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Abstract

The primary role of muscles is to move, and control joints. It is therefore important to under-

stand how degenerative joint disease changes this role with the resulting effect on mechani-

cal joint loading. Muscular control strategies can vary depending on strength and

coordination which in turn influences joint control and loading. The purpose of this study was

to investigate the variation in neuromuscular control mechanisms and joint biomechanics for

three subject groups including those with: uni-compartmental knee osteoarthritis (OA), listed

for high tibial osteotomy surgery (pre-HTO, n = 10); multi-compartmental knee OA listed for

total knee replacement (pre-TKR, n = 9), and non-pathological knees (NP, n = 11). Lower

limb kinematics and electromyography (EMG) data for subjects walking at self-selected

speed, were input to an EMG-driven musculoskeletal knee model which was scaled and cal-

ibrated to each individual to estimate muscle forces. Compared to NP, the peak gastrocne-

mius muscle force reduced by 30% and 18% for pre-HTO and pre-TKR respectively, and

the peak force estimated for hamstring muscle increased by 25% for pre-HTO. Higher quad-

riceps and hamstring forces suggest that co-contraction with the gastrocnemius could lead

to higher joint contact forces. Combined with the excessive loading due to a high external

knee adduction moment this may exacerbate joint destruction. An increased lateral muscle

co-contraction reflects the progression from NP to uni-compartmental OA (pre-HTO). Pre-

TKR patients adopt a different gait pattern to pre-HTO patients. Increased medial muscle

co-activation could potentially differentiate between uni- or multi-compartmental OA.

1. Introduction

Mechanical factors play an important role in the development and progression of Osteoarthri-

tis (OA) [1]. The knee joint is recognized as the most commonly affected joint [2] and about

4.71 million people have sought treatment for knee OA [3]. Estimates suggest that the number

of people with knee OA will increase from 4.71 million in 2010, to 5.4 million in 2020, reaching

6.4 million by 2035 [3]. Typically, total knee joint loading is influenced by ground reaction,

joint contact, muscle, and soft tissue forces. The net moment resulting from the ground
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reaction force is counterbalanced by the moments produced by muscles and contact forces.

60–80% of total intrinsic knee load is primarily produced by muscle forces [4, 5] and is distrib-

uted through the medial compartment of the tibio-femoral joint [6]. The pattern and magni-

tude of knee compressive forces are directly affected by the way that individuals activate their

muscles. Therefore, assessments of muscle forces and joint moments are essential to fully

understand altered loading mechanisms associated with the incidence and progression of OA.

Most gait studies have focussed their investigations on knee kinematics and kinetics [7–10],

muscle activations [11–15], and muscle forces [16, 17]. In contrast, a limited number of studies

have investigated all these variables together and related them to the compartmental involve-

ment of knee OA [18–20].

External knee adduction moment (EKAM), suggested as a surrogate measure of knee OA

severity [21, 22], has been used to evaluate joint loading, with peak EKAM providing a strong

predictor of medial knee contact force [23]. However, being a net moment, it does not explic-

itly account for individual muscle activation patterns as well as muscle co-contractions.

Muscle activation features also play an important role in understanding the effects of longi-

tudinal progression or interventions for knee OA. Hubley-Kozey et al. [24] showed that reli-

able EMG characteristics can be captured for patients with moderate medial compartment

knee OA. Lloyd and Buchanan [15] investigated the activation strategies used by individuals to

support adduction/abduction moments and the muscle loading patterns that result from these

activation schemes during highly controlled isometric tasks. Wilson et al. [25] associated EMG

patterns of the knee periarticular musculature with post-operative tibial implant migration.

They found that a prolonged muscle activation pattern for both the lateral gastrocnemius and

vastus medialis muscles, during the stance phase, was related to increased posterior migration

of the tibial component. Moreover, higher muscle co-contractions have been linked to OA

severity [14, 26–28], presumed to be linked with higher muscle forces [29, 30], to compensate

for joint instability.

Measuring the forces applied to a joint and estimating how these forces are partitioned with

respect to surrounding muscles, ligaments, and articular surfaces is fundamental to under-

standing joint function, injury, and disease. Muscle forces have been proposed as the primary

determinants of joint contact forces [4, 31], with correctly predicted muscle forces assumed to

result in sensible estimates of joint contact loads. However, to date, accurate measurement and

prediction of individual muscle forces are still a major challenge.

