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Abstract

Fungal pathogens elicit cytokine responses downstream of immunoreceptor tyrosine-based activation motif (ITAM)-coupled
or hemiITAM-containing receptors and TLRs. The Linker for Activation of B cells/Non-T cell Activating Linker (LAB/NTAL)
encoded by Lat2, is a known regulator of ITAM-coupled receptors and TLR-associated cytokine responses. Here we
demonstrate that LAB is involved in anti-fungal immunity. We show that Lat22/2 mice are more susceptible to C. albicans
infection than wild type (WT) mice. Dendritic cells (DCs) express LAB and we show that it is basally phosphorylated by the
growth factor M-CSF or following engagement of Dectin-2, but not Dectin-1. Our data revealed a unique mechanism
whereby LAB controls basal and fungal/pathogen-associated molecular patterns (PAMP)-induced nuclear b-catenin levels.
This in turn is important for controlling fungal/PAMP-induced cytokine production in DCs. C. albicans- and LPS-induced IL-12
and IL-23 production was blunted in Lat22/2 DCs. Accordingly, Lat22/2 DCs directed reduced Th1 polarization in vitro and
Lat22/2 mice displayed reduced Natural Killer (NK) and T cell-mediated IFN-c production in vivo/ex vivo. Thus our data
define a novel link between LAB and b-catenin nuclear accumulation in DCs that facilitates IFN-c responses during anti-
fungal immunity. In addition, these findings are likely to be relevant to other infectious diseases that require IL-12 family
cytokines and an IFN-c response for pathogen clearance.
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Introduction

Fungal infections with pathogens such as Candida albicans are a

significant health risk for immunocompromised individuals [1].

There is a high degree of mortality in these cases even with

treatment, highlighting the need for a better understanding of the

immune response involved in controlling fungal infections in order

to develop improved treatments [2,3]. Responses to fungal

infections involve both innate and adaptive immunity [4]. The

host response relies on the recognition, ingestion and elimination

of C. albicans by phagocytic cells. During fungal infections, various

pro-inflammatory cytokines such as TNF, IL-12p70, IL-23 and IL-

6, produced by the activated leukocytes, result in the promotion of

a sustained Th1 and Th17 response [5,6,7]. The requirement for

these cytokines and pathways has been demonstrated by

increased susceptibility of several knockout mice to C. albicans

infections. For example, mice deficient in genes associated

with Th1 responses such as Il12a, Ifng or Ifngr1 are more

susceptible to systemic C. albicans infection [8,9]. In addition,

Il182/2 mice display enhanced susceptibility to disseminated

C. albicans due to their inability to produce sufficient IFN-c
[10]. More recently, fungal responses have been shown to

involve the Th17 pathway; Il23a2/2, Il17ra2/2 and Il17a2/2

mice are more susceptible to oral and/or systemic candidiasis

[6,11,12]. Therefore, the level of inflammatory cytokine

production in response to C. albicans infection is important
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in determining whether the host will eliminate or succumb to

the infection.

Stimulation of host immune cells to produce pro-inflammatory

cytokines occurs through the recognition of PAMPs by pathogen-

recognition receptors (PRRs) [13]. Various PRRs such as the

mannose receptor, TLR2/4, CR3, Dectin-1 and Dectin-2 are

involved in fungal recognition and responses [14]. Dectin-1 and

Dectin-2 are type II, C type lectin-like receptors expressed mainly

on myeloid cells [15,16]. Fungal cell walls are mostly composed of

b-glucans, chitins and mannans. Dectin-1 recognizes b-glucans in

the fungal cell wall while Dectin-2 binds mannans. Mice lacking

either Dectin-1 (Clec7a2/2) or Dectin-2 (Clec4n2/2) exhibit

increased susceptibility to fungal infections supporting the role of

these proteins in fungal immunity [5,6,17,18]. Furthermore,

identification of a CLEC7A single nucleotide polymorphism in

humans, which encodes a non-functional form of Dectin-1,

confirms the role of Dectin-1 in anti-fungal responses, as carriers

of this polymorphism are more susceptible to mucocutaneous

infections with C. albicans, in part due to reduced IL-17 production

[19,20]. Consistent with these data, polymorphisms resulting in

IL-17RA and IL-17F deficiency were recently identified in some

patients with chronic mucocutaneous candidiasis [21].

A wide variety of immunoreceptor tyrosine-based activation

motif (ITAM)-coupled receptors are centrally involved in mediat-

ing the inflammatory response. The Dectin-1 cytoplasmic domain

includes an ITAM-like sequence (known as a hemiITAM, YxxxI/

Lx7YxxL) while Dectin-2 couples to the signaling chain FceRIc,

which signals via a canonical ITAM (YxxLx7–12YxxL) [13].

Engagement of ITAM-associated receptors such as Dectin-2

(FceRIc), or hemiITAM-containing receptors such as Dectin-1,

results in phosphorylation of the tyrosines within ITAMs or

hemiITAMs. Src homology domain-2 containing protein tyrosine

kinases of the Syk/Zap70 family are then recruited to the ITAM/

hemiITAM and activated, resulting in CARD9- and MAPK-

dependent pro-inflammatory cytokine production [4]. Surprisingly

however, the biochemical adaptor(s) involved in coupling Dectin-1

or Dectin-2 proximal phosphorylation to downstream effectors

have yet to be identified and despite the established importance of

these receptors, little is known about the regulation of their

signaling. Two closely related transmembrane adaptor proteins,

the Linker for Activation of T cells (LAT/Lat1) and Linker for

Activation of B cells/Non-T cell Activation Linker/Linker for

Activation of T cells family member 2 (LAB/NTAL/Lat2,

hereafter referred to as LAB) facilitate signaling downstream of

various ITAM-coupled receptors [22]. These adaptor proteins

activate signaling pathways such as the MAPK cascade and

regulate production of cytokines including IL-12p40 [23]. As a

consequence we hypothesized that LAT and/or LAB would

mediate or regulate cytokine production during fungal responses

downstream of Dectin-1 and/or Dectin-2 due to the similarities in

hemiITAM and canonical ITAM signaling.

Here we demonstrate that LAB is involved in anti-fungal

immunity. Mice deficient in LAB (Lat22/2 mice) are more

susceptible to systemic C. albicans infection than WT mice.

However, Lat22/2 neutrophil cytokine production is not impaired

suggesting a defect in another cell type. We show that LAB but not

LAT, is expressed by DCs and that both the M-CSF/DAP12 and

mannan-Dectin-2/FceRIc pathways promote LAB phosphoryla-

tion. Conversely, the b-glucan-Dectin-1 or TLR pathways do not.

We also define a novel role for LAB in suppressing b-catenin

nuclear translocation, which in turn permits efficient IL-12

production from bone marrow-derived DCs (BMDCs) stimulated

with a range of PAMPs. Furthermore, through this novel

mechanism LAB promotes NK and T cell-mediated IFN-c
production, which is deficient in vivo during C. albicans infection

of Lat22/2 mice. Thus LAB provides a molecular bridge between

b-catenin activation and the cytokine production required for

fungal clearance during systemic infection.

Results

Lat22/2 mice display increased susceptibility to
challenge with C. albicans

As LAB has previously been shown to mediate/regulate

signaling and/or cytokine responses downstream of ITAM-

coupled receptors and TLRs [23,24], we hypothesized that LAB

would play a role in anti-fungal immunity. To investigate this

possibility, we systemically infected WT and Lat22/2 mice with C.

albicans. Lat22/2 mice displayed increased susceptibility to high

(1.56105) and low (56104) dose C. albicans infection compared to

WT mice (Fig. 1A–B). The reduced survival was paralleled by

increased fungal burden in the kidneys of Lat22/2 mice, nine days

after infection (i.v.) with C. albicans (Fig. 1C). The kidney depicted

from a Lat22/2 mouse that succumbed to infection displays a

marked proliferation of fungal hyphae within the pelvis, which was

surrounded by neutrophilic inflammation, consistent with an

inability to clear the infection (Fig. 1D). Together, these data

demonstrate that LAB is important for the host response to C.

albicans infection.

