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Abstract

Illicit drug profiling performed by forensic laboratories assists law enforcement agen-

cies through providing information about chemical and/or physical characteristics of

seized specimens. In this article, a model was developed for the comparison of seized

cocaine based on retrospective analysis of data generated from ultrahigh

performance liquid chromatography with time-of-flight mass spectrometry (UHPLC-

TOF-MS) comprehensive drug screening. A nontargeted approach to discover target

compounds was employed, which generated 53 potential markers using data from

cocaine positive samples. Twelve marker compounds were selected for the develop-

ment of the final profiling model. The selection included a mixture of commonly used

cocaine profiling targets and other cocaine-related compounds. Combinations of

pretreatments and comparison metrics were assessed using receiver operating char-

acteristic curves to determine the combination with the best discrimination between

linked and unlinked populations. Using data from 382 linked and 34,519 unlinked

distances, a classification model was developed using a combination of the standardi-

zation and normalization transformations with Canberra distance, resulting in a linked

cut-off with a 0.5% false positive rate. The present study demonstrates the applica-

bility of retrospectively developing a cocaine profiling model using data generated

from UHPLC-TOF-MS nontargeted drug screening without pre-existing information

about cocaine impurities. The developed workflow was not specific to cocaine and

thus could potentially be applied to any seized drug in which there are both sufficient

data and impurities present.
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1 | INTRODUCTION

Illicit drug profiling performed by forensic laboratories assists law

enforcement agencies through providing information about chemical

and/or physical characteristics of seized specimens.1 This drug profil-

ing is performed using statistical comparison of the chemical profiles

of different seized samples of an illicit substances, allowing each pair

of samples to be classified as related or different.2–4 Confirming a

suspected relationship, or identifying previously unknown relations

between drug seizures, can provide law enforcement agencies with

strategic and operational knowledge, allowing them to better combat

illegal drug manufacture and trafficking.1,3,5–7 In 2017 alone, 4872

cocaine seizures were made in Denmark (5.6 million inhabitants), and

a total of 150.7-kg material was seized by law enforcement.8 These

values suggest that illegal drug trafficking is a major problem, thereby

requiring advancements in tools and methods for providing scientific

support to aid in combatting the issue.

Profiling of cocaine samples most often focuses on the chemical

profiles resulting from occluded residual solvents, coca leaf derived

alkaloids, trace elements or stable carbon and nitrogen isotopes.1,2,9

The types of chemical profile originate from different sources and will

therefore provide different definitions of what can be considered

related or linked. Thus, it is important to establish what type of

question needs answering to maximize the scientific value of the

developed profiling method. In this project, a method for impurity

profiling for the batch comparison of cocaine is developed based on

alkaloid compounds. During cocaine manufacture, the leaves of the

Erythroxylum coca plant are processed in clandestine laboratories with

crude and unsophisticated production conditions to extract the

cocaine, and consequently, the purification of the cocaine is

inadequate resulting in many major and minor plant alkaloids

remaining present in the final refined drug product.9–11 Fortunately

for the forensic chemist, relative measurements of these alkaloids vary

between batches of cocaine, allowing impurity profiling to determine

whether two seized cocaine samples originate from the same

batch.1,6,7,12 The origination from the same production batch is

considered a ‘link’ between seizures, whereas two unrelated seizures

are considered ‘unlinked.’ This concept of linked and unlinked is

dependent on how the analyte in question is produced and the

purpose of the investigation. For the purposes of this study, this defi-

nition is considered sufficient to allow us to develop an adequate

method for impurity profiling of cocaine seizures.

The impurity profiling of cocaine is traditionally performed using

score-based classification models based on data collected from vari-

ous common analytical techniques.1 Firstly, peak areas for each

marker of the chemical profile are statistically pretreated to account

for analytical run variation. Next, the degree of similarity between

two or more samples is evaluated using a suitable distance/similarity

metric, and finally, the compared samples can be classified as either

similar or dissimilar using appropriately similarity/dissimilarity thresh-

olds. For profiling based on alkaloids, the most common analytical

technique is gas chromatography with mass spectrometry or nitrogen

phosphorous detection (GC–MS or NPD).1,2,7,12 High-resolution MS

(HRMS) has become more widely employed in forensic chemistry for

comprehensive nontargeted screening of seizures and biological

matrices for a variety of purposes.13–17 Full spectrum acquisition

allows for sensitive detection of thousands of compounds with a high

mass accuracy and resolution. This allows for screening of compounds

in suspected cocaine seizures without prior need to preselect target

compounds, allowing for a wealth of information to be generated

regarding the profile of the impurities.

