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ABSTRACT

During cancer metastasis, cancer cells will encounter various microenvironments with diverse physical characteristics. Changes in these
physical characteristics such as tension, stiffness, viscosity, compression, and fluid shear can generate biomechanical cues that affect cancer
cells, dynamically influencing numerous pathophysiological mechanisms. For example, a dense extracellular matrix drives cancer cells to
reorganize their cytoskeleton structures, facilitating confined migration, while this dense and restricted space also acts as a physical barrier
that potentially results in nuclear rupture. Identifying these pathophysiological processes and understanding their underlying
mechanobiological mechanisms can aid in the development of more effective therapeutics targeted to cancer metastasis. In this review, we
outline the advances of engineering microfluidic devices in vitro and their role in replicating tumor microenvironment to mimic in vivo
settings. We highlight the potential cellular mechanisms that mediate their ability to adapt to different microenvironments. Meanwhile, we
also discuss some important mechanical cues that still remain challenging to replicate in current microfluidic devices in future direction.
While much remains to be explored about cancer mechanobiology, we believe the developments of microfluidic devices will reveal how these
physical cues impact the behaviors of cancer cells. It will be crucial in the understanding of cancer metastasis, and potentially contributing to
better drug development and cancer therapy.

VC 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial 4.0
International (CC BY-NC) license (https://creativecommons.org/licenses/by-nc/4.0/). https://doi.org/10.1063/5.0195389

I. INTRODUCTION

Metastasis remains a major clinical challenge in most cancer
types and continues to be a poorly understood aspect of cancer patho-
genesis.1 Such understanding of what is cancer metastasis is essential
for us to effectively combat cancer. To do so, we must first delve into
the progression of each step in the metastatic cascade and understand
what is crucial in the development of metastatic disease.

The progression of metastatic disease is a multifaceted and intri-
cate process, typically encompassing a series of sequential stages: can-
cer cells invade the surrounding tissue (invasion), then enter the
lymphatic and/or blood circulatory system (intravasation), travel
through and survive the bloodstream (circulating), escape from the
blood vessel (extravasation), and finally adapt and grow in a colonial
environment (metastatic colony).2,3 Metastasis is a dynamic process

involving cancer cells have to travel through and interact with native
tissues or organ microenvironments. One vital aspect of these diverse
microenvironments is their physical properties, which could signifi-
cantly influence the outcome of metastasis. For example, increased
extracellular fluid viscosity can enhance cancer dissemination;4 the
confined tissue or ECM space can deform the metastasizing cancer
cells, leading to DNA damage and even cell death;5 high blood fluid
shear stresses can destroy both navigating and arresting circulating
tumor cells (CTCs).6,7 As such, these mechanical environments
directly exert physical forces on cancer cells. Nevertheless, our under-
standing of these interactions between the physical microenvironment
and metastasizing cancer cells, and how these physical microenviron-
ments drive the metastasis process, remains considerably limited. A
comprehensive understanding of the mechanobiological mechanisms
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might provide more precise and potential targets to combat cancer
metastasis.

In clinical practice, there is an assumption that mutated genes or
mis-expressed proteins in cancer cells are responsible for driving the
occurrence of lethal metastasis.8 However, we lack understanding of
what these genes and proteins are and how they function. One of the
primary barriers to unraveling these mechanisms is the lack of a suit-
able model. While studying cancer metastasis in animal models has
been considered a valuable approach, observing these interactions with
the physical microenvironment at the cellular scale within in vivo
models is exceptionally challenging or almost impossible. Currently,
most in vivo studies only allow tracking the metastatic outcomes,
resembling a black box experiment.9 Even, the simplest intravital
tracking requires complex and costly imaging facilities, which hinders
our ability to fully comprehend the intricacies of metastasis.
Consequently, there is a significant motivation to find a straightfor-
ward but physiologically relevant model that enables the investigation
of the molecular mechanisms underlying each step of metastasis.