Advances in musculoskeletal knee modelling and computation power have enabled

researchers to generate gait simulations in efforts to estimate joint moments, muscle forces

(e.g., [32, 33]) and subsequently joint loading, for patient populations that use altered neuro-

muscular activation patterns (e.g., [32–35]). Among the four prominent methods introduced

to estimate muscle forces (EMG-driven model [36], Static optimization [37], computed muscle

control [38] and DeVita model [39]), the EMG-driven model is preferred as it accounts for

subject specific EMG patterns resulting in improved estimations of muscle forces.

Although biomechanical evaluations of people with OA are frequently performed to iden-

tify gait impairments; little attention has been paid to the provision of quantitative information

regarding the function of individual muscles. Adouni and Shirazi-Adl [40] developed a gait-

data driven musculoskeletal model of the lower extremity to estimate muscle forces and knee

joint stresses-strains during the stance phase of the walking cycle in a subject with knee OA

and a non-pathologic (NP) subject. The OA patient adopted reduced muscle forces through

stance phase, except at mid stance, compared to the NP subject. However, Kumar et al. [41]

demonstrated that OA patients had higher hamstring and gastrocnemius muscle forces at both

loading response and mid-stance phases of the gait cycle.
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This paper contributes to our current understanding of the underlying neuromuscular mech-

anisms during gait for patients with knee OA prior to HTO and TKR surgery. A question has

been posed: Do muscle coordination strategies, adopted by subjects with knee OA, and associ-

ated changes in knee function reflect the level of involvement of compartmental knee OA?

2. Methods

Kinematic and kinetic data were collected in the Motion Analysis Laboratory (Cardiff School

of Engineering) from thirty subjects, each gave their informed written consent prior to data

collection, divided into three groups: eleven subjects with no knee pathology (NP), ten subjects

with medial uni-compartmental knee OA and correctable varus deformity listed for high tibial

osteotomy (pre-HTO) [42], and nine subjects with multi-compartmental knee OA listed for

total knee replacement (pre-TKR). Ethical approval was granted from the Wales Research Eth-

ics Committee 3 (10/MRE09/28) and Cardiff and Vale University Health Board.

Motion analysis was performed using nine 120Hz infra-red motion capture units (Qualisys,

Gothenburg, Sweden). Qualisys Track Manager (QTM, Qualisys, Gothenburg, Sweden) was

used to capture full body motion using reflective markers placed on the trunk, pelvis, and both

the upper and lower limbs (modified Cleveland clinic marker set) [7, 43]. Four floor-embed-

ded force platforms (Bertec Corporation) were used to capture the ground reaction force vec-

tors with a sample rate of 1080 Hz. Motion data were processed using the Matlab Motion data

elaboration Toolbox for NeuroMusculoSkeletal applications (MOtoNMS) [44].

Muscle electromyographic (EMG) data were collected bilaterally, using a Trigno™ Wireless

EMG System (Delsys Incorporated, Natick, MA, USA), for seven muscles: rectus femoris, vas-

tus lateralis, vastus medialis, biceps femoris, semitendinosus, gastrocnemius lateralis, and gas-

trocnemius medialis. The electrodes were placed longitudinally over the muscle bellies after

standard preparation of the skin, according to SENIAM recommendations [45], involving

shaving, exfoliation, cleaning of the skin and finally electrode gel was used to reduce the elec-

trode–skin impedance [46].

Participants were asked to perform activities of daily living whilst muscle EMG, ground

reaction force and three-dimensional movements were collected using the synchronized

movement analysis system. Six trials of level gait at self-selected walking speeds, six trials of

ascending/descending a four-step staircase [47], and two trials of standing/sitting were

recorded for each subject. The stance phase was determined by the ground reaction force mea-

sured from heel strike to toe-off.

Recorded raw EMG data, through stance phase, were analysed in Matlab (version R2013a,

Mathworks Inc.). The raw EMG signals were band-pass filtered, to remove the movement arte-

facts, by a Butterworth 4th order filter at (10_450) Hz, rectified and finally low-pass-filtered

with a 4th order Butterworth filter at 6 Hz to create a linear envelope for each muscle. Then

linear envelopes for each muscle were normalized to peak values obtained through activities of

daily living, as recommended by [48]. Finally, the co-contraction index (CCI) was calculated

through stance, by using Eq (1) developed by Rudolph et al. [49], for the following muscle sets:

vastus lateralis- gastrocnemius lateralis (VLLG), vastus lateralis-lateral hamstring (VLLH), vas-

tus medialis- gastrocnemius medialis (VMMG), and vastus medialis-medial hamstring

(VMMH).

