to GBM
was SOAT1, whose inhibition suppressed GBM growth in
mice (Geng et al., 2016). Briefly, it was demonstrated that
SOAT1 contributes to maintained cholesterol homeostasis in
the endoplasmic reticulum (ER) during tumorigenesis through
formation of lipid droplets. Homeostasis enables the SREBP1-
complex located in the ER membrane to dissociate and be
transported to the Golgi apparatus. There it is cleaved and
the now active N-terminal is transported to the nucleus where
it acts as a transcription factor to activate lipogenesis. This
in turn promotes tumor growth. When SOAT1 is inhibited,
the cholesterol accumulation in the ER prevents SBREP1 to
relocate to the Golgi, hence lipogenesis is not activated, and
tumor growth is suppressed. This work can be regarded as an
in vitro validation of the results obtained through the in silico
simulation in this project. A relevant additional finding here is
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that the inhibition of SOAT1 does not seem to affect the normal
brain cell model.

According to literature, the remaining four of the five
genes have not been connected to GBM in previous studies,
therefore they could be potential new targets. Among these
genes, PGS1 and CRLS1 show most promising according to the
gene dependency scoring. PGS1 encodes mitochondrial CDP-
diacyl-glycerol-3-phosphate-3-phosphatidyltransferase, which
has a function in the biosynthesis of anionic phospholipids,
phosphatidylglycerol and cardiolipin and CRLS1 encodes
cardiolipin synthase, which catalyzes the formation of
cardiolipin. In addition, CMPK2 encodes mitochondrial
UMP-CMP kinase 2, which may have a function in the synthesis
of dUTP and dCTP and SLC22A5 encodes solute carrier family
22 member 5 that is involved in the cell’s uptake of carnitine,
which in turn is responsible for transporting fatty acids across
the mitochondrial membrane (UniProt Consortium, 2018).

Evidently, three of the remaining four essential genes have
a clear role in lipid metabolism, e.g., cardiolipin synthesis and
carnitine transport. Elevated lipid levels and reprogramming of
lipid metabolism have previously been reported for GBM and
findings related to lipid metabolism are therefore to be expected
(Geng and Guo, 2017). One of the three genes is SLC22A5, a
membrane protein responsible for the cellular uptake of carnitine
(UniProt Consortium, 2018). The important role of carnitine in
the fatty acid oxidation process could be hypothesized as the
reason for SLC22A5 being essential for the GBM cell. Recent
studies performed on patient-derived GBM cells have shown that
the cells are more dependent on fatty acid oxidation (FAO) as
glycolytic pathway than previously thought, and that inhibition
of FAO in GBM-induced mice prolonged their survival (Lin et al.,
2017). In the study, inhibition of FAO was done by suppressing
the enzyme carnitine palmitoyl transferase 1 (CPT1) using the
already existing drug Etomoxir. As the name implies, CPT1 is
dependent on carnitine for its function (Prip-Buus et al., 2001).
By inhibiting SLC22A5, the cell’s supply of carnitine would
decrease, which in theory could work as an indirect inhibition
of CPT1 and the FAO process. Currently, there are anti-cancer
drugs on the market with the purpose of inhibiting SLC22A5. It
has been noted that inhibiting SLC22A5 could lead to secondary
carnitine deficiency (Longo et al., 2016), a disease state that
could give rise to problems such as muscle weakness for affected
patients. The potential side effects of inhibiting SLC22A5 to
treat glioblastoma must of course be taken into consideration
and evaluated.

The fifth gene, CMPK2, appears to be an outlier in terms
of function. It is reported to be involved in the synthesis of
the nucleotides dUTP and dCTP in the mitochondria (UniProt
Consortium, 2018). CMPK2 is a key gene in DNA synthesis, and
is therefore essential for cell growth which is elevated in tumor
cells but not in normal brain cells.

