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Abstract
Yoga is a globally acclaimed and widely recommended practice for a healthy living. Maintaining correct posture while per-
forming a Yogasana is of utmost importance. In this work, we employ transfer learning from human pose estimation models 
for extracting 136 key-points spread all over the body to train a random forest classifier which is used for estimation of the 
Yogasanas. The results are evaluated on an in-house collected extensive yoga video database of 51 subjects recorded from 
four different camera angles. We use a three step scheme for evaluating the generalizability of a Yoga classifier by testing it 
on (1) unseen frames, (2) unseen subjects, and (3) unseen camera angles. We argue that for most of the applications, valida-
tion accuracies on unseen subjects and unseen camera angles would be most important. We empirically analyze over three 
public datasets, the advantage of transfer learning and the possibilities of target leakage. We further demonstrate that the 
classification accuracies critically depend on the cross validation method employed and can often be misleading. To promote 
further research, we have made key-points dataset and code publicly available.
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Introduction

Human activity recognition (HAR) is one of the important 
problems in computer vision.1 It includes accurate identifica-
tion of the activity being performed by a person or a group 
with the help of images, videos or raw data collected from 
Sensors. Wide variety of applications of HAR include but 
are not limited to active and assisted living (AAL), health-
care monitoring, security and surveillance, tele-immersion, 
and smart home automation [44].

These advances in HAR have been backed by large scale 
open datasets which have been broadly categorized as action 
level, behavior level, interaction level and group activities 
level. A comprehensive category wise list of the datasets 
along with their details can be referred to in survey [6].

Yoga is a group of physical and mental practices that 
originated in ancient India. It aims to bring body, mind, and 
soul in unison. Over the past few decades Yoga has gained a 
tremendous popularity across the globe as an art and science 
of healthy living. United Nations has declared 21st June as 
‘International day of Yoga’. Several researchers have studied 
and evaluated the medical benefits of practicing Yoga [8, 29, 
30, 45, 53, 54]. Including the recent COVID-19 pandemic 
times study [46] that shows, people who practiced Yoga dur-
ing the lockdowns experienced lower levels of stress, anxi-
ety, and depression (Fig. 1).

‘Asana’ is the literal Sanskrit translation of posture. To 
get the maximum benefit from Yogasanas and to prevent any 
adverse effects and injuries during practice, one need to per-
form them correctly. This makes the problem of recognition 
and correction of Yoga pose, an important one. This requires 
access to a Yoga trainer, which may not be widely avail-
able. Therefore, use of ML based Yoga trainer is proposed. 

http://orcid.org/0000-0001-8694-3453
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01376-7&domain=pdf
https://github.com/mustafa1728/Yogasana-Classifier
https://github.com/mustafa1728/Yogasana-Classifier
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However, Yogasanas involve complex body postures which 
are not seen in general activities. Hence, the existing train-
ing datasets available for HAR are likely to fail in accurate 
estimation of Yoga poses.

Several studies have created customized dataset for 
yoga pose estimation [9, 10, 31, 35, 41, 43, 51, 52, 55]. 
YogaNet [41] is based on 3D joint angular displacement 
maps and collects 3D information using complex 3D motion 
capture systems, whereas the rest employ 2D datasets in the 
form of either videos [31, 35, 51, 55] or images [9, 10, 43, 
52].

Only a few of the listed datasets have been made publicly 
available [35, 43, 52, 55]. Yoga-82 [52] is a large scale data-
set created from 28.4K images of people doing Yogasanas 
in the wild, collected from various internet sources with the 
images. These asanas have been classified into 82 poses. 
Yoga-82 is the most challenging database available till date 
for Yogasana classification. The other datasets which have 
been made open are smaller in size, therefore cannot be 
utilized for Deep Learning model training. For such cases 
Transfer Learning (TL) proves to be an effective technique 
and is likely to give better performance. The models using 
TL are expected to generalize well as compared to the ones 
that are using limited datasets.

Human pose estimation is a key attraction in computer 
vision and has been an active area of research for past cou-
ple of decades. Recently, several novel methods have been 
proposed that can be widely categorized into two types - 
(i) top-down approach and (ii) bottom-up approach. In the 
first approach, the architectures first predict a bounding-box 
around the humans and these bounding boxes are separately 
processed to predict the joint keypoint coordinates on the 
human. Prominent works under this approach are AlphaPose 
[11], Simple Baseline [12], HRNet [13], DARK [19] and 
DC-Pose [20].

In the second approach, the keypoints are first predicted 
without being assigned to a particular human (among 
other humans) in the image. Instead, after predicting the 
keypoints, they are grouped together and assigned to the 
different humans in the image. Prominent works under 

this method include OpenPose [22], MultiPoseNet [21], 
HigherHRNet [23], PifPaf [24], SIMPLE [25]. Since yoga 
data is limited in size, transfer learning from these models 
trained on large scale public pose estimation datasets can 
be employed to improve yoga pose estimation performance.

In this paper, we employ a powerful and efficient pose 
estimation model, AlphaPose [11], for pose estimation of 
the Yoga performer, followed by a simple random forest for 
classification of the performed yoga. We also experiment 
with the more recent methods DCPose [20] and KAPAO 
[18] on the Yoga-82 [52] dataset to compare the effect of 
different pose estimation methods on our overall pipeline.

Choice of the pose estimation model affects the first 
stage of the pipeline and good performance here propagates 
to overall good performance of the pipeline. Our pipeline 
design allows the choice of pose estimation models and can 
leverage the developments in this domain.

We also collect an extensive in-house dataset, a subset 
of which has been used to evaluate the performance of our 
model using a three-stage evaluation strategy consisting of 
evaluation on (1) unseen frames of Yogasanas, (2) unseen 
subjects, and (3) unseen angles. In summary, the major con-
tributions of this work are three fold:-

• An extensive dataset explicitly capturing yoga poses from 
four camera angles for each of the 51 subjects perform-
ing 20 asanas. To promote future research, we make the 
AlphaPose [11] inferred body key points dataset and code 
openly available.

• A view independent classification framework, orthogonal 
to the choice of pose estimation or classification algo-
rithms used, employing a three-stage evaluation strat-
egy to provide a more accurate estimate of generalization 
capacity of a model.

• A simple but effective pipeline involving less computational 
complexity and real-time inference along with competitive 
performance exhaustively evaluated on existing datasets.

In the rest of the paper, we first discuss related work in the 
subsequent section. In “Methodology”, we discuss about 

Fig. 1  A simplified view of 
the 2-stage architecture of the 
Yogasana Classifier
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our data collection method, the two stage architecture for 
yogasana estimation, possibilities of target leakage and our 
novel evaluation techniques designed to eliminate target 
leakage. Experimental results of our and three other2 openly 
available datasets can be found in “Experimental Results” 
followed by discussions on these results in the next section, 
ending with concluding remarks and future scope in the sub-
sequent section.