Lat22/2 neutrophil cytokine production is not impaired
Neutrophil function is important for anti-fungal immunity.

They produce cytokines such as TNF and IL-6, both of which play

a role in determining susceptibility to fungal infections [25,26]. As

LAB is expressed in neutrophils [24], we examined the effect of

LAB deficiency on C. albicans-recruited neutrophil cytokine

production following restimulation with heat-killed C. albicans

yeast (HKY). TNF and IL-6 production from C. albicans-recruited

neutrophils was not impaired in Lat22/2 cells, in fact they were

enhanced (Fig. 2A), similar to the findings of Tessarz et al [24].

Consistent with these data, we observed enhanced TNF and IL-6

production from bone marrow purified neutrophils following

stimulation with zymosan and LPS (Fig. 2B). In addition, serum

TNF and IL-6 levels were enhanced in Lat22/2 mice systemically

Author Summary

Fungal infections are a major healthcare problem and the
incidence of fungal infections has increased significantly in
recent years. Mortality rates are high even with treatment,
highlighting the need for a better understanding of anti-
fungal immunity in order to develop improved therapies.
Adaptive T-helper 1 and T-helper 17 (Th1 and Th17)
responses are important mediators of anti-fungal immuni-
ty. Dendritic cells express Dectin-1, Dectin-2 and Toll-like
receptors, which interact with fungal pathogens to induce
these adaptive immune responses. Here we identify LAB as
an important facilitator of IFN-c production by regulating
b-catenin activation. Susceptibility to fungal infections is
increased in the absence of LAB, in association with
reduced IFN-c production. b-catenin activation in dendritic
cells inhibits the IL-12 production required for IFN-c
production. Thus targeting b-catenin therapeutically could
help to promote efficient IFN-c production in patients
suffering from fungal infections. These findings are
important for fungal infections and potentially for other
diseases where IFN-c production is important for disease
outcome.

LAB Facilitates PAMP-induced Fungal Responses
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infected with C. albicans (Fig. 2C). These data indicate that

neutrophil cytokine production is not impaired in Lat22/2 mice

suggesting that LAB plays additional roles in other cell types

during systemic C. albicans infection.

LAB is downstream of zymosan and C. albicans signaling
In addition to neutrophils, DCs are important for anti-fungal

immunity. In previous studies, we have shown that there is a

switch from LAT to LAB expression as monocytes differentiate

into macrophages and that LAB is involved in regulating

ITAM-mediated signals in macrophages [23]. To extend these

studies to DCs we examined the expression of LAB in human

monocytes and monocyte-derived DCs and murine GM-CSF-

cultured BMDCs. Similar to macrophages, LAB is expressed in

DCs while LAT expression is lost (Fig. 3A–B). To determine

whether LAB is involved in fungal-induced signaling, we

stimulated BMDCs with the yeast cell wall extract zymosan

and found that many proteins were tyrosine phosphorylated

following stimulation (Fig. 3C). Consistent with previous

findings [5,27] we found that Syk and PLCc2 were prominently

phosphorylated following zymosan stimulation (Fig. 3D). This

response was also associated with the phosphorylation of LAB

and one of its binding partners, c-Cbl [23] (Fig. 3D).

Phosphorylation of these proteins was unaffected by the absence

of LAB (Fig. S1). Accordingly, we found that activation of the

Erk and NFkB pathways were unaffected by the absence of LAB

(Fig. S1). Similar to our findings with zymosan, we also observed

that many proteins, including LAB, were phosphorylated

following stimulation with heat-killed C. albicans yeast (HKY)

(Fig. 3E). The zymosan- and C. albicans-induced phosphorylation

of LAB in DCs suggests that this adaptor protein may be

important in regulating downstream pathways in DCs that are

instrumental in combating fungal infections.

Impaired cytokine responses in Lat22/2 DCs
Given that LAB is phosphorylated following zymosan stimula-

tion in DCs, we next assessed the ability of LAB to regulate

zymosan-induced cytokine responses in DCs. We found that

zymosan-induced IL-12p40 production from BMDCs is partially

dependent on LAB (Fig. 4A). As zymosan is a complex ligand that

engages multiple receptor systems, including Dectin-1, Dectin-2,

TLR2 and others, we examined the effect of LAB on various

fungal and TLR ligands. WT and Lat22/2 BMDCs were

stimulated with heat-killed C. albicans yeast, LPS, particulate b–

glucan (Sigma), curdlan, Pam3CSK4 and CAWS (mannans). IL-

12p40 production was significantly reduced in Lat22/2 BMDCs

following stimulation with each of these ligands suggesting that

LAB plays an important role in IL12-p40 production (Fig. 4B–C).

To underline the importance of these findings to fungal infection,

we next stimulated BMDCs with the yeast form of live C. albicans.

These results showed that induction of Il12b, Il12a and Il23a

mRNA were significantly impaired in Lat22/2 cells compared to

WT controls (Fig. 4D). Subsequently, after a twenty-four hour

stimulation of BMDCs with live C. albicans, cytokine levels in the

supernatants were measured. These data showed that production

of IL-12p40 and IL-12p70 were both greatly reduced, and IL-23

levels were also partially suppressed, in Lat22/2 BMDCs following

stimulation with live yeast. However, IL-10, IL-1b and TNF levels

were not impaired by the absence of LAB (Fig. 4E). We next

stimulated BMDCs with increasing doses of LPS. Consistent with

our findings with C. albicans we demonstrated that LAB plays a

significant role in mediating the production of IL-12 family

Figure 1. Lat22/2 mice display increased susceptibility to C. albicans. Survival curves of WT (filled squares) and Lat22/2 mice (filled circles)
infected intravenously with (A) 1.56105 CFU or (B) 56104 CFU C. albicans SC5314. (A) Graph is representative of 3 independent experiments. p = 0.04
(log-rank test), n = 10. (B) Graph is the cumulative result of 3 independent experiments. p = 0.04 (log-rank test), n = 30. (C) CFU in the kidneys at 9 days
after infection with 1.56105 CFU C. albicans. Graph is the cumulative result of 4 independent experiments. *p,0.05 (Student’s t test on transformed
data). Each symbol represents an individual mouse. (D) Fungal growth in a representative WT (left panel (26magnification)) or Lat22/2 (middle panel
(2x) and enlargement of boxed area, right panel (20x)) kidney at time of death (Lat22/2) or 55 days (WT) after i.v. infection with 56104 CFU C. albicans.
Kidney sections were stained with Periodic Acid Schiff.
doi:10.1371/journal.ppat.1003357.g001
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cytokines downstream of LPS, while production of IL-10, IL-1b
and TNF levels were not impaired by the absence of LAB (Fig. 4F).

These data indicate that LAB plays an important and selective role

in facilitating fungal/PAMP-induced IL-12 family cytokine

production.