In this paper, a profiling method was developed for the batch

comparison of seized cocaine using retrospective data from

comprehensive drug screening using ultrahigh performance liquid

chromatography with time-of-flight MS (UHPLC-TOF-MS). To maxi-

mize the profiling potential of the method, a novel approach to marker

discovery was used. Inspired by workflows used for nontargeted

analysis in the field of metabolomics, this ‘omics style’ approach

generated a set of cocaine marker compounds, including both

commonly used profiling alkaloids and unidentified compounds.13,18,19

Using these markers as a foundation, the main objective of the paper

was to develop a profiling model for the batch comparison of cocaine

samples, which could determine all the linked cocaine samples to be

linked (true positive, TP), whilst linking no unlinked samples

(true negative, TN).

2 | MATERIALS AND METHODS

2.1 | Samples

The data for the nontargeted discovery of marker compounds

consisted of UHPLC-TOF-MS screening data from analysis of 1962

seized narcotic samples submitted to the authors' laboratory between

September 2017 and January 2020. After October 2019, each analy-

sis run included reanalysis of two seized cocaine samples used as

cocaine quality control (QC) samples. In total, 1962 single injections in

156 runs had been performed, each containing system samples, blanks

and QCs. The data were split based on the determined cocaine con-

centration into a positive group when the determined cocaine

concentration exceeded 5% (w/w) and a negative group if cocaine

was not present. If cocaine concentration was below 5%, the seized

sample was excluded from further analysis. The marker discovery was

performed using retrospective analysis of data from single injections

of the positive group samples (n = 487) and of the negative group

samples (n = 1462). Evaluation of marker compounds was performed

through retrospective analysis of data from single injections of the

positive group samples (n = 487) and repeat injections of one cocaine

QC sample (n = 17).

Profiling method development was performed using data from

injections of the positive group samples, both from original screening

injections (n = 487) and from reanalysis injections (n = 20) of five

positive samples, in addition to repeat injections (n = 43) of cocaine

QC samples. For profiling development and evaluation, the samples

received for different cases were considered unlinked, whereas all

repeated injections of a sample were considered linked.
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2.2 | Chemicals and standards

LC–MS grade methanol, water, formic acid and acetonitrile were

obtained from Fisher Scientific (Loughborough, UK). Leucine

enkephalin and carbamazepine were obtained from Sigma-Aldrich

(Merck, Darmstadt, Germany).

2.3 | Sample preparation

Approximately 50 mg of cocaine sample was weighed into 20 mL

plastic centrifuge tube and dissolved in 5 mL of methanol adjusted

accordingly, in order to reach a final dilution of 10 mg/mL. Two glass

beads were added to each sample, which were placed in a rotation

mixer for 10 min. Following this, tubes were centrifuged for 5 min.

Samples were then filtered through 0.5-μm PTFE filters and diluted

500 times with internal standard solution containing carbamazepine

(0.5 mg/L) and 25% methanol in water with 1% formic acid and then

transferred to appropriate glass vials ready for injection. The two

cocaine QCs were also prepared following the same procedure as the

cocaine samples.

2.4 | Instrumentation

Nontargeted data acquisition was performed using an UHPLC-

TOF-MS consisting of an ACQUITY I-Class UPLC System (Waters

Corporation, Milford, MA, USA) coupled to a Xevo G2-S QTOF

(Waters). All instrument control, data acquisition and initial data

processing were performed with UNIFI Scientific Information

Systems (Waters). Chromatographic separation was performed

using a C18 column (ACQUITY UPLC HSS C18 Column, 100 Å,

1.8 μm, 2.1 � 150 mm; PN: 186003534; Waters) maintained at a

column temperature of 50�C with a flow rate of 0.4 mL/min, using

1-μL injection volume. Mobile phase A consisted of 5-mM aqueous

ammonium formate buffer adjusted to a pH 3 with formic acid.

Mobile phase B consisted of acetonitrile with 0.1% v/v formic acid.

The gradient programme started with a brief hold at 13% (B) from

0 to 0.5 min, followed by a linear ramp of 13–50% from 0.5 to

10 min. Next, mobile phase B was further increased from 50% to

95% from 10 to 10.75 min, followed by a final hold at 95%

from 10.75 to 12.25 min. The chromatographic programme

finished with equilibration from 12.25 min to a final runtime of

15 min.