An interdisciplinary approach involving biology and engineering
science provides a promising opportunity. With an increasing under-
standing of the in vivo physical microenvironment, more researchers
are utilizing an engineering strategy, especially microfluidics, to repli-
cate such microenvironments found in vivo. This approach simplifies
and re-establishes mechanical microenvironment on in vitro devices,
enabling discoveries at the cellular and even molecular scale.
Therefore, our goal is to review the biomimetic engineering microflui-
dics developed in current years to mimic the physiologically physical
microenvironment during cancer metastasis, along with their applica-
tions in cancer research. In this review, we will cover the metastatic
cascade, first introducing the physical characteristics of each metastatic
microenvironment and the tools used to measure these properties.
Subsequently, we will focus on the in vitro microfluidic devices that
have been developed to mimic in vivo physical microenvironments.
We will also delve into the study of mechanobiological mechanisms
based on these in vitro devices. Finally, we will discuss the potential of
clinical applications targeting the biophysical features, with the ulti-
mate aim of advancing anti-cancer metastasis treatments.

II. PHYSICAL TRAITS INFLUENCING CANCER
METASTASIS

Mechanical forces play a critical role in the functions and behav-
iors of cells, tissues, and organs, especially in the context of cancer
metastasis. During the metastatic process, cancer cells encounter and
respond to various mechanical stimuli from their environments. These
cancer cells can convert mechanical signals into biochemical responses,
influencing key biological processes such as survival, proliferation, and
dissemination.10 Additionally, cancer cells can process these mechani-
cal signals through mechanotransduction, where epigenetic remodel-
ing enhances tumor cell extravasation and other functions related to
metastasis.11,12 While the use of microfluidics has revealed numerous
biological insights about the interaction between cancer cells and their
surrounding environments, many physical aspects remain unexplored
due to the absence of appropriate models. Understanding the types of
physical cues along the metastatic cascade is crucial before reconstruct-
ing appropriate microfluidic models and exploring biological
questions.

A. Matrix stiffness

Matrix stiffness is one of the most widely studied physical proper-
ties, particularly in the context of cancer study [Fig. 1(b)]. The concept
refers to the mechanical property of the extracellular matrix (ECM)
and tissue that describes their resistance to deformation or rigidity in
response to an applied force.

In cancer metastasis, cancer cells must interact with various
ECM or tissue environments with different stiffness properties. Since
many studies show there is a clear distinction in the mechanical
properties between healthy ECM and pathological ECM, quantifica-
tion of ECM stiffness is of particular interest in cancer research.
Using atomic force microscope (AFM), which can apply a controlled
force to the ECM and measure the resulting deformations, healthy
ECM tissues (0.4–2.5 kPa) were found to be softer when compared
to malignant tissues (2.5–5 kPa) in breasts.13,14 This stiffening of
malignant tissues has been found in various cancer types, including
pancreas (healthy tissues: 0.5–1 kPa vs malignant tissues:
0.75–2 kPa),15 lung (healthy tissues: 1.61–5.83 kPa vs malignant tis-
sues: 17.68–43.31 kPa),16 liver (healthy tissues: 3.9–10 kPa vs malig-
nant tissues: 7.8–60 kPa),17 and glioma (healthy tissues: 0.05–250 Pa
vs malignant tissues: 50–1500 Pa).18 Understanding the role of
matrix stiffness will offer deeper insights into its biological impact on
cancer development and metastasis.