LAB is required to induce an efficient Th1 response in
vitro

C. albicans contains ligands for many receptors (including

Dectin-1, Dectin-2 and TLRs 2 and 4) and systemic infection

with C. albicans involves both Th1 and Th17 responses [5]. In vitro

however, the T cell response to C. albicans is dominated by Th17

polarization [6]. In order to assess the capacity of Lat22/2 DC to

direct both Th17 and Th1 responses in the context of reduced IL-

12 production, heat-killed C. albicans and the alternate TLR4

selective ligand, LPS, were used respectively. Supernatants from

WT and Lat22/2 BMDCs cultured in the presence of heat-killed

C. albicans yeast or LPS were added to naı̈ve WT CD4+ T cells

stimulated with anti-CD3 and anti-CD28. IFN-c and IL-17A

production were measured by flow cytometry and ELISA

following 4 days of culture. As expected, conditioned media from

BMDCs stimulated with heat-killed yeast induced a robust Th17

response while stimulation with LPS induced a Th1 response

(Fig. 5A-B). HKY-stimulated WT and Lat22/2 BMDCs induced

comparable Th17 responses (Fig. 5A–B), likely due to the

production of similar levels of IL-1b and only a minimal defect

in IL-23 production from Lat22/2 BMDCs. Interestingly, the

proportion of IFN-c-secreting CD4+ T cells arising from LPS

stimulated Lat22/2 BMDCs was significantly reduced compared

to WT BMDCs (Fig. 5A–C), which could be attributed to the

significant reduction in IL-12p70 production from Lat22/2

BMDCs (Fig. 4E–F). These data indicate that LAB-facilitated

cytokine production is important for inducing Th1 responses but

not Th17 responses in vitro. As both Th1 and Th17 responses are

important for in vivo protection against C. albicans infections [6,9],

our data suggests that defective Th1 responses in Lat22/2 mice

Figure 2. Lat22/2 neutrophil cytokine responses are not impaired. (A) Peritoneal neutrophils (from 4 h intraperitoneal infection with
16105 CFU C. albicans) were re-stimulated with/without heat-killed C. albicans yeast. TNF and IL-6 levels were analyzed by flow cytometry. Graph is
the cumulative result of 2 independent experiments. Each symbol represents an individual mouse. *p,0.05 **p,0.005 (1-way ANOVA, Bonferroni’s
post-test) (B) Purified bone marrow neutrophils were stimulated with 10 mg/ml zymosan or 100 ng/ml LPS. TNF and IL-6 levels in the supernatants
from three replicates were measured after 24 h. Data are representative of 2 independent experiments. **p,0.005 (1-way ANOVA, Bonferroni’s post-
test) (C) TNF and IL-6 levels were measured in the serum of WT (filled squares) and Lat22/2 mice (filled circles) at time of death or 30 days after i.v.
infection with 1.56105 CFU C. albicans SC5314. Graph is the cumulative result of 3 independent experiments. Each symbol represents an individual
mouse. *p,0.05 (TNF - Mann Whitney test; IL-6 - Student’s t test on transformed data).
doi:10.1371/journal.ppat.1003357.g002
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may be responsible for the increased susceptibility of these mice to

C. albicans infection.

Signaling through Dectin-2 promotes LAB
phosphorylation

As LAB facilitates fungal/PAMP-induced cytokine production

in DCs and subsequent Th1 polarization, we next sought to

determine which signaling pathways were involved. As LAB

phosphorylation is a documented feature of ITAM-coupled

receptor signaling [23,28], we hypothesized that b-glucans

signaling through the hemiITAM-containing Dectin-1 or man-

nans signaling through the ITAM-coupled Dectin-2 would induce

LAB phosphorylation. After resting the cells to remove basal

phosphorylation, we found, surprisingly, that stimulation of DCs

with washed zymosan particles (insoluble components of zymosan

such as the b-glucans) or purified particulate b-glucans does not

lead to LAB phosphorylation while stimulation with zymosan

extract (soluble components of zymosan such as the mannans) or

purified mannans caused rapid and robust LAB phosphorylation

(Fig. 6A–B). LAB phosphorylation was not observed in response to

TLR2/4 ligands Pam3CSK4 or LPS (Fig. 6A–C). These data

suggest that LAB may be phosphorylated downstream of the

mannan-Dectin-2/FceRIc pathway rather than via Dectin-1 or

the TLR pathways. To further address this possibility, we

examined LAB phosphorylation in DCs lacking Myd88 or Fcer1g.

Consistent with a role for Dectin-2, LAB phosphorylation was

intact in the absence of MyD88 (Fig. 6D) and ablated in Fcer1g2/2

cells (Fig. 6E). We next stimulated RAW-264 macrophage cell

lines, engineered to express either Dectin-1 or Dectin-2 [29], with

zymosan and found that LAB was only phosphorylated in cells

expressing Dectin-2 (Fig. 6F). This was in spite of high zymosan

recognition by Dectin-1 over-expressing RAW-264 macrophages

Figure 3. LAB expression in DCs and involvement in zymosan and C. albicans signaling. (A & B) Human (A) and mouse (B) cells were
immunoprecipitated with anti-LAT and anti-LAB, resolved via SDS-PAGE and immunoblotted with anti-LAT and anti-LAB. (C–E) BMDCs were
stimulated with 1 mg/ml zymosan (C–D) or 16107 heat-killed C. albicans yeast (E) for the indicated times and (C) whole cell lysates (WCL) were
resolved via SDS-PAGE and immunoblotted with anti-phosphotyrosine and reprobed with anti-Actin. (D) Cells were immunoprecipitated with anti-
PLCc2, anti-c-Cbl, anti-Syk or anti-LAB and immunoblotted with anti-phosphotyrosine, anti-PLCc2, anti-c-Cbl, anti-Syk or anti-LAB. (E) WCL were
immunoblotted with anti-phosphotyrosine and anti-LAB. Data are representative of 2–3 independent experiments.
doi:10.1371/journal.ppat.1003357.g003
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and their potential to signal via TLRs [29,30]. To confirm this

selective role for Dectin-2, we conducted Dectin-2 specific shRNA-

knockdown experiments (Fig. 6G–H). We found that LAB

phosphorylation was attenuated in DCs with partial Dectin-2

knockdown as a result of infection with shRNA against Dectin-2

compared to BMDCs infected with a scrambled shRNA control

Figure 4. LAB facilitates PAMP/fungal-induced production of IL-12 and IL-23 by BMDCs. (A–C) BMDCs from WT and Lat22/2 mice were
stimulated with (A) zymosan or (B) 16105 HKY, 100 ng/ml LPS, 5 mg/ml particulate b–glucan, 10 mg/ml Curdlan, 20 ng/ml Pam3CSK4 or (C) 5–10 mg/
ml CAWS (mannans). Cytokine levels in the supernatants were measured after 24 h incubation (B) or 48 h incubation (C). (D) BMDCs from WT and
Lat22/2 mice were stimulated for the indicated times with 16105 live C. albicans yeast. RNA was isolated, cDNA was prepared and Il12b, Il12a and
Il23a mRNA transcripts were detected by real-time qPCR. mRNA levels were normalized to Hprt1. Black bars represent WT, white bars represent Lat22/2.
(E) BMDCs from WT and Lat22/2 mice were stimulated for the indicated times with live C. albicans yeast. Fungizone was added 2 h later and cytokine
levels in the supernatants were measured after 24 h incubation. (F) BMDCs from WT and Lat22/2 mice were stimulated with 1–1000 ng/ml LPS. Cytokine
levels in the supernatants were measured after 24 h incubation. For all graphical data, results are presented as means +/2 s.e.m. of three replicates and
data are representative of 2–4 independent experiments. *p,0.05 **p,0.005 ***p,0.0005 (1-way ANOVA, Bonferroni’s post-test or Student’s t test).
doi:10.1371/journal.ppat.1003357.g004
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(Fig. 6H). Taken together, these data clearly demonstrate that

zymosan stimulates LAB phosphorylation through a mannan-

driven Dectin-2-FceRIc signaling pathway and not through the b-

glucan-Dectin-1 or TLR pathways. The phosphorylation of LAB

downstream of Dectin-2 could potentially explain the reduced IL-

12p40 in response to C. albicans, zymosan and mannans. However,

the reduced IL-12p40 in response to b-glucan, LPS or Pam3CSK4

implies the involvement of another LAB activating pathway.