Related Work

Human pose estimation, being one of the most popular prob-
lems in computer vision, has many large scale and openly 
available benchmark datasets like COCO [40], Halpe [11, 
39], MPII [1], CrowdPose [2] and HiEve [3]. Microsoft 
COCO [40] dataset is one of the most popular datasets in 
human pose estimation. It consists of 200,000 images with 
pose annotation of 17 joint keypoints. MPII [1] dataset con-
tains about 29,000 images of humans performing various 
activities captured from different angles. This dataset is 
annotated with 15 body joint keypoints along with their vis-
ibility flags. In CrowdPose [2], the dataset contains around 
20,000 images with about a total of 80,000 humans spanning 
across all these images. The images of this dataset are sam-
pled from three existing datasets based on a metric called 
Crowd Index. HiEve [3] dataset is the largest human pose 
dataset with a total of >1 M poses spanning across 31 vid-
eos. This dataset specially focuses on complex and crowded 
events like entrance/exits at subways, collision, fighting etc. 
In the absence of a Yoga-pose benchmark, the performance 
on these datasets can been taken as a proxy for the perfor-
mance of various pose estimation methods on yoga poses.

Under the top-down approach as described in Sec-
tion Introduction, the authors of Simple Baseline [12] pro-
pose a simple but effective pipeline so as to provide a strong 
baseline for pose estimation methods. Their architecture is 
based on ResNet [26] followed by a few deconvolution lay-
ers. With this simple architecture, they achieve 73.7 mAP 
on COCO dataset and 74.6 mAP and 57.8 MOTA3 score on 
PoseTrack dataset [4]. In HRNet [13], the authors propose a 
deep architecture with parallel high-to-low resolution sub-
networks with repeated information exchange across multi-
resolution subnetworks. They achieve 75.5 mAP on COCO 
dataset and 74.9 mAP and 57.9 MOTA on PoseTrack data-
set. Somewhat orthogonal to these methods, DARK [19] 
investigates the keypoint coordinate representation in human 
pose estimation architectures. They propose an efficient 

Taylor-expansion based decoding process of predicted joint 
heatmap to the keypoint coordinate in the original image 
space and an unbiased sub-pixel centred coordinate encod-
ing scheme. With an HRNet-W48 [13] backbone, DARK 
[19] achieves 76.2 mAP on COCO dataset. In a different 
direction, Lite-HRNet [14] proposes a lightweight High 
Resolution network that focuses on reducing computational 
overhead while not degrading the performance significantly. 
They apply the shuffle block from ShuffleNet [5] to HRNet 
[13] to show performance gain. Thereafter, they replace 
computationally intensive pointwise ( 1 × 1 ) convolutions in 
shuffle blocks with conditional channel weighting, wherein 
weights are learnt across all the channels over multiple reso-
lutions. They achieve 69.7 mAP on the COCO dataset and 
87.0 PCKh4 on MPII dataset.

There are several methods that rely on the bottom up 
approach as it reduces the computational overhead in multi-
person pose estimation as the model does not need to process 
each human in the image separately. OpenPose [22] proposes 
part affinity fields (PAFs) which is a method representing the 
unstructured pairwise relationship between the body parts 
of the different humans in the image. They achieve 61.8 
mAP on COCO dataset using the vanilla method while the 
foot+body model achieves 65.3 mAP on the COCO dataset. 
In MultiPoseNet [21], the authors design a deep architecture 
that consists of a shared backbone of feature extractor which 
is then fed into two parallel subnets—one is a person detec-
tion/segmentation subnet and another is the keypoint detec-
tion subnet. The outputs of these two subnets are then fed 
into a network called Pose Residual Network that assigns the 
keypoints to the detected persons. This architecture achieves 
69.6 mAP on the COCO dataset. HigherHRNet [23] tack-
les the scale variation of humans in the images. It gener-
ates high resolution feature pyramid with multi-resolution 
supervision during training and multi-resolution heatmap 
aggregation during inference. The pipeline particularly aims 
at small humans in images and crowded scenes. It achieves 
70.5 mAP on COCO dataset. PifPaf [24] relies on part inten-
sity fields (pif) and part association fields (paf) to local-
ize body parts and to associate the body parts among each 
other to fully form the human poses. They also use Laplace 
loss for regression to encode the uncertainty. This method 
achieves 66.7 mAP on the COCO dataset. In SIMPLE [25], 
the authors aim to close the gap in performance in terms of 
accuracy between the top-down approaches and the bottom-
up approaches. The pipeline employs mimicking the esti-
mated heatmaps of a high performance top-down approach 
to transfer the knowledge of high level features from the top-
down model to the bottom-up model. The human detection 

2 Images in [43] dataset are very similar to those in Yoga-82 [52], 
but [43] is relatively smaller in size. Thus, we experiment on Yoga-82 
[52] and do not explore [43].
3 mean Average Precision and Multiple Object Tracking Accuracy. 4 Percentage of Correct Keypoints based on the head.
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and pose estimation modules share the same backbone and 
are unified by treating the problems as point learning prob-
lems so that both tasks can benefit each other. It achieves 
71.1 mAP on the COCO dataset and a 69.5 mAP and a 55.7 
MOTA on the PoseTrack dataset. DEKR [15] is a simple 
yet effective pipeline that uses adaptive convolutions and 
a multi-branch structure for attending to the different pixel 
regions relevant for different keypoints. The authors argue 
that to learn keypoints by regression, the model needs to 
focus on the keypoint regions. This is achieved by the pixel-
wise extension of spatial transformer network which acti-
vate the pixels near a keypoint allowing the model to learn 
rich representations from these activated pixels. Further, the 
multi-branch structure helps the model to focus on the pixels 
relevant to each keypoint separately, thus learning a disen-
tangled representation. This method achieves 71.0 mAP on 
the COCO dataset.

Another paradigm in pose estimation is that of regres-
sion-based methods, where the keypoint coordinates are 
directly treated as targets and the model is made to learn a 
regression-based mapping to the pixel coordinates. Although 
these methods are computationally less expensive compared 
to heatmap-based methods, their performances are lower. 
This is because these models fail to incorporate contextual 
information which present around the keypoint and also fail 
to capture the inherent uncertainty in the keypoint annota-
tions, especially in the cases of occlusion and motion blur. 
A notable method in this area is the Residual Log-likelihood 
Estimation [16] that actually achieves performance higher 
than the SOTA on the COCO dataset. In [16], the authors 
propose a novel and effective regression paradigm with the 
re-parameterization design and Residual Log-likelihood 
Estimation (RLE) which, instead of learning the actual 
distribution of keypoint coordinates, attempts to learn the 
change of the distribution from the presumed distribution. 
With an HRNet-w48 backbone and RLE, the authors achieve 
75.7 mAP on the COCO dataset. In a similar vein, authors 
of [18] propose a heatmap-free method which they name as 
KAPAO (Keypoints And Poses As Objects), where individ-
ual keypoints and sets of related keypoints (poses) are mod-
elled as objects within a dense single-stage anchor-based 
detection framework. KAPAO solves the problem of single-
stage multi-person human pose estimation by simultaneously 
detecting human pose and keypoint objects and fusing the 
detections to exploit the strengths of both object representa-
tions. KAPAO achieves 70.3 mAP on COCO dataset with 
the pipeline being 1–2 orders of magnitude faster. We use 
KAPAO as a pose estimation method in testing on Yoga-82 
[52] dataset to observe the effect of various pose estimation 
models on our pipeline.