The TOF-MS was operated in positive electrospray ionization

mode (Z-Spray; Waters) with the following settings: 1000 L/h of

nitrogen as the nebulization gas at 400�C, 20 L/h cone gas flow with

at 150�C, a capillary voltage of 800 V, a cone voltage of 25 V and

argon as the collision gas. Data were recorded in profile mode using

the data independent acquisition mode: MSE. The low collision energy

(CE) was set at 4 eV, and high CE ramped from 10 to 40 eV. The

acquisition time spanned the whole run, with a scan time of 0.200 s

and a mass range from m/z 50 to 950. Weekly mass calibration was

performed with 5-mM sodium formate in propanol and water (90:10,

v:v). Leucine enkephalin (m/z 556.2766) was acquired every 30 s from

a reference spray, for use as lock mass correction using three consec-

utive scans.

2.5 | Data processing

Feature detection was performed using the UNIFI 3D-peak detec-

tion with intensity thresholds of five counts in the low energy chan-

nel and the high energy channel, with noise background filtering set

to high, and a total number of peaks to keep per channel set to

10,000,000. No target components were included in the method.

The analysis data were exported as UNIFI export package (uep) files.

Feature lists from the uep files were read and imported into a local

SQL database (SQL Server 2019, Microsoft, Redmond, WA, USA)

using scripts developed in Python 3. All further data treatment and

statistical work were performed using open-source python packages

with Python 3.7.4. The main python packages used for data

treatment and statistical work were pandas, NumPy, SciPy and

Scikit-learn.20–23 Figures were made using seaborn and

matplotlib.24,25 Code development and further data analysis were

performed using Jupyter notebooks with JupyterLab.

2.6 | Nontargeted workflow for marker compound
discovery

A nontargeted marker discovery workflow, modified from a previously

published ‘omics-based’ workflow, was employed to enable discovery

of potentially novel markers for cocaine profiling. The workflow was

completed in four steps: (1) extraction of peaks, (2) grouping of peaks

into potential markers, (3) scoring of peak groups based on presence

in cocaine seizure samples and, finally, (4) targeted extraction and

evaluation of markers for profiling suitability.

2.6.1 | Extraction of peaks and grouping of peaks
into potential markers (steps 1 and 2)

Peaks, that is, the UNIFI 3D-peak detected features, eluting before

11 min, were extracted from all injections of the positive and

negative sample groups using a lower intensity threshold of

200 counts. The extracted peaks were clustered into groups using

the mean-shift clustering algorithm available from the Scikit-learn

python package.23 First, all peaks were scaled using retention time

and m/z tolerances: 0.2 min and m/z 0.003. The mean-shift

clustering algorithm was then applied using a bandwidth of 1. The

values of the newly identified peak groups were then

rescaled using the selected tolerances, giving the corresponding

peak group for each peak, with the peak group retention time and

m/z values being the average of the peaks contained within the

group.
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2.6.2 | Scoring of peak groups based on presence in
cocaine seizure samples (step 3)

The list of peak groups was reduced to those relevant for cocaine

profiling using the Matthews correlation coefficient (MCC).26 As with

most evaluation scores, the MCC was calculated based on the values

in the confusion matrix, that is, the number of TP, false positive (FP),

TN and false negative (FN).26

The presence and absence of a peak in a sample were tallied per

peak group per sample group, with TP and TN counts representing

the number of times the presence or absence of a peak was observed

in the positive sample group, respectively. Conversely, FP and FN

counts represented the number of times the presence or absence of a

peak was observed in the negative sample group respectively.

Based on these values, the MCC was calculated for each peak

group using the following equation:

MCC¼ TP�TN�FP�FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþFNð Þ TPþFPð Þ TNþFPð Þ TNþFNð Þp :

The MCC is a number between �1 and 1, with 1, 0 and �1 indicating

fully accurate, random and fully inaccurate predictions, respectively.

Using an MCC cut-off of 0.8, the peak groups were reduced to a list

of potential markers present in the majority of the positive group sam-

ples, whilst being absent from the majority of the negative group

samples.

2.6.3 | Targeted extraction and evaluation of
markers for profiling suitability (step 4)

The potential markers were used for targeted extraction of the

500 cocaine injections to be used for subsequent evaluation of

markers. Evaluation was performed according to the workflow in

Figure 1, in order to exclude unsuitable marker compounds from the

final marker list. Firstly, markers co-eluting with cocaine in the reten-

tion time region of 4.4–4.7 min were excluded. The remaining markers

were identified using the routine screening library.

The list of potential marker compounds was further reduced by

exclusion of highly correlated markers. To achieve this, agglomerative

hierarchical clustering with complete-linkage clustering and Pearson's

correlation coefficient (PCC) was used with data of the peak area

counts for the potential markers across the 500 cocaine injections.