Signaling through M-CSF/DAP12 promotes LAB
phosphorylation

Given the broad effect of LAB deletion, we hypothesized that

LAB may exert its effect prior to stimulation. Therefore, we next

examined whether LAB phosphorylation occurs in DC during

their expansion in vitro. For this experiment we compared WT

BMDCs harvested directly from culture to those rested in

cytokine/serum free conditions for 30 min with or without

subsequent stimulation with zymosan for 1 min (Fig. 7A). These

data demonstrate readily appreciable basal phosphorylation of

LAB in WT BMDCs during culture (Fig. 7A). LAB phosphory-

lation in response to SCF [31] has been described previously,

suggesting that a growth factor may be responsible for this basal

LAB phosphorylation. Therefore, we stimulated BMDCs with

GM-CSF and M-CSF. Interestingly, M-CSF induced LAB

phosphorylation (Fig. 7B) and examination of the BMDC cultures

demonstrated that while M-CSF is not added to these cultures, the

cells are producing appreciable levels of M-CSF (Fig. 7C) during

culture. Crosstalk between M-CSF and the ITAM-containing

signaling chain, DAP12 has recently been described [32]. Thus,

we tested whether basal LAB phosphorylation in BMDC cultures

was DAP12-dependent. Basal levels of LAB phosphorylation were

almost completely abolished in the absence of DAP12 (Fig. 7D).

We then sought to determine whether M-CSF-induced LAB

phosphorylation was dependent on Syk. Pre-treatment of WT cells

with the Syk inhibitor, Piceatannol, inhibited M-CSF- and

zymosan-induced LAB phosphorylation (Fig. 7E). These data

indicate that LAB is phosphorylated through an M-CSF/DAP12-

Syk pathway during culture. This basal M-CSF/DAP12 pathway

may control IL-12p40 production in response to all of the PAMPs

in this study.

LAB facilitates fungal-induced cytokine production by
controlling b-catenin activation

M-CSF is constitutively present in naı̈ve mice in vivo and it is also

induced during infection with C. albicans [33]. Moreover, M-CSF

crosstalks with DAP12 to induce activation of b-catenin [32].

Importantly, b-catenin represses pro-inflammatory cytokine pro-

duction in DCs [34,35]. Therefore we examined nuclear b-catenin

levels in WT and Lat22/2 BMDCs. Interestingly, Lat22/2

BMDCs showed increased b-catenin activation as evidenced by

increased nuclear localization in response to zymosan, heat-killed

yeast/hyphae (HKH) or LPS (Fig. 8A–C). Importantly, basal

nuclear b-catenin levels are also increased in Lat22/2 BMDCs

(Fig. 8A–C), and the physiological relevance of this was confirmed

by the increased mRNA levels of the b-catenin target genes Axin2

and Wisp1 in non-stimulated cells (Fig. 8D). We next examined

whether this increasedb-catenin nuclear accumulation in Lat22/2

cells was responsible for the decreased cytokine production by

these cells. In the absence of Wnt signaling b-catenin is

phosphorylated by GSK-3b and targeted for proteasomal-medi-

Figure 5. LAB is required for efficient Th1 responses. (A–C) Purified wild-type naı̈ve CD4+ T cells were stimulated with anti-CD3 and anti-CD28
for 4 days in the presence of conditioned medium from BMDCs cultured with 16105 heat-killed C. albicans yeast or 1 mg/ml LPS. (A–B) The cells were
restimulated with PMA and Ionomycin and IFN-c and IL-17A levels were analyzed by flow cytometry. Flow plots are representative of three replicates.
(B) Graphs display mean +/2 s.e.m. % cells expressing IFN-c or IL-17A from three replicates analyzed by flow cytometry. Black bars represent WT,
white bars represent Lat22/2. (C) IFN-c levels in the supernatants from three replicates were measured after 4 days. Data are representative of 3
independent experiments. *p,0.05 (1-way ANOVA, Bonferroni’s post-test).
doi:10.1371/journal.ppat.1003357.g005
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ated destruction [36]. We induced b-catenin stabilization by

stimulating the Wnt pathway with the canonical ligand Wnt3a or

with an inhibitor of GSK-3b (SB-216763). Following activation of

b-catenin through Wnt3a or SB-216763, the difference in IL-

12p40 production between WT and Lat22/2 cells was reduced

(Fig. 8E–F) resulting in WT cells more closely resembling those

deficient in LAB. In addition, we stimulated b-catenin degradation

by stabilizing axin, a component of the destruction complex, with

XAV939. This again resulted in alleviation of the difference in IL-

12p40 production between WT and Lat22/2 cells with Lat22/2

cells more closely resembling WT cells (Fig. 8G). In all of the

above cases, the two-way ANOVA indicates a clear interaction

between the effect of the inhibitors/agonists and LAB-deficiency

as predicted by the proposed role of b-catenin in LAB-facilitated

IL-12p40 production. TNF levels were largely unaffected by

treatment with inhibitors/activators of this pathway (Fig. 8H–

I). As the basal and PAMP-induced b-catenin levels are

different between WT and Lat22/2 BMDCs, we hypothesized

that modulating b-catenin activation would normalize IL-

12p40 production in response to a variety of PAMPs including

those that do not directly stimulate LAB phosphorylation.

Consistent with this hypothesis, activation of b-catenin through

SB-216763 reduced the difference in IL-12p40 production

between WT and Lat22/2 cells stimulated by LPS (TLR4)

(Fig. 8J) or WGP (Dectin-1) (Fig. 8K). TNF levels were largely

unaffected by treatment with SB-216763 in response to either

LPS (Fig. 8L) or WGP (Fig. 8M). These data indicate that

constitutive LAB phosphorylation maintains limited basal b-

catenin nuclear accumulation, thus facilitating robust cytokine

production, consistent with previous reports demonstrating that

Figure 6. Mannan-Dectin-2 signaling stimulates LAB phosphorylation. (A) BMDCs were stimulated with 1 mg/ml zymosan, zymosan extract,
vehicle control, washed zymosan or Pam3CSK4 for the indicated times and cells were immunoprecipitated with anti-LAB and immunoblotted with
anti-phosphotyrosine. (B) BMDCs were stimulated with 1 mg/ml mannan, particulate b-glucan or Pam3CSK4 for the indicated times and WCL were
immunoblotted with anti-phosphotyrosine and anti-LAB. (C) BMDCs were stimulated with 10 mg/ml LPS or 1 mg/ml zymosan for the indicated times
and WCL were immunoprecipitated with anti-LAB and immunoblotted with anti-phosphotyrosine and anti-LAB. (D & E) BMDCs from WT, Myd882/2

(D) and Fcer1g2/2 (E) mice were stimulated for 1 min with 1 mg/ml zymosan, zymosan extract or particulate b-glucan. WCL were immunoblotted
with anti-phosphotyrosine and anti-Actin or anti-LAB. (F) RAW-264 cell lines expressing Empty Vector (EV), Dectin-1 or Dectin-2 were stimulated with
1 mg/ml zymosan. Cells were immunoprecipitated with anti-LAB and immunoblotted with anti-LAB and anti-phosphotyrosine. (G–H) BMDCs were
infected with scrambled shRNA control or Dectin-2 shRNA. (G) BMDCs were stained for surface expression of Dectin-2 and analyzed by flow
cytometry. (H) BMDCs were stimulated with 1 mg/ml zymosan and WCL were immunoblotted with anti-phosphotyrosine and anti-LAB.
doi:10.1371/journal.ppat.1003357.g006
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b-catenin represses pro-inflammatory cytokine production

[34,35].