CCI ¼
X100

i¼1

low EMGi

high EMGi
� ðhigh EMGi þ low EMGiÞ

� �

=100 ð1Þ

Gait biomechanics were determined using OpenSim v3.3 [50]. For each participant, the cus-

tomized generic anatomic model was scaled to the participant’s anthropometry. The final
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anatomic model was then used to calculate joint angles, moments and musculo-tendon unit

kinematics (lengths and moment arms) for walking trials using OpenSim inverse kinematics

(IK), inverse dynamics (ID) and muscle analysis tools, respectively. Gait biomechanics and

processed EMGs were then used to calibrate and execute an EMG-driven model, for each sub-

ject, to estimate muscle forces by using CEINMS [51]. CEINMS has already been mentioned

in depth [51, 52], so it will only be addressed briefly here. The musculo-tendon unit parame-

ters of each individual were adjusted, which is part of the CEINMS framework, i.e., optimizing

the musculo-tendon unit parameters to minimize the least square differences between the

expected joint moments of the model and the experimentally measured joint moments. Two

walks were included in the experimental trials used in the calibration process. The calibration

parameter and boundary conditions list is the same as that used in [51]. After calibration, the

model worked as an open-loop predictive ways to predict muscle forces and joint moments

based on muscle activation and kinematic model.

Muscle forces and joint moments (hip, knee, and ankle) were normalized to each stance

phase of the gait cycle. Values at heel strike, peak weight acceptance and peak push off, along

with co-contraction indices were averaged across six representative stance phases for each sub-

ject, and then averaged across subjects to obtain group means. Heel strike was defined as the

value at 0% of the stance phase. Peak weight acceptance was defined as the first 15% of the

stance phase. Peak push off was defined as the mean value between 5% on either side of the

peak knee extension moment.

Patient-reported outcome measures (PROMs) including Oxford Knee Score [53], Knee Out-

come Survey [54], Western Ontario and Mcmaster Universities Osteoarthritis Index [55], Pain

Audit Collection System [56], and Knee Injury And Osteoarthritis Outcome Score [57] were

completed to provide a subjective measure of how each patient perceived their knee function.

3. Statistical analysis

The Kolmogorov–Smirnov and Levene tests were used to assess the normality of distribution

(P> 0.05) and the equality of variances, respectively. One way analysis of variance (ANOVA)

model was tested for significant group differences for demographics, walking speed, and

patient reported outcome measures (PROMS), where data was normally distributed and

homogenous. All significant findings were post hoc tested using Tukey adjusted alpha level to

determine pair-wise significant differences.

Kinematic and kinetic data, were compared across the three subject groups, were not nor-

mally distributed or homogeneous. Accordingly, a Kruskal Wallis test of nonparametric data

was performed. Pairwise comparisons using the Dunn-Bonferroni approach were automati-

cally produced for any dependent variables for which the Kruskal-Wallis test was significant.

All statistical analyses were performed using SPSS (version 20, Chicago, IL).

4. Results and discussion

Demographics and PROMS differed across the three subject groups; summarized in Tables 1

and 2. The Oxford Knee Score, Knee Outcome Survey, Western Ontario and Mcmaster Uni-

versities Osteoarthritis Index and Pain Audit Collection System were higher for the pre-TKR

compared with the pre-HTO subjects indicating more severe self-reported pain and stiffness

and reduced function. Knee Injury And Osteoarthritis Outcome Score was lower for pre-TKR

compared to pre-HTO subjects, where lower scores indicate extreme knee problems.

No significant differences, between pre-HTO and pre-TKR groups, were observed in

PROMS suggested that these outcome measures were not the most sensitive methods to differ-

entiate between uni- and multi-compartmental knee OA.
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Group ensemble-averaged waveforms for quadriceps, hamstring and gastrocnemii muscle

forces illustrate that peaks and patterns changed between NP, pre-HTO and pre-TKR groups

(Fig 1). The sequence and timing of predicted muscle activity were consistent with a previous

study [32], with gastrocnemius generating the largest forces about the knee at push off, for NP

subjects. Pre-HTO subjects had elevated quadriceps and lateral hamstring activity compared

to the NP subjects.

A reduced range of sagittal plane knee joint angle was observed for OA cohorts (pre-HTO

and pre-TKR patients) as compared to NP, Fig 2.