B. Matrix viscoelasticity

In the human body, cells, tissues and ECM exhibit viscoelastic
properties. While viscoelasticity and stiffness are correlative mechani-
cal parameters, they fundamentally represent different aspects of a
material’s physical properties. Viscoelasticity refers to the time-
dependent response to return to its original shape after the removal of
an applied force and encompasses both viscous and elastic characteris-
tics.19 Stiffness, on the other hand, measures a resistance to deforma-
tion when a force is applied.20

Similar to matrix stiffness, interaction with varying matrix visco-
elasticity occurs throughout the metastatic progression. However, our
understanding of this interaction and its underlying biological impact
remains limited. Characterization of viscoelastic behavior in metastatic
matrix is high priority, and experiments are typically conducted using
a step-hold approach. Currently, AFM has emerged as a prevalent
microrheology tool for characterizing both elastic and viscoelastic
properties of biological samples.21 By adding a hold phase in each force
curve measurement, AFM enables the determination of elastic proper-
ties with a high-resolution distribution map. Despite ongoing efforts to
quantify viscoelastic parameters in some biological structures,22–24 a
standardized method of quantification does not yet exist. Particularly,
this challenge is compounded by the fact that most biological struc-
tures do not follow linear elastic behavior, indicating that the derived
viscoelastic parameters should not be influenced by the applied force
or indentation depth.21 Beyond the complexities of characterizing vis-
coelastic properties, the development of viscoelastic materials with bio-
compatibility presents another challenge in understanding how
viscoelasticity affects cancer metastasis.22

C. Tumor solid stress

Solid stress becomes pronounced within the solid tumor micro-
environment and emerges as a crucial marker during tumor
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progression.25 In solid tumor, the stiffness is due to the accumula-
tion of ECM, while the physical forces exerted by their non-fluid
component during tumor growth contributes to solid stress.26 In a
study, tumors embedded in 2% agarose was cut, allowing the release
of the solid stress in the planar cut direction.27 Subsequently, the
solid stress induced deformation was measured using high-resolution
ultrasound probe and solid stress was calculated using Hooke’s Law.
Using this 2D mapping approach, it was found that the maximum
value of the solid stress ranged from 0.21 kPa (1.56mm Hg) in brain
tumor to 7 kPa (52.5mm Hg) in highly desmoplastic pancreatic
tumors.28

Solid stress, mechanical forces exerted by non-fluid component
within tumor, can be broadly categorized into three types, including
tumor growth-induced stress, swelling stress and externally applied
stress [Fig. 1(a)].29 Uncontrolled cancer cell proliferation and expan-
sion contribute to the grow-induced stress, exerting tensile stress on
the collagen fibers in tumor microenvironment while the compressive
stress arises from the resistance to the cancer cell expansion by hyalur-
onan in tumor microenvironment.30 Swelling solid stress results from
the interaction between collagen and hyaluronan within the tumor
microenvironment.31 Hyaluronan, with negative charges, attracts sig-
nificant amounts of the interstitial fluid and causes electrostatic repul-
sion, driving a swelling effect.32 Consequently, tensile stress emerges
from the stretching and stiffening of collagen fibers by the elevated

swelling. Collectively, the growth-induced swelling stress contributes
to the main solid stress within the tumors.33 In fact, it is revealed that
within the tumor, the solid stress is compressive in all the directions,
whereas at the boundary, the stresses are tensile in the circumferential
direction and compressive in the radial direction, respectively.27

Externally applied stress generated by the host tissue to counteract
tumor expansion exerts compressive stress on the tumor at the tissue
level.34

D. Environmental confinement

The physical confinement is a key mediator of metastasis and is
involved in the process of invasion, intravasation, bloodstream circula-
tion and extravasation.9,35 Cancer cells, escaping from the primary
tumors and invading into and through the dense ECM, will penetrate
through constriction pores with diameters varying from less than 1 to
20lm, and with channel-like and fiber-like tracks ranging from 3 to
30lm in width and from 100 to 600lm in length [Fig. 1(c)].5 Matrix
degradation is required when the cross-sectional area of the pores is
smaller than 8lm2 with the help of matrix metalloproteinases
(MMPs).36 After squeezing through the tight junction between endo-
thelial cells of less than 1lm in width, intravasating cancer cells enter
the blood vessels and circulate through the bloodstream, known as
CTCs.37 CTCs get arrested when encountering the capillary beds, with