Lat22/2 mice display decreased DC and NK, T and NKT
cell-mediated cytokine levels in vivo

As Lat22/2 mice were more susceptible to systemic C. albicans

infection and Lat22/2 DCs displayed impaired IL-12 production

and subsequent Th1 responses in vitro, we wanted to determine

whether these defective cytokine responses occurred in vivo. In

correlation with the reduced IL-12p40 production in vitro we

observed reduced Il12b mRNA levels in the spleens of both

uninfected (Fig. 9A) and C. albicans infected Lat22/2 mice (Fig. 9B).

Additionally, Ifng mRNA levels were reduced in both uninfected

and C. albicans infected Lat22/2 mice and Tbx21 mRNA levels

were also reduced in the C. albicans infected Lat22/2 mice (Fig. 9A–

B). In contrast Il12a, Il23a and Rorc mRNA levels were normal in

the Lat22/2 mice and Il17 mRNA levels were undetected.

Consistent with reduced RNA levels of Il12b, we also observed

reduced IL-12p40 in Lat22/2 splenic DCs following stimulation

with LPS (Fig. 9C and Fig. S2). In order to further examine

whether Lat22/2 mice displayed reduced IFN-c responses, we

injected WT and Lat22/2 mice intraperitoneally with C. albicans

and collected cells by peritoneal lavage 72 h post injection.

Following restimulation with PMA/Ionomycin there were reduced

percentages of IFN-c producing cells in Lat22/2 lavages (Fig. 9D

and Fig. S2). The IFN-c producing cells consisted of

CD3+NK1.12CD4+ T cells, CD3+NK1.12CD42 T cells,

CD32NK1.1+ NK cells and CD3+NK1.1+ NKT cells. Not

surprisingly, IL-12, alone or in combination with IL-18, is known

to induce IFN-c production in T, NK and NKT cells and it

appears that each of these cell types contributes to the reduction in

IFN-c production with the largest reduction in NK cell IFN-c
production (Fig. 9E) [37,38,39,40]. Taken together, these data

indicate that LAB facilitates IL-12 production from DCs and

subsequent IFN-c production mainly from NK and T cells in vivo.

These data demonstrate that LAB is important for DC and NK, T

and NKT cell-mediated cytokine production during the host

response to C. albicans infection.

Discussion

Here we identify for the first time an important role for LAB in

anti-fungal immunity. Lat22/2 mice displayed increased suscep-

tibility to C. albicans infection and the fungal burden was

significantly increased in these mice, similar to Clec4n2/2 mice

and Clec7a2/2 mice [6,17]. Lat22/2 mice displayed reduced NK

and T cell-mediated IFN-c production which reflects the

attenuated production of IL-12 by Lat22/2 DCs, while Lat22/2

neutrophil cytokine responses were not impaired. Moreover, we

defined a novel role for LAB in the repression of b-catenin nuclear

translocation in DCs, resulting in regulated cytokine production

from a range of PAMPs, which is important in mounting an

effective immune response in an infectious disease model. These

data also suggest that LAB will be important in other diseases

where IL-12 is involved in disease outcome.

The adaptor protein LAB mediates signals downstream of

multiple ITAM-coupled receptors including BCR, FcRc and

TREM1/2 and the growth factor Stem Cell Factor [22]. LAB,

similar to LAT, is targeted to lipid rafts where it nucleates

signaling complexes [41]. Erk is activated downstream of ITAM-

coupled receptors through the recruitment of a Grb2-Sos complex

to LAT or LAB while PI3K is thought to be recruited through the

formation of a LAB-Grb2-PI3K(p85) complex [22,23]. Activation

of these signaling pathways downstream of ITAM-coupled

receptors results in cytokine production. However, while LAT

and LAB can mediate cytokine production by facilitating

formation of these signaling complexes, LAB has also been shown

to negatively regulate cytokine production in certain circumstanc-

es. In some cases, this is due to competition with LAT which

signals more efficiently than LAB due to the presence of a PLCc
binding site in LAT. Alternatively, in the absence of LAT, LAB

binds the E3 ubiquitin ligase c-Cbl which targets multiple

substrates for proteasomal degradation [23,41]. LAB mediates

the production of IL-12p40 and attenuates the production of IL-

8/CXCL8, TNF and IL-10 downstream of LPS or ITAM-coupled

receptors in macrophages and DCs [23,24,42]. Similarly, here we

demonstrate that LAB partially mediates the production of IL-

12p40, IL-12p70 and IL-23 in response to multiple PAMPs.

Previous reports have shown that the levels of Th1 and Th17

inducing cytokines (IL-12, IL-23 and IL-1b) downstream of

Dectin-1 and Dectin-2 are regulated by different NFkB subunits

[43,44]. However, while fungal and TLR-induced IL-12 family

cytokine production is inhibited in the absence of LAB, IkB

degradation is unaffected (Fig. S1 and data not shown). In

addition, previously identified targets of LAB regulation such as

Syk, c-Cbl or MAPK [23,42] are also unaffected in the absence of

LAB (Fig. S1). This suggests a role for LAB in the regulation of a

distinct pathway.

Otero et al [32] recently identified an exciting link between M-

CSF, DAP12 and b-catenin. The authors demonstrated that the

Figure 7. MCSF/DAP12 signaling stimulates LAB phosphorylation. (A) BMDCs from WT mice were lysed immediately without resting or
rested for 30 min in serum free media +/2 stimulation with 1 mg/ml zymosan for 1 min. WCL were immunoblotted with anti-LAB and anti-
phosphotyrosine. (B) BMDCs from WT mice were stimulated for the indicated times with 100 ng/ml GM-CSF and M-CSF. WCL were
immunoprecipitated with anti-LAB and immunoblotted with anti-phosphotyrosine and anti-LAB. (C) M-CSF levels in supernatants from WT BMDC
cultures at Days 3 and 6 were measured. (D) BMDCs from WT, Tyrobp2/2 and Lat22/2 mice were lysed immediately without resting. WCL were
immunoprecipitated with anti-LAB and immunoblotted with anti-phosphotyrosine and anti-LAB. (E) WT BMDCs were rested for 30 min, treated with
30 mg/ml Piceatannol or EtOH for 30 min prior to stimulation with 100 ng/ml M-CSF or 1 mg/ml zymosan for 1 min. WCL were immunoblotted with
anti-phosphotyrosine and anti-LAB. Data are representative of 2 independent experiments.
doi:10.1371/journal.ppat.1003357.g007
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Figure 8. LAB facilitates fungal-induced cytokine production by controlling b-catenin activation. (A–C) BMDCs from WT and Lat22/2

mice were stimulated for the indicated times with (A) 1 mg/ml zymosan, (B) 16107 heat-killed C. albicans yeast or hyphae or (C) 10 ng/ml LPS.
Nuclear fractions were immunoblotted with anti-b-catenin and reprobed with anti-Lamin B1. (D) RNA was isolated from WT and Lat22/2 BMDCs,
cDNA was prepared and Axin2 and Wisp1 mRNA transcripts were detected by real-time qPCR. mRNA levels were normalized to Hprt1. Black bars
represent WT, white bars represent Lat22/2. *p,0.05 **p,0.005 (1-way ANOVA, Bonferroni’s post-test) (E) BMDCs from WT and Lat22/2 mice were
treated with Vehicle Control or 100 ng/ml Wnt3a for 24 h prior to stimulation with heat-killed C. albicans yeast. Cytokine levels in the supernatants
were measured after 24 h incubation. (F–I) BMDCs from WT and Lat22/2 mice were stimulated with heat-killed C. albicans yeast in the presence of
DMSO, SB-216763 or XAV939. Cytokine levels in the supernatants were measured after 24 h incubation. (J–M) BMDCs from WT and Lat22/2 mice
were stimulated with LPS (J&L), or WGP (K&M) in the presence of DMSO or SB-216763. Cytokine levels in the supernatants were measured after 24 h
incubation (J–M). (E–M) A 2 way ANOVA was used for statistical analysis to examine for significant effects of the Genotype (G) and Drug (D) as well as
an Interaction (I) between these two factors. For all graphical data, results are presented as means +/2 s.e.m. of three replicates and data are
representative of at least 2 independent experiments.
doi:10.1371/journal.ppat.1003357.g008
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ITAM-containing signaling chain DAP12 was required for the