Agglomerative hierarchical clustering is an unsupervised machine

learning technique for building a hierarchy of clusters.23 The PCC is

calculated between all pairs of potential markers, forming a distance

matrix. The two markers with the shortest distance, that is, the most

correlated, were then formed into a single cluster. The distance matrix

was then recalculated, using the largest of the distances in the new

cluster. This process was repeated until the shortest distance between

markers was below 0.8 PCC. A PCC threshold of 0.8 was selected to

determine the number of clusters, as a PCC between 0.8 and 1.0 indi-

cates a strong positive correlation between pairs of markers. In the

resulting clusters, the mean peak area across the 483 cocaine positive

samples was calculated for each potential marker. The marker that

presented the largest mean peak area within their respective clusters

was included in the final marker list, whereas all other markers were

excluded.

Variability was assessed across repeat injections (n = 17) of a

single cocaine QC, and single injections of all cocaine positive samples

(n = 483) were determined for each potential marker. The mean rela-

tive standard deviation (RSD) was calculated from the peak area of

each potential marker across the repeat injections of the cocaine QC

and all cocaine samples.

2.7 | Profiling method development and evaluation

The determination of whether a sample was linked with another sam-

ple and was performed using a comparison metric with decision

F IGURE 1 Decision tree assessing the suitability of target
compounds for inclusion during steps 3 and 4 in the development of
the final profiling model
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thresholds for linked, uncertain and not linked. Prior to use of a

comparison metric, the data underwent scaling and transformation,

that is, pretreatment, to reduce the instrumental influences on the

data sets, that is, the uncontrolled variation not pertaining to the ana-

lytical information.1 The development and evaluation of the profiling

model were completed in five steps: (1) selection of the linked and

unlinked pairwise distances, (2) calculations of the combinations of

pretreatments and comparison metrics, (3) calculations of the area

under the curve (AUC) of the receiver operating characteristic (ROC)

curves, (4) determination of the decision thresholds and, finally, (5) an

evaluation of the profiling model.

2.7.1 | Selection of linked and unlinked populations
(step 1)

Two populations of pairwise distances were created using the

distances between the linked and unlinked cocaine samples of the

positive group samples. The linked pairs composed of 382 pairwise

distances calculated from all possible pairs of repeat injections for

each of the cocaine QCs (n = 356), and all pairs of four repeat injec-

tions each of the same five cocaine samples (n = 26). Unlinked pairs

comprised 34,159 pairwise distances calculated from all possible

pairs of 483 cocaine positive samples pertaining to different police

cases. When multiple samples were received pertaining to a single

case, these comparisons were ignored.

2.7.2 | Combinations of pretreatments and
comparison metrics (step 2)

A combinatory chemometric approach was employed to determine

the most suitable combinations of pretreatments and comparison

metrics. Four pretreatments and five comparison metrics had been

shown by others to be the most suitable when developing a profiling

method.1,7,27–29 Fourteen total variations of these pretreatments

(Table S1) with the five comparison metrics (Table S2) were tested for

a total of 70 combinations.

2.7.3 | Selection of the model giving highest
separability (step 3)

The separability was determined using the AUC of the ROC curves.

The ROC curves, calculated using the Scikit-learn python package,

depicted the TP rate, that is, the proportion of correctly linked sam-

ples, as a function of the FP rate, that is, the proportion of falsely

linked samples, for the classification models, that is, the 70 profiling

methods, with two distinct classes, that is, linked or unlinked sam-

ples30,31. The AUC of each ROC curve then represented the degree of

separability between the linked and unlinked populations and was

therefore used as a metric for evaluating the performance of the dif-

ferent combinations.6,30 To have an AUC value of 1, a model would

have no falsely linked nor falsely unlinked populations and thereby

have successfully determined all linked samples as linked and vice

versa. The combination that gave the highest AUC was chosen for the

final method.

2.7.4 | Determination of decision thresholds
(step 4)

The decision thresholds were calculated using the information gener-

ated from the ROC curves and represented the distance boundaries

for samples to be considered linked, inconclusive or unlinked. The

decision thresholds were chosen using a continuous probability distri-

bution histogram plot, created using the matplotlib python package.25

Decision thresholds were selected at two distances in the probability

distribution in which the FP and FN rates were 0.5%.

2.7.5 | Evaluation of the profiling model (step 5)

Finally, the model was employed through creation of a hierarchical

clustered heatmap in order to visualize the hierarchical clustering of

the cocaine samples and observe undiscovered links across samples

thought to be unlinked. Agglomerative hierarchical clustering was per-

formed using complete linkage and transformed peak area counts for

the final marker list on the 483 single injections of the cocaine posi-

tive group. Clusters were determined at the previously calculated

decision threshold linked samples.