FIG. 1. Engineering the physical microenvironments during cancer metastasis. (a) As tumor grows, tumor cells have to undergo higher growth-induced mechanical stress and
swelling solid stress due to interactions with neighboring tissue cells and ECM network. (b) Higher stiffness environment facilitates cell growth, survival, and migration.
(c) Invasion typically requires cancer cells to squeeze through the ECM network, where dense ECM network will deform cell body and activate some ion channels.
(d) Increasing extracellular viscosity promotes an ARP2/3-mediated dense actin network at the leading edge, enhancing cell migration. (e) Navigating in capillary channels with
narrow diameter can deform cytoskeleton and even nucleus, which potentially influence the epigenetics of cancer cells. (f) High fluid shear stress can induce apoptosis of circu-
lating tumor cells (CTCs).

APL Bioengineering REVIEW pubs.aip.org/aip/apb

APL Bioeng. 8, 021506 (2024); doi: 10.1063/5.0195389 8, 021506-3

VC Author(s) 2024

pubs.aip.org/aip/apb


the capillary diameters going down to 3lm [Fig. 1(e)]. Consequently,
only a small proportion of CTCs will successfully undergo extravasa-
tion and form distal colonies.38 During transition from these
micrometer-sized pores and constrictions, extensive cell and nucleus
deformation occur, resulting in approximately 90% cell death as well
as more invasive phenotype.39

E. Flow shear stress

One crucial biomechanical force in cancer metastasis is fluid
shear stress (FSS), induced by the frictional forces of blood fluids.2 The
value of FSS is directly related to fluid velocity, which exhibits high het-
erogeneity in the circulatory system [Fig. 1(f)]. By observing the move-
ment of erythrocytes, the most common type of blood resident cells,
researchers could visualize blood flows and measure their mean flow
velocity in various organs.40,41 Experimentally measured values of
blood flow velocities in the cerebral capillaries suggest variations
mainly from 0.796 0.03mm/s, faster than velocities of 0.05–0.2mm/s,
observed in the liver. In addition, the developments of laser-based and
ultrasound Doppler flowmetry, which are based on the Doppler effect,
increase efficiency for the detection and visualization of capillary blood
flow (0.3–1.7mm/s), which is currently commercialized as a noninva-
sive detection method in clinical medicine.42,43 By using computational
modeling, the environmental blood flow in which CTCs are exposed
in the microcirculation produces cell surface fluid shear stress of
2–40 dyn/cm2.44,45

F. Extracellular fluid viscosity

The extracellular fluid (ECF) contains plasma proteins and vari-
ous solutes that are filtered from the circulating system.46 Cells in vivo
always reside in fluids with viscosities that are significantly higher than
those of cell culture media, potentially due to the dissolution of some
extracellular macromolecules such as hyaluronic acids and soluble col-
lagen in physiological environment.47

Typically, the viscosity of ECF in normal tissue is about 0.77 cen-
tipoise (cp), while viscosity of ECF in some pathological lesions can
increase by up to three orders of magnitude.48 Within the tumor
microenvironment, the presence of macromolecules such as mucins,
soluble collagen, and hyaluronic acids—secreted by both epithelial cells
of host tissues and tumor cells—further elevates ECF viscosity.49 This
increase in macromolecules is often compounded by leakage from
blood and lymphatic vessels during tumor growth. The primary tumor
site experiences an augmentation in macromolecular crowding due to
the breakdown of the extracellular matrix, for instance, by MMPs dur-
ing invasion, leading to a further increase in ECF viscosity.50

Currently, it is demonstrated that this biophysical property affects
modes of cancer cell migration [Fig. 1(d)].4

To sum up, study of physical properties of the various compo-
nents to better understand their influence on cancer cell metastasis will
enable more precise in vitro reconstruction and study of cell behaviors
as well as their underlying mechanisms within physiologically relevant
environment. The advancement in current engineering tools will pro-
vide the needed physical information on cells and tissues in both their
normal and malignant states. We have summarized the engineering
approaches and the mechanical properties of biological entities
involved in cancer metastasis in Table I.14,15,18,51–79