AlphaPose [11] framework consists of three modules—(i) 
Spatial Symmetric Transformer Network (SSTN) (ii) Para-
metric Pose Non-Max Suppression (NMP) and (iii) Pose 

Guided Proposals Generator (PGPG). The SSTN is used 
extract high-quality single person area in the image from 
an inaccurate bounding box which can come from a sub-
optimal object detector. The Parametric Pose NMS elimi-
nates redundant poses using a novel pose distance metric. 
The PGPG is used to augment the training data to gener-
ate (sub-optimal) bounding boxes based on the given pose 
which are used to train the SSTN. It achieves strong results 
on the MPII [1] benchmark (76.7 mAP) and the COCO data-
set (72.3 mAP), and is able to provide a frame rate of 23 fps 
when fed with video data. Hence we choose AlphaPose [11] 
as our pose estimation method.

DCPose [20] aims to solve the problem of multi-person 
pose estimation in video data. The framework encodes the 
spatial-temporal keypoint context into localized search 
scopes, computes pose residuals, and subsequently refines 
the keypoint heatmap estimations. In particular, the pipeline 
consists of three task-specific modules—(i) Pose Temporal 
Merger (PTM) network, which performs keypoint aggrega-
tion over three consecutive frames with group convolution, 
thereby localizing the search range for the keypoint (ii) Pose 
Residual Fusion (PRF) network, which efficiently obtains 
the pose residuals between the current frame and adjacent 
frames and (iii) Pose Correction Network (PCN) comprising 
five parallel convolution layers with different dilation rates 
for resampling keypoint heatmaps in the localized search 
range. This method achieves 79.2 mAP on the PoseTrack 
dataset. We also experiment with DCPose on Yoga-82 [52] 
to observe the effect of a different pose estimation method 
on our pipeline.

Extensive research has been done in the application of 
pose estimation and classification in Yoga as well (Table 1). 
Islam et al. [34] used keypoints to get selected joint angles. 
They used the deviation in these from a set of reference 
angles as the asana’s accuracy. Although they were not 
involved in classifying an asana, their experiments and 
results demonstrated that key-points detected from pose 
estimation are indeed relevant features for asanas.

YogaNet [41] extended this work using JADMs5 instead 
of selecting special angles. Using angles instead of key-
points allowed them to improve their method’s position 
and size invariance to some extent. However, both this and 
the previous work relied heavily on key-points detected by 
Microsoft Kinect [56], which we found to be under-perform-
ing compared to more recent pose estimation frameworks 
like AlphaPose [11] and OpenPose [22]. This deep learning 
approach for extracting key points is a relatively inexpensive 
alternative which only requires RGB images as compared 
to the depth and infra-red based approach used by Kinect.

Yadav et al. [55] used OpenPose [22] for key-point extrac-
tion and LSTMs [32] for exploiting temporal information, 

5 Joint Angular Displacement Maps.
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building a complete end-to-end pipeline for classification 
from yoga videos. Instead of using the keypoint co-ordi-
nates, they used intermediate features learned by OpenPose 
and processed them with CNNs [38] before putting them 
into LSTMs [32]. We improve over this work using a better 
performing pose estimator, larger dataset and more concrete 
evaluations.

Yoga-82[52] is one of the first large scale Yoga classifica-
tion dataset openly available. It comprises of 28.4K images 
of people performing one of the 82 specified yogasanas col-
lected from web search engines. A three-level hierarchical 
structure for labels, with 20 and 6 super-classes on subse-
quent levels has been provided. However, they formulated 
their problem as pose classification instead of estimation, 
and thus, do not contain key-point annotations. Also, a sig-
nificant portion of their data consists of clip art images and 
diagrams, instead of actual human images, which could lead 
to a poor performance when using TL from methods trained 
on real-world examples.

Jain et al. [35] used a complete end to end architecture 
for this problem. To utilise the spatio-temporal relationship 
effectively, they proposed to use 3D CNNs [36]. However, 
they have used a small dataset with only 261 videos.

YogaHelp [31] took a slightly different approach and used 
various motion sensors to provide feedback and instructions 
for improvement of a person performing yoga. They exten-
sively explored and tested a single asana for different sub-
jects of varying expertise. They designed different param-
eters to define the correctness of the asana, and used them 
for evaluation. They found that using the feedback system, 
beginners in yoga showed considerable improvement over a 
small period of four weeks. Their findings demonstrate the 
overall benefits of this work, and show that a yoga trainer 
would indeed be very helpful, especially for beginners in 
the field.

Yadav et al. [55] used pre-trained OpenPose [22] model 
for extracting their key-points. This was the first work which 
used Transfer Learning for better performance on yoga clas-
sification. Using the pre-trained model allowed them to work 

with a deep learning framework even with a relatively small 
sized dataset. They used a custom yoga dataset having only 
6 asanas, 15 subjects and a uniform camera angle. However, 
for their frame-by-frame evaluation, they used randomly 
split data for validation, likely leading to target leakage, 
allowing them to obtain 100% accuracy in three out of the 
six asanas considered.

One of the major concerns we found in some existing 
works was that of target leakage which has been formally 
defined in section Target Leakage. In general, target leakage 
leads to higher accuracy measures during testing although 
the underlying model generalization capability may not be 
that high.

In our work, we try to address some of these limitations 
we found in existing works. We collect Yoga data in a more 
systematic way. Larger number of subjects and variations 
across different camera angles allow us to better generalize 
our models, and obtain more realistic evaluations. Using a 
three level evaluation strategy, we address target leakage that 
was prevailing in most existing works. Lastly, we explored 
a two-stage architecture instead of an end-to-end approach. 
This allowed us to use Transfer Learning and leverage exist-
ing large scale data and extensive research in the form of 
pre-trained models. In this domain, where large scale data-
sets are not available, using TL allowed us to improve our 
performance and paved the way for future works.