To further investigate the role of CMPK2 in the context of
GBM, the results of the co-expression analysis was consulted
(Supplementary Table S4). The generated co-expression
network can be seen in Figure 5A. Each node represents
a cluster of highly correlated genes. The findings suggest
that CMPK2 is connected to the cellular response to a viral

infection. Firstly, its eight most correlated genes in terms
of expression (correlation coefficient above 0.9) (Figure 5B)
have all, in various ways, antiviral activity with the majority
being interferon-induced. Secondly, when investigating the
co-expression cluster that CMPK2 belongs to (cluster 42)
and performing enrichment analysis on the 90 included
genes, both obtained GO BP terms and enriched KEGG
pathways are exclusively related to virus infection and
cellular defense response (Figure 5C). The presence of
human cytomegalovirus (HCMV) in brain tumor cells and
its potential role in the development and progression of GBM
has been, and remains, a highly debated and controversial
topic in the field of GBM research. Many research groups have
independently shown that HCMV is present in GBM tumor
cells but not in the surrounding healthy brain tissue (Cobbs,
2013), while other publications contradict these findings and
claim that their experiments detect no presence of HCMV
in GBM tumor cells (Johnson et al., 2017). Further work
must be done on the connection between viral infections and
the altered essentiality of CMPK2. Based on the collected
findings of this project, it could potentially be a promising
target for developing therapies that explore the possible
viral cause of GBM.

DISCUSSION

We employed a systems biology approach to reveal the
underlying molecular mechanism involved in the progression of
aggressive brain cancer. To investigate if there are differences in
gene expression between patients with high and low survival,
the data set consisting of data from 153 patients were divided
based on survival time after GBM diagnosis. We first focused on
analysis of gene expression data between low and high survival
GBM patients and identified the enriched KEGG pathways and
GO BP terms. We found that genes upregulated in the patients
with low survival are related to cell migration and the glioma
invasion process.

One limitation regarding the stratification of GBM patients
is that not all information on the stage of the disease at time
of diagnosis are available. Patients with advanced GBM at time
of diagnosis could bias the selection, or vice versa. However,
the current stratification was the possible one based on available
clinical information.

Next, we generated a generic GEM for GBM patients and
employed it in the analysis of DGE between low and high survival
patients. By applying the reporter metabolites and subnetwork
algorithms, we found key metabolites associated with low survival
of the GBM patients. We found that glycine as well as metabolites
involved in nucleotide biosynthesis and the pentose phosphate
pathway (PPP) were key metabolites.

To identify potential therapeutic targets that can be used in
the development of new drugs, we performed gene essentiality
analysis using the generic GEM for GBM patients. We identified
five genes that were essential for the growth of GBM and at
the same time non-toxic to remove from healthy brain tissue.
These genes were CMPK2, CRLS1, PGS1, SLC22A5, and SOAT1.
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FIGURE 5 | (A) Co-expression network derived from the expression profiles of all 139 GBM patients. Nodes indicate clusters of co-expressed genes while the edges
indicate significant links between clusters. (B) Part of node 42 showing the gene CMPK2 and its eight most correlated genes. (C) Dot plot of the results from
functional enrichment analysis with KEGG database of all 90 genes in node 42. All included terms are significant (FDR < 0.25), but the size of the dot is inversely
proportional to the adjusted p-value (the larger the dot, the smaller the p-value).

By investigating both publicly available gene dependency data
sets and literature, we found in vitro or in vivo evidence of the
essentiality of 4 out of the 5 found genes in GBM.

Moving further, the next step would be to perform
in vitro experiments to validate the suggested therapeutic

targets’ negative effect on tumor growth. As was done for
SOAT1 (Geng et al., 2016), an experimental setup that
could elucidate the mechanism behind suppressed tumor
growth is desirable, to test the hypotheses proposed in
this paper.
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GBM is a very aggressive cancer with poor prognosis for the
affected patients. The current line of treatment is inadequate, only
giving the patients an average survival time of 15 months (Ostrom
et al., 2013). In this project, the aim was to use a systems biology
approach to investigate the disease from a systemic point of view.
The findings span various aspects of GBM pathogenesis, from
glioma invasion to a viral source of the disease, which emphasize
the strength of applying a holistic approach to cancer research
in general and drug target identification in particular. The work
presented in this paper add to the current knowledge of GBM
and could contribute to new findings leading to better treatment
for the patients.
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to carry out.

TABLE S2 | Results from the essentiality analysis on the 139 individual GEMS.

TABLE S3 | Gene essentiality analysis for high and low survival patients,
respectively. We respectively, applied gene essentiality analysis to the patient
derived GEMs of high and low survival patient groups used for the DGE analysis.
The majority of the essential genes were shared between the two subgroups,
except for 5 genes that were essential in high survival GEMs but not in low survival
GEMs, and 7 genes essential in low survival GEMs but not in high survival GEMs.
The genes and their metabolic functions are summarized below.

TABLE S4 | Specifications of the co-expression analysis. Table 1: Genes included
in each node cluster. Table 2: Node file used as input to Cytoscape. Table 3:
Edge file used as input to Cytoscape.
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