III. ON-CHIP PRIMARY TUMOR AND TUMOR PHYSICAL
ENVIRONMENT

The process of cancer metastasis initiates at the primary tumor
site, where tumor cells divide uncontrollably and start to invade sur-
rounding tissues, reach the circulatory system, and eventually form
metastatic lesions. In the primary tumor, tumor cells exhibit a time-
dependent response as they interact with various physical extracellular
microenvironments. These biomechanical factors, including the stiff-
ness of the ECM, fluid shear stress, as well as compressive and tensile
forces induced by tumor growth (Fig. 2),80–83 play a regulatory role in
tumor cell proliferation and subsequent dissemination.

A. Effects of ECM stiffness on tumor development

The ECM, a complex network of hydrated macromolecular pro-
teins and sugars, undergoes dynamic changes during tumor progres-
sion. The increased stiffness of the ECM microenvironment prompts
tumor cells to reorganize their cytoskeleton structure and elevate cellu-
lar tension through Rho/ROCK signaling activation.84 Moreover, cells
also have the ability to sense their surrounding stiffness. As one of the
molecular signal factors for mechanotransduction, yes-associated pro-
tein (YAP) serves as a transcriptional coactivator. Its function is associ-
ated with nucleus translocation, which is triggered by mechanical
forces.85–87 A relatively higher stiffness microenvironment exerts a
force to open cellular nuclear pores, translocating YAP/TAZ into the
nucleus, thus activating the cell proliferation-associated pathways. In
some cases, the activation of YAP in a higher stiffness microenviron-
ment enhances migration on non-metastatic primary tumor cells, pro-
moting the spread of cancerous cells from the primary tumor.88 In
addition, transient receptor potential vanilloid 4 (TRPV4) can act as a
sensor to sense surrounding ECM stiffness in tumor cells. Increasing
matrix stiffness promotes calcium influx, resulting in matrix stiffness-
induced epithelial-mesenchymal transition by enhancing Akt function
and downregulating E-cadherin.89

B. Effects of fluid shear stress on primary tumor

In tumor lesions, fluid shear stress, generated by the movement
of interstitial fluid, blood, or lymph fluid, is a highly hemodynamic
force controlled by the movement of blood through the circulatory sys-
tem. As tumor growth progresses, the increasing need for nutrients
and oxygen supply drives the tumor to release signaling molecules,
such as vascular endothelial growth factor (VEGF), for stimulating
more blood vessels and altering fluid volume in the surrounding tis-
sues. Compared with a static environment, current, microfluidic-based
studies suggest that low fluid shear stress enhances cancer migra-
tion.44,90 Contacting with a low FSS (�0.1dyn/cm2) environment acti-
vates YAP and a ROCK-LIMK-cofilin axis, enhancing the formation
of filopodia. In addition, these new blood vessels, known as angiogene-
sis or lymph-angiogenesis, not only serve as a nutrient duct but also
provide pathways for cancer dissemination.91,92 Unfortunately, most
studies targeting the influence of FSS are based on a mono-layer model
rather than a 3D spherical tumor model.80 Although current organoid
technology involves cellular heterogeneity to mimic in vivo tumors,
engineering a 3D tumor model with vasculature in microfluidic devices
is still at its early stage.93,94 We believe that advancements in engineer-
ing methods will make it possible to replicate this “tumor angiogenesis
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TABLE I. Engineering approaches in measuring the physical properties of biological entities involved in metastasis.