Methodology

Our methodology can broadly be divided into 3 parts. 
Firstly, we collect an extensive yoga pose dataset while 
keeping in mind the limitations and shortcomings of exist-
ing open datasets. Secondly, we use a 2-stage architecture 
with human pose estimation for feature extraction followed 
by decision tree based classification to get asana prediction 
for each of the frames given as image input. Finally, we use 
a tri-level evaluation strategy to evaluate the performance 
of our model.

Table 1  Summary of related work in chronological order

a Modality can be interpreted as (1) frames - extract input frames from a video, (2) images - still images not taken from any video, (3) video - use 
complete video segment as input. Note that frames modality with random splits will lead to target leakage

Work No. of asanas Subj Cam Key points Code open Dataset open Modalitya Target leakage TL

Islam et al. [34] – 5 1 20 No No Frames Yes No
Maddala et al. [41] 42 10 1 25 No No Videos No No
Yadav et al. [55] 6 12 1 18 Yes Yes Frames Yes Yes
Verma et al. [52] 82 – – – No Yes Images No No
Jain et al. [35] 10 27 1 – No Yes Videos No No
Gupta et al. [31] 1 20 1 – No No Frames Yes No
Ours 20 51 4 136 Yes Yes Frames No Yes
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Data Collection

Using Microsoft Kinect [56], we collect data as videos of 
subjects performing yogasanas. For a better generalization 
of our models across individuals, 51 volunteers were con-
tacted as subjects for our data. They were each asked to 
perform 20 yoga poses and 1 still pose (to signify no asana 
being performed) in a controlled environment. Each video 
lasts about 2–5 min. Some asanas were bi-lateral, and the 
subjects performed these twice, one with each side. The two 
sides were labelled differently.6 For such asanas, the subjects 
were asked to perform the asana in both directions one after 
the other, and video timestamps for the start and end time of 
each direction were recorded as well.

Some asanas may be harder to classify from the front fac-
ing direction, while they may be easily classified from some 
other angle. Also, while operating with users in a real-world 
scenario, the classifier could be fed images from many dif-
ferent orientations. To make our models robust across differ-
ent view angles, every asana performed by each subject was 
recorded from 4 different cameras situated in the corners of 
the room, as shown in Fig 2a.

After all the yoga videos were collected, the pose esti-
mator AlphaPose [11] was first run on all of them together, 
storing the key-points for each frame in each video. We 
used model weights pre-trained on the Halpe Full Body 
[39] dataset directly for this first stage. Once all the videos 
were inferred, we started processing it for the second stage 
of classification.

For this work, we consider frame-by-frame inference, and 
so, need frame-wise data for the second classification stage. 
While collecting the data, we also recorded timestamps cor-
responding to start and end times of the asana. From each 
asana, we uniformly sample some frames between the start 
and end times, such that the frames are equally spaced. We 
observed that subjects took some time to get into the final 

pose of the asana. So, we used the frames from the begin-
ning of the video till the start of an asana as ‘Still’ frames, 
adding an extra class in our classifier. Rest of the frames 
were labelled with the respective asana. This extra class 
helped improve the overall performance, since these frames 
would otherwise be wrongly classified as any one of the 
asanas. However, we estimate approximately 2–3% of mis-
labeled data points where the subject has lost balance while 
performing the yogasana. The key-points detected by Alp-
haPose in all the frames and the corresponding asana labels 
formed the training dataset for our classifier.

In summary, videos of 51 subjects were systematically 
recorded from 4 different camera angles. From these vid-
eos, frames in which actual asana was being performed 
were uniformly sampled, with a maximum of 200 frames 
per video segment. Katichakrasana was performed by maxi-
mum number of subjects, i.e. 47, and different asanas were 
recorded for different number of subjects. To the best of 
our knowledge, this is the first yoga dataset explicitly con-
sidering asanas from different camera angles, and has the 
largest number of subjects being recorded. A more detailed 
description of the number of recorded subjects and extracted 
frames for each yoga pose and camera, as used in the subse-
quent sections, can be found in the supplementary material 
Appendix A

Pose Estimation

Pose estimation is the first and most challenging stage in our 
model pipeline. A human wanting to distinguish different 
yogasanas would primarily use the pose and posture of the 
subject for comparison. Thus, it is only natural to use pose 
estimation for extracting rich features characterising the pose 
of the subject. There has already been extensive research in 
this field and we leverage existing architectures and datasets 
in our work. Transferring knowledge from openly available 
large scale datasets allows us to overcome the limitations of 
scarcity of annotated data to some extent.

AlphaPose [11] is a popular method for Pose Estimation. 
It follows a two-step framework where it first detects human 

Fig. 2  An overview of the 
a data collection setup and the 
b 136 key-points detected by 
AlphaPose trained on Halpe full 
body dataset

(a)

68 face 
Keypoints

42 hand 
Keypoints

26 body 
Keypoints

(b)

6 Bi-lateral asanas were labelled as asana_left and asana_right sepa-
rately. Unilateral asanas were labelled normally as asana.
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bounding boxes and then estimates the pose within each box 
independently. AlphaPose [11] is comparatively fast, which 
makes it ideal for real-time tasks. DCPose [20] is one of 
the latest methods that achieves very high performance on 
video datasets though the model has greater computational 
overhead as it processes three consecutive frames of a video 
at a time. KAPAO [18] is another recently published method 
that involves a single stage approach and is able to obtain 
commendable performance (Fig. 3).

AlphaPose [11] pre-trained on the Halpe Full Body [39] 
dataset, detects 136 keypoints over a person. As can be seen 
in Fig. 2b, it detects 68 key-points on the person’s face, 42 
key-points on both hands together and 26 key-points scat-
tered across the rest of the body. Initially, we used the coor-
dinates of all these 136 key-points as our feature vectors. 
However, since a large number of keypoints in the face and 
hands are not very relevant for classifying yoga poses, we 
observed that replacing these sets7 with the mean, minimum 
and maximum values of their 10 highest confidence key-
points allowed us to obtain better performance. In addition 
to the keypoints, AlphaPose [11] also detects bounding 
boxes around the subject. We found that including the aspect 
ratio of these bounding boxes as a feature also increased the 
performance. We also normalise the key-point coordinates 
with respect to the bounding box, for better size invariance. 
Thus, we obtain a 71 dimensional (35 key-points x 2 coor-
dinates + aspect ratio) feature vector from our first stage and 
pass this to the second stage of classification.

We further consider latest pose estimation methods 
DCPose [20] and KAPAO [18] as the first stage instead 
of AlphaPose [11] for Yoga-82 [52] classification. We use 
DCPose pre-trained on the PoseTrack dataset and KAPAO 
pre-trained on the COCO dataset, with 17 keypoints each. 
Unlike AlphaPose, we do not aggregate or reduce the already 
low number of keypoints here.