3 | RESULTS AND DISCUSSION

3.1 | Nontargeted workflow for marker compound
discovery

The ideal markers to be used for the development of the cocaine

profiling method should be present due to the cocaine content and

preferably robust, that is, not be influenced by any treatment of the

cocaine samples, such as dilution by addition of adulterants. In this

article, an omics-based approach was utilized for nontargeted discov-

ery of all potential targets and filtering of irrelevant variables from the

retrospective screening data. The targets initially were discovered

using the observed differences between sample groups without

pre-existing knowledge, similar to the workflow employed in the met-

abolomics and other omics fields.

In the first step of the nontargeted marker discovery process,

1,605,653 peaks were extracted from the suitable retention time

range (0–11 min) of the nontargeted discovery data set (n = 1962)

using a peak area count threshold of 200. In Step 2, grouping was

performed using tolerances of 0.2 min and m/z 0.003, forming 63,854

peak groups. The mean-shift algorithm was chosen, as this allows for

grouping of the peaks across injections, accounting for shifts in reten-

tion time and the accurate mass measurements, whilst not requiring
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knowledge regarding of the total number of groups. In Step 3, the

MCC was calculated, and 78 peak groups were selected using a MCC

threshold of 0.8.

The MCC was calculated based on the confusion matrix of obser-

vations in the positive and negative sample set. It is used to assess the

quality of a binary classifier, and to get a high MCC score, a peak

group had to be present in the majority of the positive group samples

and absent in the majority of the negative group samples, indepen-

dent of the positive and negative ratio of the dataset. The inclusion of

cocaine negative samples and the use of a high MCC threshold

allowed for efficient removal of peaks likely to originating from

another source than the cocaine, that is, peaks originating from adul-

terants or contaminants. Adulterants can be added to a cocaine sei-

zure at any stage of the cocaine production and distribution chain,

therefore are not relevant for batch comparison of cocaine.32–34 To

calculate the confusion matrix, the presence or absence of the classi-

fier needs to be determined; that is, the peak is observed or not

observed. However, because the peaks were extracted without use of

any targets, no inherent grouping was available.

The now 78 peak groups could be considered potential markers,

and peak count information was extracted from the 500 injections of

cocaine positive samples (n = 483) and QCs (n = 17) to be used for

marker evaluation. The initial abundance of alkaloid impurities sourced

from cocaine manufacture is proportionate to the concentration of

the cocaine in the seizure; therefore, cocaine samples of 5% concen-

tration or less were excluded from the positive sample group. An eval-

uation was performed using the workflow in Figure 1, to ensure

selection of quality markers, to consequently reduce the number of

FP or FN associations in the final profiling model. Firstly, 25 markers

co-eluting with the overloaded cocaine were excluded, as they eluted

within the retention time range of 4.4–4.7 min. Most of these markers

appeared to be isotopologues or fragments directly resulting from the

cocaine, therefore provided as little support for distinguishing seizures

as the cocaine itself and consequently were removed. The remaining

markers were labelled M1–M53 in order of retention time (Table S3).

The markers were identified by comparison with our in-house screen-

ing library. Four compounds were identified through this comparison

as the alkaloids ecgonine methyl ester, benzoylecgonine, tropacocaine

and trans-cinnamoylcocaine. Detection of the four compounds was

consistent with previous publications concerning impurity profiles of

cocaine seizures.2,6,7,29,35,36 Elemental compositions for the 12 marker

compounds were determined using UNIFI software. For the eight

unknown marker compounds without reference standards, identifica-

tion was performed tentatively through inspection of spectra. Both

cinnamoylcocaine and the [M + 2H]+ ion of truxilline share the same

exact mass; therefore in order to distinguish the two, extracted ion

chromatograms (EICs) were used. As shown in Figure 2, the double-

charged truxilline contains the characteristic double-charged isotope

pattern with approximately 0.5-mDa spacing between C13 isotopes.

By producing an EIC at 330.6717, markers M23 and M49 that shared

the same exact mass were able to be tentatively identified as cis-

cinnmoylcocaine and [M + 2H]+ ion of truxilline, respectively, as

shown in Table 1. M6 appeared to be the common profiling alkaloid

3,4,5-trimethyoxycocaine based on mass and fragmentation pattern in

comparison with previous research. M8, M21, M31, M36 and M46 all

were tentatively identified as either the [M + H]+ or [M + 2H]+ ions

of the demethylated truxilline compound. Around 11 different isomers

of truxilline have been reported in cocaine samples and are the

result of photo-dimerization of cis/trans-cinnamoylcocaines in the

coca leaf.37 Of the 12 final markers, M1, M2, M4, M6, M23 and M38

were all identified as markers, which have been commonly used for

impurity profiling of cocaine, as shown in Table 1. This consensus with

other literature provides support for the developed profiling model

and marker selection process. In addition, none of the potential

markers were tentatively identified as common adulterants, diluents

or other drugs of abuse that may have been mixed with cocaine sam-

ples, implying the successful removal of peaks originating from such

sources using the high MCC score.