phosphorylation and accumulation of nuclear b-catenin during

MCSF-induced signaling in macrophages. b-catenin is found in

various locations in the cell. Under resting conditions, b-catenin

is part of a complex found at the cell membrane bound to E-

cadherin, which controls cell-cell adhesion [45]. In addition to

membrane bound b-catenin, b-catenin is also found in the

cytosol and cytosolic levels are tightly regulated by Wnt

signaling. In the absence of a Wnt ligand b-catenin is

phosphorylated by GSK-3b and CK1 and subsequently targeted

for proteasomal degradation. In the presence of a Wnt ligand,

GSK-3b activity is inhibited and b-catenin levels accumulate in

the cytoplasm and the protein translocates to the nucleus to

induce gene expression in conjunction with the TCF/LEF

transcriptional activators [46]. Our data indicate that LAB is

phosphorylated by two pathways, (M-CSF/DAP12 and Dectin-

2) (Fig. S3), and that LAB inhibits basal b-catenin nuclear

translocation mediated by the M-CSF/DAP12 pathway and

also PAMP-induced b-catenin nuclear translocation. M-CSF is

present in serum and organs of naı̈ve mice and C. albicans

infection further increases its levels [33] and provides the

PAMPs necessary to induce these pathways in vivo. b-catenin

and LAB have never before been associated and our data

demonstrate that this is an important component of PAMP-

induced cytokine production in DCs.

DCs expressing constitutively active b-catenin have previously

been shown to display a diminished IL-12p40 response [35].

Additionally, ablation of b-catenin in DCs was recently shown to

enhance the production of pro-inflammatory cytokines translating

into increased Th1 and Th17 polarization [34]. Our results show

that LAB plays a critical role in repression of the b-catenin

pathway. In accordance with these findings, Lat22/2 DCs display

high levels ofnuclear b-catenin accumulation and produce reduced

levels of IL-12 resulting in reduced NK and T cell-mediated IFN-c
production. Activation of b-catenin by Wnt3a or SB-216763

results in a reduction of IL-12p40 production in WT DCs so that

they now resemble those lacking LAB. Various PAMPs (LPS,

Pam3CSK4, b-glucan) do not promote LAB phosphorylation,

however, basal LAB phosphorylation appears to be sufficient to

inhibit b-catenin activation and to facilitate PAMP-induced IL-12

production. The Dectin-2 pathway enhances LAB phosphoryla-

tion in response to various ligands (zymosan, C. albicans, CAWS) in

addition to basal M-CSF/DAP12-induced LAB phosphorylation.

These data indicate that basal LAB phosphorylation is sufficient to

facilitate PAMP-induced IL-12 production and subsequent IFN-

cproduction independently of Dectin-2. However, PAMPs that

Figure 9. Lat22/2 mice display decreased DC and NK, T and NKT cell-mediated cytokine levels. (A–B) RNA was isolated from the spleens
of (A) naı̈ve WT and Lat22/2 mice and (B) WT and Lat22/2 mice 9 days after infection with 1.56105 CFU C. albicans, cDNA was prepared and mRNA
transcripts were detected by real-time qPCR. mRNA levels were normalized to Hprt1. Graphs are the cumulative result of 3–4 independent
experiments. *p,0.05 **p,0.005 (Student’s t test). (B) Il12b data was transformed for analysis. (C) WT and Lat22/2 spleen cells were stimulated with
LPS for 6 h. IL-12p40 levels in CD11c+MHCII+ DCs were analyzed by flow cytometry. Graph displays mean +/2 s.e.m. % DCs expressing IL-12p40 from
four mice analyzed by flow cytometry. Black bars represent WT, white bars represent Lat22/2. Data are representative of 2 independent experiments.
*p,0.05 (1-way ANOVA, Bonferroni’s post-test). (D–E) Peritoneal lavage cells from WT and Lat22/2 mice 72 h after intraperitoneal injection of C.
albicans were re-stimulated with PMA/Ionomycin for 4 h. (D) Graph displays percentage of IFN-c-producing cells. **p,0.005 (Student’s t test). Each
symbol represents an individual mouse. Graph is the cumulative result of 3 independent experiments. (E) Graph displays the mean percentage +/2
s.e.m. of IFN-c-producing CD3+NK1.12CD4+, CD3+NK1.12CD42, CD32NK1.1+ and CD3+NK1.1+ cells that combine to form total IFN-c-producing cells
in (D).
doi:10.1371/journal.ppat.1003357.g009
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engage Dectin-2 likely play a cumulative role in promoting IL-12

production (Fig. S3). While the mechanism for LAB-mediated

regulation of b-catenin activation is currently unknown, it is

possible that LAB exerts its effects through regulation of the PI3K

pathway. Akt phosphorylation promotes nuclear b-catenin accu-

mulation [47] and we have previously shown in macrophages that

LAB binds to the p85 subunit of PI3K, likely via Grb2 [23]

suggesting that this may be a possible mechanism for LAB-

mediated regulation of b-catenin translocation.

The LAB/b-catenin pathway in DCs exerts a specific effect on

IL-12 family cytokines while minimally affecting other cytokines

(Fig. 4E–F). There are some possible explanations for this

specificity. Firstly, NFkB and Erk activation, critical components

of IL-1b/TNF [48,49] and IL-10 production, respectively [50] are

normal in Lat2-/- DCs (Fig. S1). Secondly, b-catenin induces gene

expression in conjunction with the TCF/LEF transcriptional

activators [46] and examination of candidate TCF/LEF binding

sites in the promoters of Il12b, IL10 and Tnf revealed interesting

differences. While Il10 (21 kb) and Tnf (2300 bp) contain one

candidate TCF/LEF binding site, Il12b has two such sites ,60 bp

apart, ,600 bp upstream of the transcription start site. Moreover

an AML-1 binding site is located between these two TCF/LEF

binding sites in Il12b and AML-1 has previously been shown to

cooperate with TCF in the TCRá enhancer [51]. Thirdly, Jiang et

al [45] demonstrated that cluster disruption of DCs, a process

involving b-catenin, selectively increased IL-12p40 production in

response to LPS (other cytokines such as TNF and IL-10 were

reduced in response to LPS). All of these observations indicate a

definite specificity of b-catenin for IL-12 family cytokines;

however, separate studies would be required to dissect this.