Hip, knee and ankle group ensemble-averaged moment curves (normalized to body weight

and height (%BW�Ht)) for NP, pre-HTO and pre-TKR patients are shown in Fig 3. In agree-

ment with [10], reduced sagittal plane joint moments were seen at the hip and knee joints (Fig

Table 1. Demographics and clinical data mean (SD) for NP, Pre-HTO, and Pre-TKR subjects.

Characteristics NP Pre-HTO Pre-TKR P P P
n = 11 n = 10 n = 9 NP vs. HTO NP vs. TKR HTO vs. TKR

Age, years 32.9 (5.2) 50.3 (6.9) 66.6 (9.8) <0.001† <0.001† <0.001†

Weight, kg 79.5 (12.6) 87.8 (14.9) 88.7 (20.3)

Height, m2 1.76 (0.04) 1.73 (0.09) 1.69 (0.08)

Walking speed, m/s 1.31 (0.23) 1.066 (0.16) 0.81 (0.19) 0.027† <0.001† 0.024†

Static varus angles 9.57 (4.27)

Medial compartment KL score Grade 2: n = 4

Grade 3: n = 5

Grade 4: n = 1

Grade 3: n = 2

Grade 4: n = 7

NP = Non-pathologic subjects.

† Significant differences between groups (P<0.05).

KL = Kellgren and Lawrence (range 0–4 where stage 0 is assigned to a normal, healthy knee and stage 4 to severe knee OA).

https://doi.org/10.1371/journal.pone.0262798.t001

Table 2. Patient reported outcome measures (PROMS) mean (SD) for Pre-HTO, and Pre-TKR subjects.

Characteristics Pre-HTO Pre-TKR P
n = 10 n = 9

OKS 25.8 (10.0) 29.2 (9.5) 0.456

KOS 48.8 (15.8) 49.1 (13.9) 0.964

WOMAC 38.9 (23.2) 49.8 (21.5) 0.303

PACS 39.3 (25.0) 47.6 (24.1) 0.475

KOOS Pain 63.1 (24.7) 54.0 (22.9) 0.439

KOOS Symptom 65.0 (19.5) 53.6 (22.2) 0.266

KOOS ADL 69.4 (24.4) 59.6 (21.5) 0.383

KOOS Sport/Rec 41.1 (32.7) 18.8 (23.4) 0.124

KOOS QOL 43.1 (21.7) 32.8 (22.1) 0.336

OKS = Oxford Knee Score (range from 12 for least difficulties to 60 for most difficulties).

KOS = Knee Outcome Survey (scale from 0–100 where 100 indicates no disability).

WOMAC = Western Ontario and McMaster University Osteoarthritis Index (high scores indicating high degree of

impairment).

PACS = Pain Audit Collection System (scale from 0–10, from least to most difficulty or severity).

KOOS = Knee injury and osteoarthritis outcome score (range 0–100, with zero representing extreme knee problems).

ADL = Activities of daily living.

QOL = Quality of life.

https://doi.org/10.1371/journal.pone.0262798.t002
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3A and 3D, respectively) for the knee OA group. Only the pre-TKR group had a reduced first

peak hip adduction moment (Fig 3B). However, both knee OA cohorts had increased EKAM

(Fig 3D). Pre-TKR subjects showed a trend of higher mid-stance EKAM (related to knee OA

severity) with no clearly defined double peak (Fig 3D).

A summary of the individual muscle forces and joint moment is reported in Tables 3 and 4,

respectively, during heel strike (HS), weight acceptance (WA), and push off (PO) phases of

stance.

Fig 4 shows the CCI for NP, pre-HTO, and pre-TKR subjects. As expected, patients with

knee OA have a higher CCI compared to NP subjects. Some evidence of co-contraction

between the quadriceps and hamstrings muscles was found, in particular, for the VLLH in the

pre-TKR compared to the NP subjects, which may contribute to a reduction in medial knee

contact force.

Fig 1. Muscle forces during stance-phase for NP, pre-HTO, and pre-TKR subjects. Values represent mean (SD).