The list of markers was further reduced based on the observed

correlation between markers. To assess correlation, the PCC treat-

ment was applied to all possible pairs of markers from the cocaine

positive sample group. Twelve clusters of correlated markers were

formed from the 53 potential markers using a 0.8 correlation thresh-

old, as shown in the dendrogram in Figure 3. The marker with highest

mean peak area count across the 500 cocaine positive samples was

chosen from each cluster of correlated markers, to ensure the selec-

tion of the base peak.

F IGURE 2 Mass spectra highlighting the isotope pattern of a
double-charged truxilline (top) and a cinnmoylcocaine (bottom)
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The list of markers contained multiple observations of the same

underlying compound, that is, isotopologues and adduct peaks of the

same compound. Whilst isotopologues are naturally present, occur-

rence of metal adduct ions, such as [M + Na]+ and [M + K]+, is

expected with use of positive electrospray ionization. These adducts

can originate from solvent impurities, instrument conditions or mobile

phase additives.40 Isotopologues and adduct peaks can be elucidated

using the observed mass differences between co-eluting peaks; how-

ever, no such approach was found necessary, as the high correlation

between isotopologues and subsequent removal of all but the base

peak allowed for similar peak reduction.

Two of the established profiling alkaloids, ecgonine methyl ester

(M1) and benzoylecgonine (M2), did not appear to correlate strongly

with any other compounds, forming individual clustering and thus

were included in the final set of profiling markers. The other two of

the identified alkaloids, trans-cinnamoylcocaine (M35) and

tropacocaine (M3), formed cluster pairs with their associated 13C iso-

tope peaks and as a result presented a higher peak area and were

thereby also included in the final set of profiling markers. Markers

M23 and M25 also formed a cluster pair containing a base peak and

associated 13C isotope, with the M23 determined as the base peak

based on the mean peak count. The remaining 45 markers were clus-

tered into seven correlated peak groups, resulting in a total of

12 cocaine profiling markers, as shown in Table 1.

The RSD values for the final 12 compounds (Table 1) ranged from

1.02% to 7.33% (mean: 2.51%) amongst the repeated measures

(n = 17) and 15.3% to 51.1% (mean: 24.3%) amongst all single cocaine

injections (n = 483). This suggested that the final markers appeared

relatively stable across repeat measurements, whilst having a high

variance in different cocaine samples thereby supporting their

suitability as profiling targets. For the purposes of profiling, full identi-

fication of all compounds was not necessary; therefore, markers that

were previously identified were labelled appropriately with a marker

number, retention time and m/z. However, many unidentified markers

have masses and isotope patterns that fit common alkaloids in cocaine

such as truxillines.41

3.2 | Development of profiling model

The 12 compounds now represent the impurity profile and were used

as a foundation to develop a model for the batch comparison of

cocaine. In development of profiling models in previous research,

linkage amongst cocaine samples is evaluated based on case

information.7,35–38,42 A more objective and reproducible approach

was used, with known linked pairs determined from repeat measures

of reanalysed cocaine samples and cocaine QCs, requiring no pre-

existing knowledge regarding the linkage of seizures. This avoids the

tedious and subjective assignment of linkage status based on using

information from police case, which can be challenging when develop-

ing a method retrospectively. One limitation of this, however, is the

lack of inclusion of pairs from authentic ‘linked’ seizures. The repeat

TABLE 1 Overview of the final 12 compounds selected for development of the profiling model

ID Compound

RT

(min)

Mean shifted

m/z

Chemical

formula Ion

m/z error

(mDa) References

M1 Ecgonine methyl ester+a 0.80 200.1280 C10H17NO3 [M + H]+ 0.0001 Previous studies2,6,7,35–39

M2 Benzoylecgonine+a 2.94 290.1385 C16H19NO4 [M + H]+ 0.0002 Previous studies7,10,35–37

M4 Tropacocaine+a 4.01 246.1487 C15H19NO4 [M + H]+ 0.0002 Previous studies2,5,6,10,29,35–39