Classification

This second stage of the pipeline is a general classifica-
tion task. The keypoints detected by the pose estimator are 
used as features by the classifier. To test the validity of our 
approach, we train a Random Forest [7] classifier on the 
inferred keypoints data. We further explore other boosting 
methods like ADAboost [48], Gradient Boosting [37] and 
Bagging [49] classifiers and also an ensemble of the best 
performing methods. After preparing the dataset of frames 
and corresponding classes, as explained in Sect. Data Col-
lection, we first trained a Random Forest classifier for the 
second stage of classification.

Evaluation

Target Leakage

When splitting a dataset randomly into train and test folds, 
if the data points vary continuously,8 then the train and test 
data points will have very little variation between them. For-
mally, if we split the data in ratio m : n, an expected m data 
points out of any set of (m + n) data points will be in train 
set, while the rest will be in the test set. Now, if this subset 
of (m + n) data points are very similar, then the test offers 
no challenge to the model as it has already memorized the 
m training data points similar to the n data points in test set. 
Hence, the model is observed to perform very well, some-
times even with 100% accuracy. This is particularly com-
mon in time series and video data, and is formally termed 
as Target Leakage. Since target leakage will effectively take 
the testing accuracy closer to training accuracy, it can lead 
to a false measure of the model’s generalizability.

In the case of Yoga pose classification, target leakage 
would be possible if frames from a single video are randomly 

Fig. 3  Sample images visu-
alising keypoints detected by 
AlphaPose. a Has the same 
asana and same subject from 4 
different camera angles, b has 
the same subject performing 
different asanas while c has dif-
ferent subjects in the ‘still’ pose

7 21 left hand key-points, 21 right hand key-points and 68 face key-
points are the three key-point sets considered.

8 Here, we refer to the mathematical continuity of the function 
describing frame dynamics.
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split into train and test. In most previous works that use 
video data, the frame-wise train and test splits are random, 
and thus target leakage is inevitable. We use video data too, 
and so, target leakage is a major concern for us. To eliminate 
the possibility of target leakage and thus, get a more accurate 
estimate of generalisation, we must ensure that train and 
test data come from different videos. We experiment with 
two such methods in addition to frame-wise evaluation as 
described below.

Three Stage Evaluation

First, we consider the normal evaluation strategy of frame-
wise testing, where the data is randomly split into train and 
test sets.

Second, we consider dividing the data subject-wise. Since 
each video in our data records only a single subject, this 
strategy would ensure that the train and test samples are 
never contiguous and thus, eliminate the possibility of target 
leakage. In addition to this, it will also allow us to test the 
generalizability of our models across unseen subjects.

Lastly, we consider dividing the data camera-wise. Again, 
as each video only has data from one camera, target leakage 
would be absent if the data is split camera-wise. Further, 
this strategy would allow us to test the generalizability of 
our model across unseen camera orientations. The position 
of the key points would be very different for data captured 
from different angles, and a good performance across cam-
eras would be a more concrete measure of the model’s actual 
performance for samples in the wild.

Implementation Details

We use a single RTX 5000 GPU with 16 GB memory for 
most of our experiments. We use weights trained on Halpe 
full body [39], PoseTrack[4] and COCO [40] for Alpha-
pose, DCPose and KAPAO respectively, with the models 
detecting 136,9 17 and 17 keypoints respectively. We used 
hyperparameters recommended in the corresponding paper 
themselves and further details regarding their methodology 
can be found in their work. For our second stage classifier, 
we use off the self implementations provided by the library 
sklearn. For experiments on the Yoga-82 dataset, we use an 
ensemble of Histogram Gradient Boosting, LightGBM and 
Random forest, while for the remaining experiments we use 
a standard Random Forest. We use the Gini criterion with 
total 500 trees and allow trees to grow until all leaves are 
pure. Further details on setting up and running the experi-
ments can be found in our code repository.

Experimental Results

Although we recorded data for 20 asanas, the data corre-
sponding to some asanas was of smaller size, and so we only 
use a subset of these for our evaluation to make the dataset 
more balanced. We use 72k extracted frames spanning 11 
asanas and a still class, giving a total of 12 classes. These 
12 classes include left and right asanas for bilateral ones. 
Each asana has a total of 6000 samples, leading to a highly 
balanced dataset. For still class, we take all the frames in a 
video before the start of the actual asana, with a buffer of 
1 s. We realise that this buffer may not be sufficient, and as 
a result, a part of our data may be mislabelled. In all tables, 
bold numbers indicate the highest score obtained in corre-
sponding column when comparing with different methods 
and indicate our combined scores when only reporting our 
results. More details about the size of our dataset and the 
camera and subject wise distributions can be found in the 
supplementary material Appendix A.

Frame‑Wise Evaluation

Frame-wise evaluation is the standard evaluation strategy 
used by most of the existing works. We evaluate our model 
using vanilla 10-fold cross validation. The class-wise results 
can be seen in Table 2. The random forest classifier obtained 
mean precision, recall and F1 scores of 99.70% each. Such 
a high performance due to the explained problem of target 
leakage (Section Target Leakage) can be misleading and 
can also be witnessed in other studies reporting near perfect 
accuracy for their classifier.

Table 2  Frame-wise results in tenfold cross-validation. This is equiv-
alent to training and testing on all 4 cameras in Table 4

ID Yoga pose Precision Recall F1 score

0 Garudasana left 98.19% 99.22% 98.70%
1 Garudasana right 99.57% 99.92% 99.74%
2 Gorakshasana 99.88% 99.98% 99.93%
3 Katichakrasana 100.00% 99.87% 99.93%
4 Natavarasana left 99.93% 99.88% 99.91%
5 Natavarasana right 99.75% 99.92% 99.83%
6 Pranamasana left 99.87% 99.83% 99.85%
7 Pranamasana right 99.83% 99.98% 99.91%
8 Tadasana 99.82% 99.88% 99.85%
9 Vrikshasana left 100.00% 99.92% 99.96%
10 Vrikshasana right 99.83% 98.32% 99.07%
11 Still 99.72% 99.65% 99.68%
Average 99.70% 99.70% 99.70%

9 136 keypoints subsequently reduced to 35, as descriibed in Meth-
odology.
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Subject‑Wise Evaluation

Our dataset has 51 subjects performing different yoga poses. 
The subjects are of varying build, ages and genders. Irre-
spective of the characteristics of the subject, the pose they 
take during an asana should be similar. Thus, the classifier 
should be able to generalize across subjects. To test this, we 
create folds in which the dataset is split subject-wise into 
a 9:1 ratio. After training our classifier on the first set of 
subjects, we test on the remaining. These test subjects would 
be unseen by the model, and thus, this strategy prevents the 
model to simply memorise the train subjects, and eliminates 
the possibility of target leakage (Section Target Leakage).