Quads = quadriceps force = ∑Frectus femoris, vastus medialis, vastus lateralis, and vastus intermedius. Hams = hamstring force =

∑Fsemimembranosus, semitendinosus, and biceps femoris long and short head muscle forces. Gastroc = gastrocnemius force = ∑F medial and

lateral gastrocnemius muscle forces.

https://doi.org/10.1371/journal.pone.0262798.g001
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This study has shown that neuromuscular control and biomechanics differ between non-

pathological knees and those with OA. These differences are magnified as the level of compart-

mental involvement increases. The results have demonstrated that, in line with previous

research findings [58], knee OA is a multifactorial disease process that involves many interre-

lated factors that interact to produce biomechanical changes throughout the disease process.

In agreement with literature [10], a reduced range of motion for the sagittal plane knee joint

angle was observed for knee OA cohorts as compared to NP, Fig 2. In principle, muscle control

and external moments are the key to stance stability. Throughout stance, muscles contract

when body alignment creates a moment that is antagonistic to weight bearing stability of the

limb and trunk, and the amount of contraction is proportional to the magnitude of the

demand torque that must be restrained.

Fig 2. Group ensemble-averaged sagittal plane knee kinematic waveforms (knee flexion), during stance-phase for

NP (blue), pre-HTO (green) and pre-TKR (red) subjects. Values represent mean (SD).

https://doi.org/10.1371/journal.pone.0262798.g002

Fig 3. The external joint moment waveforms during stance-phase for NP (blue), pre-HTO (green) and pre-TKR (red)

subjects: Hip flexion moment–A, Hip adduction moment–B, Hip rotation moment–C, Knee flexion moment–D, Knee

adduction moment–E, knee rotation moment–F, Ankle flexion moment–G. Values represent mean (SD).

https://doi.org/10.1371/journal.pone.0262798.g003

PLOS ONE Knee OA alters muscle strategies

PLOS ONE | https://doi.org/10.1371/journal.pone.0262798 January 20, 2022 7 / 16

https://doi.org/10.1371/journal.pone.0262798.g002
https://doi.org/10.1371/journal.pone.0262798.g003
https://doi.org/10.1371/journal.pone.0262798


Knee OA is associated with a reduction in gastrocnemius muscle force, whereas quadriceps

and hamstring muscles play a significant role in controlling the knee joint. Subjects with knee

OA had reduced gastrocnemius muscle forces compared to NP subjects by 30% and 18% for

pre-HTO and pre-TKR, respectively. This could happen due to a reduction in knee extension

moment (Fig 3D) for these groups; i.e, the role of a plantar flexor–knee extension couple. A

plantar flexor–knee extension couple, which was addressed by [59, 60], plays a key role in knee

control during gait. According to this phenomenon, under load, the planter flexors, i.e., gas-

trocnemius, are capable of acting on the tibiofemoral joint to extend the knee by holding back

the tibia. Brunner and Rutz [61] suggested that the knee extensors (quadriceps) can control

only the first phase of knee extension, during the response to loading. The second phase is

Table 3. Muscle forces for NP, pre-HTO and pre-TKR subjects at three different events: Heel strike (HS), weight acceptance (WA), and push off (PO) phases of

stance.

Variables Group

Muscle Force (BW) NP (n = 11) Pre-HTO (n = 10) Pre-TKR (n = 9)

H
ee
lS
tr
ik
e

Biceps Femoris Long Head 1.59 0.255 0.208

Biceps Femoris Short Head 0.114 0.274 0.153

Semimembranosus 0.482 0.422 0.429

Semitendinosus 0.087 0.063c 0.102

Lateral Gastrocnemius 0.149 0.178 0.222

Medial Gastrocnemius 0.154 0.3 0.351

Rectus Femoris 0.017 0.022 0.053

Vastus Intermedius 0.015a,b 0.036c 0.096

Vastus Lateralis 0.018 0.044 0.086

Vastus Medialis 0.03b 0.03c 0.106

W
ei
gh
t
A
cc
ep
ta
nc
e

Biceps Femoris Long Head 0.16 0.261 0.224

Biceps Femoris Short Head 0.119a 0.32 0.232

Semimembranosus 0.484 0.422 0.445

Semitendinosus 0.088 0.064c 0.107

Lateral Gastrocnemius 0.15 0.178 0.24

Medial Gastrocnemius 0.166 0.3 0.351

Rectus Femoris 0.147 0.156 0.182

Vastus Intermedius 0.216 0.201 0.272

Vastus Lateralis 0.249 0.286 0.278

Vastus Medialis 0.204 0.159 0.286

Pu
sh
of
f

Biceps Femoris Long Head 0.006a,b 0.072 0.081

Biceps Femoris Short Head 0.027a,b 0.172 0.166

Semimembranosus 0.015 0.038 0.072

Semitendinosus 0.009a,b 0.017 0.03

Lateral Gastrocnemius 0.417 0.43 0.508

Medial Gastrocnemius 1.04 0.626 0.763

Rectus Femoris 0.059a,b 0.189 0.2

Vastus Intermedius 0.026a,b 0.087 0.177

Vastus Lateralis 0.029a,b 0.122 0.172

Vastus Medialis 0.02b 0.06c 0.118

a significant between NP and pre-HTO. (Kruskal–Wallis).
b significant between NP and pre-TKR.
c significant between pre-HTO and pre-TKR.