M6 3,4,5-Trimethyoxycocaine+ 4.71 394.1856 C20H27NO7 [M + H]+ 0.0004 Previous

studies2,5–7,29,35–38

M8 Demethylated

truxilline +2H+

4.78 323.1622 C37H44N2O8 [M + 2H]+ 0.0000

M21 Demethylated

truxilline +H+

5.31 645.3163 C19H23NO4 [M + H]+ 0.0007

M23 Cis-cinnamoylcocaine+ 5.72 330.1701 C19H23NO4 [M + H]+ 0.0001 Previous

studies2,5–7,29,35–38

M31 Demethylated

truxilline +H+

5.82 645.3163 C37H44N2O8 [M + H]+ 0.0007

M36 Demethylated

truxilline +2H+

6.18 323.1622 C37H44N2O8 [M + 2H]+ 0.0000

M38 Trans-cinnamoylcocaine+a 6.28 330.1700 C19H23NO4 [M + H]+ 0.0000 Previous

studies2,5–7,29,35–38

M46 Demethylated

truxilline +2H+

6.47 323.1622 C37H44N2O8 [M + 2H]+ 0.0000

M49 Truxilline +2H+ 6.61 330.1701 C38H46N2O8 [M + 2H]+ 0.0001

aIdentified via retention time and mass spectral comparison to in-house libraries created from reference standards.
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measures may not be representative of a ‘link’ between authentic sei-

zures, although provides a sufficient alternative when linkage is not

possible based on case information. To determine unlinked status, it is

more probable that most samples from different cases originate from

different production batches. For this reason, all possible pairs of

injections of cocaine samples from different police cases were used to

constitute the unlinked population.

In Step 1 of the development, the pretreatments and distance

measures used in the combinatory approach were chosen based on

application and documented usage in profiling models for a wide

range of drug substances.1,28,36,38,43–45 The combinatory approach is

also commonly used for developing profiling models, to determine the

best separation of the linked and unlinked data. In Step 2 of the devel-

opment, AUC values ranged from 0.861 to 0.999 for the evaluated

combinations, with non-pretreated models giving less discrimination,

which can be seen in Table 2. Many combinations presented an AUC

score above 0.98 (Table 2), with the Canberra (CAN) and Manhattan

(MAN) comparison metrics appearing to outperform the others based

on AUC score alone. The standardization and normalization (S + N)

pretreatment with CAN was selected for this final profiling model,

with the associated ROC plot shown in Figure 4. To date,

combinations involving square cosine function (SCF) and PCC were

seemingly favoured for cocaine profiling in similar articles employing a

combinatory approach.7,36,37 However, in this study, the effectiveness

of the lower ranked options was not significantly lower, with 55 out

of 71 with an AUC greater than 0.95. This demonstrates the robust-

ness of the developed model to changes in comparison metrics and

suggests that selection of the optimal combination may not be as

important as a parameter for developing the profiling model as the

quality of the data or selection of target markers.

F IGURE 3 Dendrogram from
hierarchical clustering of the 53 potential
markers from the nontargeted marker
discovery. Markers are labelled with
identification (if known), followed by
retention time, mass, the mean peak area
across all cocaine positive samples and
count in cocaine positive samples (out of
483)
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In the next step, suitable thresholds were chosen in order to pro-

vide the method with a suitable level of performance for real world

application. As shown in the boxplot and histogram in Figure 5, distri-

butions for the unlinked and linked distances overlapped; therefore,

the selected decision thresholds were decided based on FP and FN

rates generated from the ROC curves. Decision thresholds were

selected at two distances in the probability distribution in which the

FP and FN rates were 0.5%, in order to minimize the number of FPs

and FNs in the final model. A distance between two samples below

1.17 CAN distance indicated a linked association with a 99.5% confi-

dence corresponding to a 0.5% FP rate, whereas a Canberra distance

above 2.09 indicated an unlinked association with 99.5% confidence

corresponding to a 0.5% FN rate. Between these two values lies the

‘inconclusive’ region, where linked and unlinked distributions

significantly overlapped. A likely reason is the selection of the

unlinked distances. The only criteria were that the samples should

originate from different police cases. Amongst those, there are likely

hitherto unknown pairs from the same batch, thus giving rise to linked

distances. No attempts to remove those were done as removal of too

much data may have resulted in overfitting the model, thereby reduc-

ing the suitability on unseen data.

To cross validate the method, a hierarchical clustered dendro-

gram and heatmap were calculated from 50 randomly selected

cocaine samples from the entire group of samples (Figure 6). Similari-

ties and differences in profile can be observed amongst the random

samples, with many of the unrelated samples forming potentially

linked pairs of clusters of observations. With comparison between

individual samples on a case-by-case basis, these links may have

remained unnoticed. Therefore, discovery of unknown links through

retrospective comparison highlights a huge benefit of the developed

methodology, as it can allow law enforcement to easily recognize

links between new samples and old samples. A complete dendrogram

and heatmap of all 483 cocaine samples are shown in Figure S3,

displaying even more groups and links. However, due to the previ-

ously described limitations regarding selection of linked/unlinked

populations, usage of additional validated methods is encouraged in

order to confirm links, especially for comparisons producing distances

in the inconclusive region.