Here we demonstrated a novel LAB-mediated pathway for

regulation of IL-12 production and subsequent IFN-c production

in response to C. albicans. Collectively our data indicate the

importance of this for controlling susceptibility to C. albicans

infection. However, as LAB is expressed in other cell types, it may

be involved in additional immune responses. For example, we

have observed reduced IL-12p40 production from Lat22/2

macrophages (data not shown) similar to DCs suggesting that

the reduced Il12b mRNA levels in Lat22/2 mice is likely a

combined effect of DCs and macrophages. Additionally, neutro-

phils and associated cytokines (TNF, IL-6) are important for

overcoming C. albicans infection [25,52]. Interestingly, Lat22/2

neutrophils display enhanced TNF and IL-6 production, demon-

strating unimpaired neutrophil activation and cytokine production

in Lat22/2 mice. High levels of TNF and IL-6 are associated with

septic shock [53,54], however, the levels in C. albicans-infected

Lat22/2 mice are much lower than those in murine sepsis models

making it an unlikely cause for the increased mortality. In

addition, LAB is expressed in B and activated T cells and its

deficiency, similar to Lat22/2 neutrophils, results in ‘‘enhanced’’

rather than impaired responses. Lat22/2 mice have increased

levels of natural antibodies and T cells from aged Lat22/2 mice

are hyperactivated and produce more cytokine than WT T cells

[55]. These data indicate that reduced DC/macrophage IL-12

production and subsequent NK and T cell-mediated IFN-c
production is the predominant impairment found in Lat22/2

mice, however, the role of LAB in other cell-types and functions

during anti-fungal immunity needs to be addressed with future

studies.

In conclusion, we have shown that LAB is paramount for robust

pro-inflammatory cytokine production from DCs downstream of

multiple PAMPs. LAB facilitates production of these essential

cytokines through novel regulation of the b-catenin pathway. LAB

represses b-catenin nuclear accumulation in DCs, thereby

facilitating cytokine production. Through this mechanism, LAB

plays an important role in the host defense against systemic C.

albicans infection by inducing NK and T cell-mediated IFN-c
production. These data are the first demonstration of LAB as a

prominent target for diseases dependent on IL-12 and further

elucidation of these pathways may be important for the

development of new therapeutics.

Materials and Methods

Mice
Lat22/2 mice (the product of the Lat2 locus is the adaptor

protein LAB), described previously [56], have been backcrossed

onto the C57BL/6 background for at least 10 generations. These

mice were screened and found to be 99% C57BL/6. Lat22/2,

Myd882/2, Fcer1g2/2, Tyrobp2/2 and age, weight and gender

matched control C57BL/6 mice were maintained under specific

pathogen-free conditions at the NCI–Frederick, MD. Animal care

was provided in accordance with the procedures in, ‘‘A Guide for the

Care and Use of Laboratory Animals’’. Ethical approval for the animal

experiments detailed in this manuscript was received from the

Institutional Animal Care and Use Committee (Permit Number:

000386) at the NCI-Frederick.

BMDC culture
Bone marrow (BM) cells were removed from the femurs and

tibiae of mice and erythrocytes were lysed in ACK buffer. Bone

marrow-derived dendritic cells (BMDCs) were generated by

culturing cells for 6–9 days in RPMI 1640 medium containing

10% fetal bovine serum, 2 mM L-glutamine, penicillin/strepto-

micin, HEPES, NEAA, Sodium pyruvate, 2-mercaptoethanol and

10 ng/ml GM-CSF.

Reagents and antibodies
Zymosan, particulate b-glucan, LPS (Escherichia coli 0111:B4)

and purified mannan were purchased from Sigma-Aldrich (St.

Louis, MO). CAWS (C. albicans water soluble mannans) were

provided by Prof. Naohito Ohno [6]. Pam3CSK4 was purchased

from Invivogen (San Diego, CA), Wnt3a and anti-CD3 (clone 145-

2C11) were purchased from R&D (Minneapolis, MN). Anti-CD28

(37.51), anti-CD4 (RM4.5), anti-CD25 (PC61.5), anti-CD44

(IM7), anti-CD62L (MEL-14), anti-Ly6G (1A8), anti-CD11b

(M1/70), anti-IL-6 (MP5-20F3), anti-IFN-c (XMG1.2) and anti-

IL-17A (TC11-18H10.1) were purchased from BD Biosciences

(San Jose, CA). Anti-TNF (MP6-XT22) was purchased from

eBioscience (San Diego, CA). GM-CSF, M-CSF and M-CSF

ELISA were purchased from Peptotech (Rocky Hill, NJ). The

GSK-3b inhibitor SB-216763 and the Tankyrase inhibitor

XAV939 were purchased from Tocris Bioscience (Ellisville,

MO). The Syk inhibitor Piceatannol was purchased from

Millipore (Billerica, MA). Anti-phosphoErk, anti-Erk, anti-phos-

phoAkt, anti-Akt, anti-b-catenin were purchased from Cell

Signaling Technology (Beverley, MA). Anti-LAT antibody [28]

was as previously described. Anti-phosphotyrosine (clone 4G10,

Millipore), anti-Syk (Novus Biologicals, Littleton, CO), anti-LAB,

anti-c-Cbl (sc-170), anti-PLCc (Santa Cruz, CA), anti-Actin

(Chemicon International, Temecula, CA), anti-Lamin B1 (Abcam,

Cambridge, MA) and anti-Dectin-2 (AbD Seotech, Raleigh, NC)

were used in this study.

Reagent preparation
Zymosan was resuspended in 10% ethanol in endotoxin free

water. Zymosan extract was prepared by resuspending zymosan in

endotoxin free water. The supernatant was filtered and used as
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zymosan extract. The zymosan particles were washed 36 with

endotoxin free water and used as washed zymosan.

Cell purification and stimulations
BM cells were removed from the femurs and tibiae of mice and

erythrocytes were lysed in ACK buffer. Neutrophils were purified

through percoll gradient or by MACS separation (Miltenyi,

Auburn, CA). BMDCs were harvested and CD11c+ DCs were

sorted using a FACS ARIA or bead purified by MACS separation

routinely giving purities of .98%. BMDCs were serum starved for

30 min at 37uC (except for Figs 7A&D). 16107 BMDCs were

resuspended in 100 ml DPBS and stimulated at 37uC with 1 mg/

ml zymosan, zymosan extract, washed zymosan, b-glucan,

mannan, Pam3CSK4, 10 ng/ml LPS, 100 ng/ml GM-CSF or

M-CSF for the indicated times. Cells were lysed with Lauryl-

maltoside lysis buffer (1% laurylmaltoside in 20 mM Tris

[pH 7.5], 100 mM NaCl, 10% glycerol, 0.4 mM Na3VO4,

aprotinin, leupeptin and phenylmethylsulfonyl fluoride). Lysates

were clarified by centrifugation and protein levels were normalized

using a BCA protein assay. Cytosol and nuclear extracts were

prepared as previously described [57]. 46 non-reducing or

reducing Nupage sample buffer was added to lysates and heated

for 10 min at 70uC. Lysates were separated by SDS-PAGE

(Nupage, Invitrogen, Carisbad, CA), transferred to PVDF

membrane (Millipore, Billerica, MA) and analyzed by Western

blot.

RNA isolation and quantitative RT-PCR
Cells were resuspended in Trizol and RNA was extracted using

RNeasy Mini Kit (Qiagen, Valencia, CA). cDNA was synthesized

from total RNA using Superscript III First Strand Synthesis

System for RT-PCR (Invitrogen). Quantitative RT-PCR was

performed using ABI Taqman Primer and Probe sets and

normalization was performed against Hprt1.

Lentiviral knockdown
An shRNA construct for mouse Dectin-2 (TRCN0000066785)

and a scrambled shRNA control in the pLKO.1 lentiviral vector

were used to infect WT and Lat22/2 cells. 293FT cells were

transfected with the pLKO.1 construct and with the Invitrogen

packaging constructs pLP1, pLP2 and pVSV-G and viral

supernatants were collected at 48 and 72 h post-transfection.

BM cells were plated on Day 0 at 66105 cells/ml in complete

media containing GM-CSF. On Days 1 and 2, the media was

replaced for 8 h with viral supernatants containing 10 mg/ml

hexamethrine bromide. On Day 3, fresh complete media

containing GM-CSF and 5 mg/ml puromycin was added to the

cells. The cells were harvested 2 days later and stimulated as

described. Dectin-2 surface expression was examined by flow

cytometric analysis.