We generate 10 such folds, with randomly selected sub-
jects, in rotation, such that each subject gets tested exactly 
once. The class wise results of these experiments can be 
found in Table 3. As can be seen, the random forest performs 

well even across subjects, with an average precision and 
recall of 98.10% and 97.97%, leading to an F1 score of 
97.99%. Compared to the frame wise results, these results 
are consistently around 1–2% lower for all three metrics we 
use for evaluation.

Camera‑Wise Evaluation

We expect camera-wise evaluation to be more challenging 
than the previous two methods. Firstly, many asanas can be 
very difficult to identify from side or back views. Secondly, 
the same asana, viewed from different cameras would have 
very different key-point co-ordinates, and generalizing to 
such wide range of variations is challenging. Lastly, some 
angles would have much higher occlusion than others, lead-
ing to poorer pose estimation performance as well. The poor 
performance in the first stage is propagated to the second 
stage classifier as well.

The results can be seen in Table 4. The results are consist-
ently lower than those obtained from earlier methods, with 
average precision and recalls of only 81.94% and 81.37% 
respectively in the case training on 3 camera angles. We also 
observe that changing the number of angles being used in 
training directly impacts the performance. A clear decreas-
ing trend can be seen in the performances of training on 3, 2 
and 1 cameras in Table 4. This pattern suggests that includ-
ing a wider variety of camera angles while training tends to 
give better results. Including all four camera angles would 
be equivalent to the earlier two evaluation strategies, both 
of which gave significantly better results.

We perform the same tri-level testing with key-points 
detected by Microsoft Kinect [56] as well. Using these key-
points, the mean F1 scores for frame-wise, subject-wise and 
camera-wise were 69.49%, 57.91% and 35.21% respectively. 

Table 3  Subject-wise results in 10 fold cross-validation

ID Yoga pose Precision Recall F1 score

0 Garudasana left 88.32% 99.02% 93.36 %
1 Garudasana right 96.32% 99.58% 97.93%
2 Gorakshasana 99.85% 98.08% 98.96%
3 Katichakrasana 99.97% 99.53% 99.75%
4 Natavarasana left 99.97% 97.47% 98.70%
5 Natavarasana right 98.41% 99.22% 98.81%
6 Pranamasana left 99.61% 94.38% 96.93%
7 Pranamasana right 98.93% 98.40 % 98.66%
8 Tadasana 98.16% 98.78% 98.47%
9 Vrikshasana left 100.0% 99.87% 99.93%
10 Vrikshasana right 99.00% 93.70% 96.28%
11 Still 98.69% 97.72 % 98.20%
Average 98.10% 97.97% 97.99%

Table 4  Camera-wise results 
with varying number of Views 
trained upon

ID Yoga pose Train on 3 views Train on 2 views Train on 1 view

Prec Rec F1 Prec Rec F1 Prec Rec F1

0 Garudasana left 78.4 81.1 79.7 75.8 78.6 77.2 59.2 76.6 64.3
1 Garudasana right 83.4 87.7 85.5 71.0 82.8 76.2 67.1 79.7 72.3
2 Gorakshasana 77.9 68.8 72.6 73.8 77.0 75.3 74.5 57.6 64.9
3 Katichakrasana 80.2 71.1 75.3 61.1 77.5 67.1 73.1 64.4 64.4
4 Natavarasana left 99.9 99.4 99.7 99.6 99.4 99.5 96.8 99.4 98.0
5 Natavarasana right 68.8 47.0 55.1 64.4 46.0 53.2 54.6 37.1 43.7
6 Pranamasana left 60.1 82.2 69.3 52.3 63.2 57.1 37.3 50.9 42.9
7 Pranamasana right 77.7 89.1 83.0 74.9 73.5 74.0 55.0 55.7 55.2
8 Tadasana 98.0 96.5 97.2 96.6 90.3 93.3 78.3 85.7 79.8
9 Vrikshasana left 95.0 93.0 93.9 96.1 90.2 93.0 94.2 78.4 84.6
10 Vrikshasana right 76.6 74.4 75.4 69.9 59.9 64.1 68.8 44.7 51.1
11 Still 86.7 85.6 85.9 92.3 70.5 78.9 76.0 65.6 69.5
Average 81.94 81.37 81.11 77.37 75.79 75.79 69.63 66.37 65.93
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These are considerably lower than the corresponding scores 
we obtained using AlphaPose [11] key-points, with the same 
second stage classifier. Thus, a good pose estimator is essen-
tial for good performance in our method.

Experiments on Yadav et al. Dataset

Yadav et al. [55] collected an in-house dataset consisting of 
88 videos, with 15 subjects being recorded across 6 asanas. 
We suspect that their frame-wise evaluation may have target 
leakage, and evaluate our model on their data both frame-
wise and subject-wise.

Using all the frames extracted from the videos together, the 
authors were able to achieve 99.04% accuracy on their test set. 
As can be seen in Table 5, we obtain similar results while train-
ing on only 200 uniformly extracted frames from each video. 
However, going through the extracted frames, we observed that 
some frames were having the subject in transition, and thus 
would most likely be mislabelled. We estimate that around 3.5% 
of our extracted frames were mislabelled. With this in mind, an 
accuracy greater than 96.5% clearly indicates that the model is 
over-fitting, and that there may be target leakage.

The subject-wise results were, however, more acceptable. 
The exact results can be seen in Table 6. These results fur-
ther demonstrate the robustness of our evaluation strategy. 
Some examples where the model performed badly can be 
seem in Fig 4. Note that in majority of the wrongly classified 
cases, the key-points detected by AlphaPose [11] are at fault. 

In some, there is a second human in sight, while the others 
are mislabelled. This comparatively poor performance of 
AlphaPose [11] on yogasana data points to a need for new 
key-point annotated datasets containing some of the difficult 
poses common here.

Experiments on Jain et al. Dataset

The Jain et al. [35] dataset comprises of 27 subjects per-
forming 10 different poses. The authors propose the use of 
3D CNNs on video segments of 16 frames each. Nonethe-
less, we analyse the performance of our image based clas-
sification on their dataset. Again, we sample 100 frames 
from each video and use these frames for further analyses. 
Although this dataset consists of different subjects being 
recorded, we could not determine which subjects were 
involved in which video, and thus, will not use our subject-
wise evaluation strategy here. These videos were recorded 
from a single uniform camera angle, and thus, we cannot 
perform our camera-wise evaluation either.

For frame-wise evaluation, we extracted a total of 23090 
high resolution frames and re-scaled them to lower resolu-
tion because of resource constraints. The frame-wise results 
of our method on this dataset can be found in Table 7. Even 
with image-based prediction instead of video segments, our 
method outperformed their 3D CNN-based method that gave 
an accuracy of 91%. This is a clear demonstration of the 
advantage of using transfer learning over end to end training 
in this data scarce domain.