https://doi.org/10.1371/journal.pone.0262798.t003
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controlled by the planter flexors. During this time interval, both knee OA groups had a

reduced gastrocnemius muscle force compared to NP. In line with this finding, the results of

Table 4. knee, hip, and ankle kinetics for NP, pre-HTO and pre-TKR subjects at three different events: heel strike (HS), weight acceptance (WA), and push off (PO)

phases of stance.

Variables Group

Joint kinetic [BW.H] NP (n = 11) Pre-HTO (n = 10) Pre-TKR (n = 9)

H
ee
lS
tr
ik
e

Knee flexion (+) /extension (–) –0.23 0.22 0.42

Knee adduction 0.08 0.05 0.04

Knee internal (+) / external (–) rotation 0.01 –0.02 –0.02

Hip flexion 0.30b 1.16c 2.58

Hip adduction –0.40 –0.30 –0.19

Hip internal (+) / external rotation (–) –0.01a 0.01c 0.03

Ankle plantarflexion (+) / dorsiflexion (–) 0.09 0.06 0.14

W
ei
gh
t
A
cc
ep
ta
nc
e Knee flexion (+) /extension (–) –1.36 –0.98 –0.87

Knee adduction 1.01a 2.06 1.11

Knee internal (+) / external (–) rotation 0.04 0.08c 0.14

Hip flexion 4.03a 4.37c 3.87

Hip adduction 0.12 0.16 –0.06

Hip internal (+) / external rotation (–) –0.06 a 0.14 –0.25

Ankle plantarflexion (+) / dorsiflexion (–) 0.62 0.58 0.40

Pu
sh
of
f

Knee flexion (+) /extension (–) –2.46a,b –1.09 –0.40

Knee adduction 1.21a 3.29 2.09

Knee internal (+) / external (–) rotation 0.67 1.04 0.78

Hip flexion 0.30a –0.76 –0.70

Hip adduction –3.97 –4.37 –3.42

Hip internal (+) /external rotation (–) –0.49a,b 0.05 –0.01

Ankle plantarflexion (+) / dorsiflexion (–) –7.86 –7.28 –7.34

a significant between NP and pre-HTO.
b significant between NP and pre-TKR.
c significant between pre-HTO and pre-TKR.

https://doi.org/10.1371/journal.pone.0262798.t004

Fig 4. Co-contraction index during stance-phase for NP subjects–n = 11, pre-HTO subjects–n = 10, pre-TKR subjects–n = 9. Values represent mean (SD), (�) means

the difference is significant (P< 0.05).

https://doi.org/10.1371/journal.pone.0262798.g004
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this study have shown that patients with knee OA had reduced knee extension moments dur-

ing late stance. Therefore, less gastrocnemius muscle force was developed in the knee OA

(compared to NP group), to control the knee extension moment during late stance. The gas-

trocnemius is a biarticular muscle, crossing over the knee and ankle joints. Under load, the

activity of the gastrocnemius can be adjusted according to this arrangement. Due to the lever

arm situation at the knee under load, the gastrocnemius muscle is a powerful knee flexor when

the knee is flexed. However, if its strength is needed at the ankle, simultaneous contraction of

the vasti locks the knee and shifts the gastrocnemius’ strength to the ankle [62], i.e., the net

effect is to extend the knee.

Our finding of increased quadriceps and hamstrings muscle forces in the knee OA groups

is supported by an earlier study [63], where these muscle groups appear to be capable of sup-

porting up to 100% of the applied adduction/abduction moment, where it is high in knee OA

patients (Fig 3E), because of their abduction and/or adduction moment arm. The quadriceps

play a major role in controlling the knee, as shortly after heel strike it acts to prevent excessive

or rapid knee flexion. knee OA subjects used substantially higher quadriceps and hamstring

muscle force than NP subjects, presumably in an attempt to support the joint against an exces-

sive knee adduction moment, Fig 3E. The peak force estimated for hamstring muscle increased

by 25%, for pre-HTO compared to NP.