Organ Cell/tissue
Experimental

setting Methods Physical properties Measuring parameters References

Bladder Cell In vitro AFM Young’s modulus (E) RT112 (Normal): 51
E¼ 17386 54 Pa
(nucleus area);
T24 (Malignant):
E¼ 11826 154 Pa

Cell In vitro AFM Young’s modulus (E) HCV29 (Normal): 52
E¼ 3.096 0.78 kPa;
T24 (Malignant):
E¼ 0.786 0.2 kPa

Tissue, spheroid-
liked organoids

In vitro AFM Young’s modulus (E) HCV29 spheroid (normal): 53
E¼ 14.56 2.2 kPa;

T24 spheroid (Malignant):
E¼ 2.76 0.3 kPa

Tissue In vitro Nanoindenter Young’s modulus (E) Healthy bladder tissue (normal):
E � 33 kPa; High-grade MICB tissue

(Malignant): E � 2 kPa

54

Brain Tissue, human
tumor grows in

mouse

Ex vivo AFM Young’s modulus (E) Normal brain: E � 0.4 kPa; GBM
U87: E � 0.15 kPa; GBM MGG8:
E � 0.1 kPa; BC BT474: E �

0.1 kPa)

55

Tissue, mice brain
section

Ex vivo AFM Young’s modulus (E) Uninjured contralateral corpus cal-
losum: E¼ 12.016 6.16; demyelin-
ation (post 7 days of injection)

E¼ 4.346 2.55

56

Tissue Ex vivo Objective shear
wave elastography

(SWE)

Young’s modulus (E) Normal brain tissue: 57
E¼ 7.36 2.1 kPa (n¼ 63);

meningiomas:
E¼ 33.16 5.9 kPa (n¼ 16);

low-grade gliomas:
E¼ 23.76 4.9 kPa (n¼ 14);

high-grade gliomas:
E¼ 11.46 3.6 kPa (n¼ 18);

metastasis:
E¼ 16.76 2.5 kPa (n¼ 15)

Tissue In vivo Intravital micro-
filming image

Blood flow velocity (�) Cerebral capillaries (2–5 lm in
diameter):

40

�¼ 0.736 0.03mm/s (n¼ 100)

Breast Cell in vitro AFM Young’s modulus (E) MCF10A: 58
E¼ 341.916 97.98 Pa;

MCF7:
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TABLE I. (Continued.)

Organ Cell/tissue
Experimental

setting Methods Physical properties Measuring parameters References

E¼ 285.136 127.03 Pa;
MDA-MB-231:

E¼ 277.326 63.13 Pa
Cell Ex vivo AFM Young’s modulus (E) Normal breast cells: 59

E¼ 1.936 0.5 kPa;
malignant breast cells:
E¼ 0.56 0.08 kPa

Cell, patient-
derived cells

Ex vivo AFM Young’s modulus (E) Normal breast cells: 60
E¼ 1.76 0.95 kPa;

metastatic breast cancer cells:
E¼ 0.26 0.1 kPa

Cell In vitro Optical tweezer
microscopy

Young’s modulus (E) HBL-100: 61
E¼ 23.56 10.6 kPa; MCF7:

E¼ 30.26 15 kPa;
MDA-MB-231:

E¼ 12.66 6.1 kPa
Cell In vitro Microfluidic assay Deformability (passing

time)
MCF10A: �2.2 s; 62
MCF7: �1.5 s

Cell In vitro Traction force
microscopy

Traction force (s) MCF10A: s� 6 nN; 63
MCF7: s� 14 nN

Tissue Ex vivo AFM Young’s modulus (E) Normal breast tissue: 64
E¼ 1.166 0.2 kPa;

malignant breast tissue:
E¼ 1.546 0.17 kPa

Tissue Ex vivo AFM Young’s modulus (E) Normal breast tissue: 18
E � 0.4 kPa;

malignant breast tissue:
E � 1.2 kPa

Tissue, spheroid-
liked organoids

In vitro Brillounin
microscopy

Young’s modulus (E) Normal spheroid: 65
E � 1.25 kPa (day 5);
malignant breast tissue:

E � 1 kPa (day 5)
Tissue In vivo High-resolution

ultrasonography
Solid stress (X) Breast tumor: X � 0.05 kPa 55

Cervix Cell In vitro AFM Young’s modulus (E) END1: E¼ 5.56 0.54 kPa; HeLa:
E¼ 2.486 0.5 kPa

66

Cell In vitro AFM Young’s modulus (E) Normal cervical epithelial cells
(CRL2614):

67

E¼ 1.20–1.32 kPa;
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TABLE I. (Continued.)