Experiments on Yoga‑82 Dataset

Yoga-82 [52] is one of the few openly available benchmarks 
for yoga classification. Although the authors have provided 
the links to download each image, some links were not 
reachable. We were able to extract 18k images out of the 
total 28k in the benchmark. We further curated the data to 

Table 5  Frame-wise results for Yadav et al. [55] dataset

ID Yoga pose Precision Recall F1 score

0 Bhujangasana 98.85% 99.44% 99.14%
1 Padamasana 98.38% 99.79% 99.08%
2 Shavasana 99.59% 98.29% 98.93%
3 Tadasana 99.87% 99.13% 99.50%
4 Trikonasana 99.81% 99.58% 99.69%
5 Vrikshasana 99.37% 99.40% 99.38%
Average (Ours) 99.31% 99.27% 99.29%
Average (Yadav et al. [55]) 98.97% 99.11% 99.03%

Table 6  Subject-wise results for Yadav et al. [55] dataset

ID Yoga pose Precision Recall F1 score

0 Bhujangasana 94.41% 95.83% 95.12%
1 Padamasana 92.33% 94.96% 93.63%
2 Shavasana 98.73% 95.51% 97.09%
3 Tadasana 92.24% 94.30% 93.26%
4 Trikonasana 98.73% 98.80% 98.77%
5 Vrikshasana 94.76% 91.07% 92.88%
Average 95.20% 95.07% 95.12%

Table 7  Frame-wise results for Jain et al. [35] dataset

ID Yoga pose Precision Recall F1 score

0 Garland pose 99.27% 98.27% 98.76%
1 Happy baby pose 99.39% 98.65% 99.02%
2 Head to knee pose 98.78% 98.59% 98.69%
3 Lunge pose 96.70% 96.83% 96.76%
4 Mountain pose 97.78% 99.10% 98.44%
5 Plank pose 97.88% 96.41% 97.14%
6 Raised arms pose 94.02% 97.21% 95.59%
7 Seated forward bend 98.63% 98.76% 98.69%
8 Staff pose 98.85% 98.47% 98.66%
9 Standing forward bend 94.57% 93.83% 94.20%

Average (ours) 97.59% 97.61% 97.59%
Average (Jain et al. [35]) 91% 91% 91%
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remove clipart-like images and finally had 12k images. We 
use this subset of 12k images for all our further analysis.

To better demonstrate the benefits of using transfer learn-
ing, we have kept the classifier stage as simple as possible. 
For all of the analysis above, we used a simple random forest 
classifier. However, random forests were performing quite 
poorly on the more challenging Yoga-82 [52] dataset. Using 
an ensemble of Random Forests [7], Gradient Boosting [28] 
and LightGBM [37], we obtained results comparable to 
those reported by the authors. A brief description of some 
wrongly classified samples can be seen in Fig. 4.

We also compare the method with the recently proposed 
methods DCPose [20] and KAPAO [18], but observe some-
what poorer results. We believe this may be because of lesser 
number of keypoints (17 over the body) and absence of 
temporal information required for DCPose. The key-points 
inferred by all these methods for Yoga-82 images will be 
made openly available for reproducibility. Our results along 
with those obtained by the Yoga-82 [52] authors and some 
baselines used by them can be found in Table 8.

In contrast to our dataset and Yadav et al [55] dataset, 
Yoga-82 consists of images in the wild. Along with a wider 
variety of subjects and poses, their images are also from 
many different camera angles. In addition to this, the images 
are not in a controlled environment, and background condi-
tions are not uniform. All these factors make this a more 
challenging benchmark, and thus, our model has lower per-
formance here compared to the other datasets. Other mod-
els in Table 8 are deep architectures with a high level of 
complexity. Leveraging transfer learning, we were able to 
outperform them by training relatively simpler classifiers. 
This is clear validation of the usefulness of transfer learning 
in this data-scarce field of yoga classification.

Discussion

While in our experiments we use AlphaPose [11], a simi-
lar approach can be applied using other, more recent pose 
estimation methods. We experiment with KAPAO [18] and 

DCPose [20] on Yoga-82 to observe the effect of various 
pose estimation methods on the first stage of our pipeline. 
To demonstrate the benefit of transfer learning on this data-
scarce domain, we show that even with a simple classifier, 
the keypoints learnt by AlphaPose lead to quite promising 
results. Consistent performance on the 4 considered datasets 
demonstrates the efficacy of this approach. While previous 
Yogasana classification methods employed complex algo-
rithms with end-to-end training, our simpler method is able 
to achieve comparable results.

Out of the three evaluation strategies we explore, frame-
wise evaluation is by far the most commonly used. Most 
existing work in this domain use this strategy itself. How-
ever, when using frames that have been extracted from vid-
eos, this strategy leads to the serious problem of target leak-
age. Yadav et al. [55] used this strategy and reported 100% 
accuracies in half of the asanas they experimented with. Our 
results in Table 2 are also extremely high, with 100% pre-
cision in two poses. A similar trend can be seen with Jain 
et al [35] dataset. Because of target leakage, we believe that 
frame-wise evaluation is not an ideal testing strategy.

(a) (b) (c)

Fig. 4  Some wrongly classified examples in Yoga-82 [52] benchmark 
and Yadav et  al [55] dataset. a Some example images from Yoga-
82 that were mis-classified. These include challenges like inversion, 
body part occlusion and low image quality and resolution. b Some 

mislabelled transition frames. The subject’s pose does not match the 
labelled asana. c AlphaPose poor predictions. Part or complete human 
is missed or bounding box is incorrect

Table 8  Accuracies for all levels of hierarchy in Yoga-82 [52]. The 
performance of baselines are taken directly from the Yoga-82 paper

∗Our analysis is on a subset of original dataset. So, the performance is 
only representative, not for exact comparison

Method Conference Top-1 accuracy

Level 1 Level 2 Level 3

ResNext-101 [27] CVPR’17 – – 65.24%
ResNet-101 [26] CVPR’16 – – 65.84%
MobileNet-V2 [47] CVPR’18 – – 71.11%
DenseNet-201 [33] CVPR’17 – – 74.91%
Yoga-82 Variant 1 [52] CVPRW’20 83.84% 85.10% 79.35%
Yoga-82 Variant 2 [52] ” 89.81% 84.59% 79.08%
Yoga-82 Variant 3 [52] ” 87.20% 84.42% 78.88%
Ours (DCPose [20])∗ CVPR’21 86.47% 85.05% 55.07%
Ours (KAPAO [18])∗ ECCV’22 86.53% 83.75% 78.01%
Ours∗ 91.21% 87.91% 80.14%
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With subject wise evaluations, our model gets tested on 
subjects it has never seen during training. We obtain good 
results with this strategy as well, as can be seen in Table 3. 
This suggests that our model is robust over variations in the 
subject performing the asana. This is a direct influence of 
using Transfer Learning in our first stage pose estimator. 
Although the classifier has not been trained on a particu-
lar subject, the pose estimator has been trained on a much 
wider variety of humans, albeit from a different dataset. This 
allows it to be robust over variations in the subjects and since 
the classifier only requires key-points from this pose estima-
tor, this good performance is directly propagated to the final 
results. Similarly other desirable properties of a pose estima-
tor would be propagated to the final results and so, advances 
in the field of yogasana pose classification also encourages 
development and research in the field of pose estimation.