In the NP stance phase, there are at least three crucial sub-phases. First is the initial heel

contact (HS) when the line of action of the ground reaction force (GRF) passes posterior to

the ankle centre, producing a plantar-flexion moment at the ankle. This moment is countered

by the activation of ankle dorsiflexor muscles; this was the case for all groups. Considering the

importance of leg stability during this phase, compensations aimed at extending the knee

include premature activity of the gastrocnemius [62], avoiding knee flexion during loading

response, with co-contraction of the knee extensors and hamstring muscles during knee flex-

ion. Pre- TKR cohort shows a higher activity of the gastrocnemius compared to the other

groups, Fig 1. At the knee joint, the ground reaction force passes anterior to the knee axis cre-

ating an extension moment, which is eccentrically controlled by the hamstring muscles to

avoid hyper-extension of the knee and slow the forward movement of the leg. The results of

this study show that at initial HS, there is an excessive knee flexion for the knee OA groups

compared to the NP group, (18±5, 9±4, 5±3 degrees for Pre-TKR, Pre-HTO, and NP, respec-

tively), leading to the GRF passing posterior to knee centre of rotation, creating a flexion

moment rather than extension moment at the knee, (0.22, 0.42) %BW�H for pre-HTO and

pre-TKR, respectively, Fig 3D. The GRF passes anterior to hip rotation centre creating a flex-

ion moment, where the Pre- TKR cohort shows a significantly higher flexion moment com-

pared to the pre-HTO and NP groups.

Second, is the weight acceptance (WA) phase where the ankle dorsi-flexors eccentrically

contract towards foot flat. The knee extensors contract, to correct the position of the knee

before it accepts further loading into single leg stance. Peak quadriceps action occurs during

loading response, when the GRF vector is behind the joint axis. As the vector moves forward

of the knee axis, an extension moment is created at the knee, and this muscle group relaxes.

The gastrocnemius muscle group contracts to control knee extension at this stage, due to the

plantar flexor–knee extension couple. Higher muscle forces occur during WA when the

EKAM is high and the knee extends in single limb support. In this study the knee OA subjects

(pre-HTO and pre-TKR), used substantially higher lateral hamstring and vastus lateralis mus-

cle forces during WA phase compared to NP (Table 3). Further still, these were higher for pre-

HTO subjects than for pre-TKR subjects. This finding further supports the notion that selec-

tive activation of lateral muscles is likely a pain and symptom management strategy in this

population to unload the medial compartment of the knee.
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Third, is the push-off (PO) phase, where the leg is accelerated forward by the gastrocne-

mius creating a rapid ankle plantar flexion to push off and with associated activity at the hip

flexor (rectus femoris). During this phase, generally for NP gait, there is a maximal knee exten-

sion moment, a second peak knee adduction moment, and a peak dorsiflexion moment. In

this study both knee OA groups had reduced the terminal knee extension moments (P<0.05)

and ankle dorsiflexion moment (Fig 3G), compared to NP. This seems to be partially a com-

pensatory action for the poorer physical capacity and the subjective knee pain experienced by

this population. This, in addition to a reduced gastrocnemius force (Fig 1B and 1C and

Table 3), implies that subjects with knee OA inadvertently used greater hip flexors (rectus

femoris) muscle force to propel the body forward, i.e., 0.2, 0.18, and 0.06 (BW) for pre-TKR,

pre-HTO and NP subjects, respectively. When comparing quadriceps muscle forces; vastus

lateralis and vastus inter-medialis produced higher force in the pre-TKR subjects than NP

(P<0.05) and pre-HTO subjects, and in the pre-HTO subjects compared to the NP subjects

(P<0.05).

In the frontal plane, the hip adduction moment is generally found to be high in knee OA

patients compared to NP. However, the pre-TKR cohort exhibited a different adduction pat-

tern compared to the NP and pre-HTO cohorts. In both the NP and pre-HTO subjects, frontal

plane moments had two distinct peaks. The first peak was higher for the pre-HTO compared

to the NP group. This is attributed to altered alignment of the tibiofemoral joint (knee varus),

which would create a valgus alignment at the hip.