Cytokine assays
BMDCs were plated at a density of 16105 cells/well in a 96-

well plate in RMPI containing 10% fetal bovine serum and 10 ng/

ml GM-CSF. BMDCs were stimulated with zymosan, zymosan

extract, washed zymosan, Pam3CSK4, LPS (Escherichia coli

0111:B4), b-glucan, curdlan, yeast/hyphae or heat-killed yeast/

hyphae for 24 h. BMDCs were stimulated with CAWS for 48 h.

BM neutrophils were plated at a density of 26105 cells/well in

RPMI containing 10% fetal bovine serum and stimulated with

zymosan or LPS for 24 h. Cell culture supernatants were

recovered and assayed for cytokine by ELISA (eBioscience, San

Diego, CA) or cytometric bead array (CBA) (BD Biosciences, San

Jose, CA), according to the manufacturer’s protocol. Unpurified

spleen cells or CD11c+ MACS bead purified spleen cells were

stimulated with 100 ng/ml LPS for 6 h in the presence of

Brefeldin A. IL-12p40 producing cells were determined by flow

cytometry.

T cell polarization assay
CD4+ T cells were purified from WT spleens by negative

selection MACS separation (Miltenyi, Auburn, CA) and naı̈ve

CD4+ T (CD4+CD252CD44loCD62L+) cells were sorted using a

FACS ARIA giving purities of .98% purity. Naı̈ve CD4+ T cells

were stimulated with plate-bound anti-CD3 and soluble anti-

CD28 antibodies for 4 days and supplemented with conditioned

supernatants from BMDCs stimulated with heat-killed C. albicans

yeast or LPS. The supernatants were collected and analyzed for

IL-17A and IFN-c production by ELISA. The cells were

restimulated with PMA (50 ng/ml) and Ionomycin (0.5 mg/ml)

in the presence of monensin (3 mM) and IL-17A and IFN-c
producing cells were determined by flow cytometry.

In vivo model of systemic candidasis
C. albicans SC5314 (ATCC, Manassas, VA) was cultured for

24 h in YEPD broth, washed three times with PBS and

resuspended at the required concentration in PBS. Mice were

matched by gender, weight and age (10–15 weeks old) and 100 ml

of C. albicans in PBS was injected i.v. Mice were monitored and

weighed daily. Mice were euthanized by CO2 asphyxiation when

they were moribund or had lost 20% of their body weight.

Experiments were continued for a maximum of 55 days at which

point all surviving mice were euthanized. Mice were bled by

cardiac puncture after CO2 administration and kidneys and

spleens were harvested. The kidneys were either placed in 10%

formalin, embedded in paraffin wax blocks and stained for H&E

and PAS or they were placed in PBS, dounce homogenized and

serial dilutions were plated on YEPD agar containing 50 mg/ml

chloramphenicol. The plates were cultured for 24 h and CFU

were calculated/organ. The spleens were dounce homogenized in

trizol followed by RNA and cDNA preparation. Serum samples

were analyzed by CBA for cytokine levels.

Ex vivo C.albicans NK and T cell assay
Mice were injected intraperitoneally with 16105 live C. albicans

and euthanized 72 h later. The inflammatory infiltrate was

collected by peritoneal lavage with 5 ml 5 mM EDTA in RPMI.

The cells were plated and restimulated with PMA (50 ng/ml) and

Ionomycin (0.5 mg/ml) in the presence of monensin (3 mM) for 4 h

and IL-17A and IFN-c producing cells were determined by flow

cytometry.

C. albicans neutrophil recruitment and cytokine
production

Mice were injected intraperitoneally with 16105 live C. albicans

and euthanized 4 h later. The inflammatory infiltrate was

collected by peritoneal lavage with 2 rounds of 5 ml 5 mM

EDTA in RPMI. The cells were plated and restimulated with

media or heat-killed C. albicans yeast for 12 h in the presence of

monensin (3 mM). The % of TNF and IL-6 producing neutrophils

were determined by flow cytometry.

Statistical methods
Data are presented as means +/2 s.e.m. and are representative

of 2–3 independent experiments. Survival data was analyzed by

log-rank test. One-way ANOVA followed by Bonferroni’s post-test
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or two-way ANOVA were used for statistical analysis when

multiple groups were analyzed. Student t test or Mann-Whitney

test were used for statistical analysis when two groups were

analyzed. When data did not follow a Gaussian distribution, it was

transformed by Y = sqrt(Y+0.5) [58] and analyzed by Student’s t

test. If data still did not follow a Gaussian distribution after

transformation, then significance was tested by Mann-Whitney

test. Statistical significance was set at *p,0.05 **p,0.005

***p,0.0005.

Supporting Information

Figure S1 Normal signaling in Lat22/2 BMDCs. (A–D)

BMDCs from WT and Lat22/2 mice were stimulated with 1 mg/

ml zymosan extract (A–C) or 1 mg/ml zymosan (D) for the

indicated times. (A) WCL were immunoblotted with anti-

phosphotyrosine, anti-LAB and anti-actin. (B) Cells were immu-

noprecipitated with anti-Syk, anti-c-Cbl, and anti-PLCc2 and

immunoblotted with anti-phosphotyrosine, anti-Syk, anti-c-Cbl,

and anti-PLCc2. (C) WCL were immunoblotted with anti-

phospho-Erk and anti-Erk. (D) WCL were immunoblotted with

anti-IkB and anti-actin.

(TIF)

Figure S2 IL-12p40 and IFN-c production is reduced in
Lat22/2 cells ex vivo. (A) Splenic cells from WT and Lat22/2

mice were stimulated with 100 ng/ml LPS for 6 h. IL-12p40 levels

in CD11c+MHCII+ DCs were measured by flow cytometry. Plots

are representative of 4 mice and data are representative of 2

independent experiments. (B–C) WT and Lat22/2 mice were

injected intraperitoneally with C. albicans. Cells were collected by

peritoneal lavage 72 h post injection and re-stimulated with PMA/

Ionomycin. IFN-c and IL-17 producing NK1.12CD3+CD4+ T

cells (B) and NK1.1+CD32 NK cells (C) were measured by flow

cytometry. Plots are representative of 6 mice and data are

representative of 2 independent experiments.

(TIF)

Figure S3 Model of LAB involvement in IL-12 produc-
tion. (1) M-CSF is recognized by the M-CSFR on dendritic cells.

Through crosstalk with DAP12, M-CSF promotes LAB phos-

phorylation. LAB inhibits b-catenin translocation to the nucleus,

thereby promoting IL-12 following subsequent stimulation with

PAMPs. M-CSF/DAP12-induced LAB phosphorylation is suffi-

cient to inhibit b-catenin activation and subsequent PAMP-

induced IL-12 production. In Lat22/2 DCs, basal b-catenin levels

are increased. (2) C. albicans, zymosan or CAWS stimulate the

Dectin-2 pathway, further stimulating LAB phosphorylation and

inhibiting nuclear translocation of b-catenin. These fungal PAMPs

also induce IL-12 production. In Lat22/2 DCs, IL-12 production

is reduced. (3) b-glucan, LPS or Pam3CSK4 stimulate IL-12

production but they do not stimulate LAB phosphorylation. In

Lat22/2 DCs, IL-12 production is reduced demonstrating that

basal M-CSF/DAP12-induced LAB phosphorylation is sufficient

to control b-catenin levels and IL-12 production. (4) LAB-

mediated IL-12 produced by DCs promotes IFN-c production

from NK, T and NKT cells. IFN-c production is reduced in the

absence of LAB.

(TIF)
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