The third evaluation strategy we use is camera-wise eval-
uation. In Table 4, it can be seen that as the model is trained 
on lesser number of camera angles, it tends to perform 
worse. This suggests that inclusion of more camera angles 
during training has a positive impact on the model’s perfor-
mance and generalizability. Even for the same pose being 
considered, different camera angles would be producing very 
different key-point coordinates. We believe that including 
all these different coordinates should allow a model to learn 
better quality view independent models, thus improving its 
performance.

The results of using KAPAO [18] and DCPose [20] on 
Yoga-82 shows no gain in performance over our experiments 
with AlphaPose [11], though these two methods outperform 
AlphaPose significantly on standard datasets. We believe 
that this is because the model of AlphaPose that we use 
is pre-trained on the Halpe Full Body [39] dataset which 
has 136 keypoints annotated on the human body while the 
model of DCPose is pre-trained on the PoseTrack [4] dataset 
which contains 17 keypoints and KAPAO is pre-trained on 
the COCO [40] dataset which consists of 17 keypoints. Since 
Yoga poses involve the human body to take poses which 
are extremely non-linear, more keypoints on the body are 
required to successfully classify a Yogasana. Moreover, the 
performance of DCPose is lower possibly because DCPose 
is primarily a pose-tracking model suitable for video data, 
requiring the previous and the next frame of the current 
frame to improve the pose estimation of the current frame. 
Since Yoga-82 is not a video dataset, there is no temporal 
continuity from one image to the next which can possibly 
degrade the performance of DCPose on the dataset which 
then results in poor performance of the classifier.

Besides the model itself being robust to camera angle 
variation, a different direction could be direct learning of a 
view independent representation of pose. Ongoing research 
on 3D pose estimation using only video data provides a new 
direction where detected poses from very different camera 

angles can have identical pose representations, thereby 
increasing generalizability over camera angles. Although 
particularly prominent in Yogasana postures, the need to 
generalize across different camera angles is also evident in 
many other applications of human pose estimation. A par-
ticularly challenging scenario where many pose estimation 
algorithm fail is occlusion, where part of a body part is hid-
den or not directly visible. It is noteworthy to see that a body 
part occluded when viewed from one camera angle may 
actually be clearly visible from another. If a model is truly 
view independent, it should be able to get the pose from 
non-occluded view and use it for the pose in the occluded 
view. Thus, the study of view independent methods of pose 
classification may help mitigate the problem of occlusion. A 
pose classification model that generalizes to unseen camera 
angles would be quite beneficial to the community.

Yoga-82 [52] has images in the wild, with significant 
variation in the camera angles, subjects, background light-
ing conditions and many other factors. The performance on 
this dataset for the level 3 classes (82 asanas) is very similar 
to our camera-wise evaluations, where variations other than 
that of the camera angle are minimal. This suggests that 
the camera angle variations have the most impact on the 
performance of a method, compared to frame wise and sub-
ject wise variations. Thus, a view independent classification 
framework that can effectively evaluate the generalizability 
of the model to different camera angles would provide a 
much better estimate of the performance of the model for a 
dataset in the wild. We hope this work can serve as a strong 
baseline for our and other researchers’ subsequent works.

Conclusion and Future Work

In this paper, we propose a two-stage architecture for clas-
sification of yoga poses. We use AlphaPose [11], a well 
established pose estimation method as the feature extrac-
tor in the first stage and a random forest classifier in the 
second stage. In the absence of large scale datasets for yoga 
pose estimation, we use models pre-trained on existing large 
scale dataset Halpe Full Body [39]. Transfer learning from 
pose estimation models is expected to result in better perfor-
mance for Yogasana classification. We create a new dataset 
for Yoga Pose classification that focuses on different views 
of a subject. To the best of our knowledge, ours is the first 
yoga dataset explicitly considering asanas from 4 differ-
ent camera angles, and has the largest number of subjects 
being recorded systematically. The key-points data as well 
as model codes used will be made open source to further 
accelerate research in this area.

We devise a 3 step evaluation scheme to evaluate a mod-
el’s robustness to different sources of variation. In light 
of particular shortcomings with the individual evaluation 
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methods, we advocate the use of all three to effectively test 
generalizability of a model. We demonstrate that our model 
performs admirably on the first two parts and is competitive 
with previously published Yogasana classification methods 
on 3 publicly available datasets. Observing a noticeably 
lower performance when evaluated across camera angles, 
we discuss the particular challenges involved in this setting 
and argue that this camera wise evaluation can often be more 
reliable as a metric.

There are a few relevant limitations to our approach. 
Since we rely on pose estimation and accurate detection 
of keypoints in our first stage, most challenges present in 
pose estimation naturally reflect in our approach as well. 
Occlusion and inversion are two commonly studied failure 
cases. These cases are particularly challenging in the case 
of Yogasanas because of the complex poses involved here, 
where some body parts can often be difficult to distinguish 
or hidden from view because of other body parts. Most large 
scale pose estimation datasets include normal day to day 
postures that may not allow a model to perform well on 
such complex postures. Even in the cases where occlusion 
occurs, hidden body parts are usually not labelled. Our data-
set also contains classification labels only and significantly 
higher effort and time would be required to collect accurate 
keypoint annotations for it. Besides scarcity of data, poor 
generalizability to camera angles is also a limitation for our 
approach. We believe future work can strive to alleviate 
many of these limitations. The limitations show significant 
scope for further research in view independent pose clas-
sification and a need for large scale pose estimation datasets 
with complex poses similar to Yogasanas. 3D pose estima-
tion methods and use of depth information to label occluded 
or hidden body parts may also help mitigate some of these 
challenges.

In applications such as that of an automated Yoga 
trainer, it will be desirable to have models that are robust 
across different camera angles. To achieve this, either 
one needs to train models on larger data employing many 
different camera angles (our results indicate incorporat-
ing more cameras in training set improves the test per-
formance), or one needs to incorporate computer vision 
methods to make these models independent of camera 
angle. Our results on unseen camera angles show that there 
is still significant scope for improvement in classification 
of Yogasanas from different camera angles. This is an 
exciting area for future study. We believe that subsequent 
research in camera view independent Yogasana classifica-
tion will also find many other applications. It is also likely 
to advance the state-of-the-art in the area of human pose 
estimation.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42979- 022- 01376-7.
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