The same trend was seen in the EKAM, where a significant increase (P<0.05) was observed

for the pre-HTO subject group (2.06, 3.29) %BW�H compared to the NP (1.01, 1.21) %BW�H

at weight acceptance and push-off, respectively. A remarkable increase in the first peak of

EKAM for NP, in comparison to the second peak, was mainly due to the increase in the quad-

riceps force resisting the external knee flexion moment during this time interval. In contrast,

the moderate increase of the second peak in the pre-HTO cohort, in comparison to the first

peak, was due to the increase in both quadriceps and hamstring muscle forces during this time

interval as compared to NP. The double peak could not be identified in pre-TKR patients.

In the transverse plane, the hip is significantly more internally rotated for the pre-HTO sub-

jects group compared to the NP subject group (P<0.05), during weight acceptance and push

off.

Higher symmetrical quadriceps and hamstring forces suggest that their co-contraction with

the gastrocnemius muscles could lead to higher joint contact forces that, combined with the

excessive loading due to high EKAM, would exacerbate joint destruction. Nonetheless, the

knee OA groups used greater vastus lateralis muscle force compared to the NP subjects, which

may imply that people with knee OA inadvertently increase the activity of vastus lateralis as a

compensatory strategy to reduce medial joint compression and subsequent pain. For the knee

OA subject groups, a reduced dorsiflexion moment and lower gastrocnemius co-contraction

suggest that gastrocnemius overload may not be the primary cause of joint degeneration. If

this is the case; attention should be focussed on the counterbalancing role of the quadriceps

and hamstrings during dynamic movements to control knee biomechanics.

Pre-TKR patients (Fig 4), have significantly (P<0.05) higher CCI compared to NP subjects.

Interestingly, this study shows that gastrocnemii indices are doubled in the pre-HTO group as

compared to NP subjects. For the pre-TKR group, in addition to the gastrocnemii role that is

associated with a two-fold increase in the CCI, the hamstring muscles also have the potential

to control the knee joint. The hamstring indices increased by almost four-fold on the lateral

side and three-fold on the medial side, as compared to NP individuals. There was also a signifi-

cant increase in VLLH for the pre- TKR group, which may contribute to a reduction in the

medial contact force. The lateral indices indicated an almost two-fold increase (P<0.05), for
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the pre-HTO group compared to NP subjects. Therefore, increased lateral muscle co-contrac-

tion reflects the non -pathological knee’s progression to uni-compartmental OA with varus

deformity. No significant differences were found between pre-HTO and pre-TKR lateral

indices.

Significant difference (P<0.05) was identified for the medial side index, VMMH, between

the two OA groups, Fig 4. In agreement with [6], patients with uni-compartmental OA and

varus deformity (pre-HTO) have increased lateral CCIs, which may help to unload the medial

compartment. This increase is also evident for multi-compartmental OA (pre-TKR). Since

increased medial muscle co-contraction has the potential to differentiate between uni- com-

partment and multi-compartment OA (Pre-HTO and pre-TKR patients), this could inform

treatment management.

The results of this study should be viewed within the context of some limitations. The small

sample size potentially lowers statistical power. However, a comparison of the joint angles,

moments, and muscle activity from our simulation with the results from previous studies with

larger populations demonstrated that our subjects displayed gait patterns that were typical. In

addition, EMGs were recorded from just seven muscles bilaterally for use in the model to rep-

resent 10 muscles crossing the knee joint; some muscles in the model represented a combina-

tion of multiple muscles with similar functions, and this may affect the evaluation of

magnitude for knee muscle forces. Finally, while musculoskeletal model parameters are

adjusted for each individual, the model does not account for musculoskeletal size variations

and alterations in muscle architecture. Variables such as maximum isometric force, optimum

fibre length, and tendon slack length were modified to account for each subject’s weakened

musculature.

5. Conclusion

Knee OA is associated with a reduction in gastrocnemius muscle force, whereas quadriceps

and hamstring muscles play a significant role in controlling the knee joint, with altered coordi-

nation and increased forces with increasing age and involvement of knee compartment.

Moreover, pre-TKR patients adopt a gait pattern that differs from that of pre-HTO patients,

attempting to unload the affected joint structures during walking, possibly by changing muscle

coordination as well as moments at the adjacent ankle and/or hip. The increase of the lateral

muscle co-contraction reflects the progression from NP to uni-compartmental OA and varus

deformity (pre-HTO). Whereas, the increase of medial muscle co-activation could potentially

differentiate between uni-compartmental or multi-compartmental OA.
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