TABLE 2 AUC values for every comparison metric and pretreatment combination

Pretreatment Pearson (PCC) Cosine (SCF) Euclidean (EUC) Canberra (CAN) Manhattan (MAN)

- 0.930 0.932 0.841 0.953 0.856

N 0.930 0.932 0.928 0.988 0.949

S 0.973 0.970 0.910 0.953 0.901

L 0.967 0.970 0.970 0.959 0.960

4R 0.944 0.954 0.957 0.959 0.955

N + S 0.977 0.977 0.969 0.988 0.976

N + L 0.956 0.961 0.969 0.987 0.958

N + 4R 0.944 0.954 0.957 0.987 0.980

N + S + 4R 0.966 0.972 0.976 0.987 0.986

N + S + L 0.951 0.962 0.976 0.981 0.987

S + N 0.973 0.970 0.970 0.992 0.982

S + L 0.965 0.899 0.970 0.835 0.960

S + N + 4R 0.971 0.978 0.978 0.990 0.991

S + N + L 0.973 0.974 0.970 0.990 0.990

Note: Combinations presenting an AUC exceeded 0.98 are highlighted in bold.

Abbreviations: AUC, area under the curve; EUC, Euclidean distance; PCC, Pearson's correlation coefficient; SCF, square cosine function.

F IGURE 4 Receiver operating curve (ROC) plot with associated
area under the curve (AUC) values, highlighting the difference in

performance of two pretreatment and comparison metric
combinations. The standardization and normalization treatment with
Canberra distance (S + N and CAN) is an example of a better
performing comparison metric, whereas the untreated Euclidean
distance (EUC) is an example of a worse performing combination
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Python-based scripts for data analysis and model development

formed the core of the article. In this study, machine learning

concepts such as unsupervised clustering algorithms were utilized;

however, model development was mainly inspired by strategies

adopted by others. Recent research has successfully produced a

model for automatic cocaine classification using data-driven

approaches based on machine learning classification tools.39 This

demonstrates the possibility for further innovation within impurity

profiling research by incorporating machine learning tools in the

model development and comparison processes. Further research

should therefore aim to explore the wider possibilities of these tools

and aim to incorporate them within the research.

F IGURE 5 Boxplot (top) and histogram (bottom) of the standardized and normalized pretreated Canberra distances for the linked and
unlinked pairwise groups

F IGURE 6 Hierarchical clustered heatmap of 50 random samples from the unlinked population presenting a Canberra distance under the
linked cut-off. Rows are the 12 target compounds from the final profiling model grouped by cluster analysis using complete linkage clustering and
Canberra distance. Columns are the individual injections clustered using complete linkage clustering and cosine similarity. The colour scale of the
heat map is standardized, and the normalized peak area is scaled from 0 to 1, with a dark colour representing a higher peak area and a light colour
representing a lower peak area. A full heatmap with all 483 cocaine-positive samples can be found in Figure S1
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4 | CONCLUSION

In this study, a model was developed for the impurity profiling of

cocaine based on retrospective UHPLC-TOF-MS data. A nontargeted

marker discovery approach was used to discover 12 cocaine marker

compounds that were used to develop the profiling model. Combina-

tions of pretreatment and distance measures were evaluated based

on ROC curves in order to select the most discriminatory statistical

treatment for the dataset. Standardization with normalization trans-

formation followed by Canberra distance was selected in the final pro-

filing model, and a successful classification was achieved, with an

AUC of 0.988. Linked and unlinked thresholds were selected using

99.5% confidence, resulting in linked and unlinked thresholds at 0.5%

FP and FN rates, respectively. The model was developed with a novel

approach to impurity profiling, utilizing chemometric-based tools in

order to create an easily reproducible workflow. It allowed for

development of a comparative profiling model without prior knowl-

edge of links between samples, extensive sample preparation or prior

knowledge of the target markers. The method relied solely on data

retrospectively collected during routine drug screening, thereby

requiring only reanalysis of a small number of samples evaluation of

markers. Furthermore, the developed workflow was not specific to

cocaine or UHPLC-TOF-MS data and therefore has potential

applications with other seized drugs or with data collected from other

analytical techniques. The present study demonstrates the possibility

for further advances in the well-established field of impurity profiling

analysis, to provide further intelligence support for law enforcement

to aid in combatting drug manufacture and trafficking.
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