Organ Cell/tissue
Experimental

setting Methods Physical properties Measuring parameters References

human cervical squamous carci-
noma cells (CaSki):
E¼ 0.35–0.47 kPa

Cell, patient-
derived

Ex vivo AFM Young’s modulus (E) Normal cells: 68
E¼ 2.056 0.48 kPa;

cancer cells:
E¼ 2.86 1.7 kPa

Colorectal Tissue, patient-
derived sample

Ex vivo AFM Young’s modulus (E) Normal tissue: 69
E� 0.07 kPa;

tumor epithelium:
E� 0.15 kPa;
tumor stroma:
E� 0.2 kPa

Tissue, patient-
derived sample

Ex vivo AFM Young’s modulus (E) Primary tissue: E� 0.5 kPa; 79
liver metastasis: E� 1.5 kPa

Kidney Cell In vitro AFM Young’s modulus (E) Non-tumorigenic cell line (RC124): 23
E¼ 9.38 kPa;

adenocarcinoma (ACHN):
E¼ 2.48 kPa;

carcinoma (A498):
E¼ 7.41 kPa

Tissue, rat In vivo Ultrasound Blood flow speed (�) Normal kidney artery:
�¼�30mm/s;

70

Ischemic-reperfused kidney artery: �
< 10mm/s

Tissue, rat Ex vivo Water exchange Molar solution of
sodium chloride

Isotonicity: 0.20–0.27 within
90 mins

71

Liver Cell In vitro Micropipette
aspiration

Elastic coefficients (K)
and viscous coefficient

(l)

Hepatocytes: 24
K1¼ 87.56 12.1 Nm�2,
K2¼ 33.36 10.3 Nm�2,

l¼ 5.96 3.0 Pa s; hepatocellular
carcinoma (HCC):

K1¼ 103.66 12.6 Nm�2,
K2¼ 42.56 10.4 Nm�2,

l¼ 4.56 1.9 Pa s
Tissue, patient-
derived sample

Ex vivo AFM Young’s modulus (E) Neoplasm tissue: 72
E¼ 0.426 0.17 kPa;
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TABLE I. (Continued.)

Organ Cell/tissue
Experimental

setting Methods Physical properties Measuring parameters References

Paraneoplastic tissues:
E¼ 1.106 0.20 kPa

Tissue, patient-
derived sample

Ex vivo Ultrasound
elastography

Young’s modulus (E) Normal liver tissue: 17
E¼ 3.6–4.1 kPa;

Fibrotic liver tissues:
E¼ 3.7–20 kPa;

Hepatocellular carcinoma (HCC):
E¼ 4.5–265 kPa

Tissue In vitro Doppler ultrasound Blood flow volume
speed (�)

Normal portal venous blood flow:
�¼ 8646 188ml/min

73

Tissue, mouse and
rat

In vivo In situ imaging Blood flow speed (�) Zone 1 (mouse): 41
�¼ 1.396 0.78 lm/s;

Zone 3 (rat):
�¼ 1.256 0.09 lm/s

Tissue, rat Ex vivo Water exchange Molar solution of
sodium chloride

Isotonicity: 0.244–0.442 within
90 mins

71

Lung Cell In vitro Micropipette
aspiration

Young’s modulus (E) H23 cells: E¼ 0.466 0.18: 74
A549 cells: E¼ 1.396 0.68

Tissue Ex vivo AFM Young’s modulus (E) Tumor-free lung tissue: 16
E¼ 1.616 3.97 kPa;

tumor benign lung tissue:
E¼ 17.686 25.63 kPa

Melanoma Cell, patient-
derived cells

Ex vivo AFM Young’s modulus (E) WM115 (derived from primary
tumor):

75

E¼ 156 8 kPa;
WM266-4 (established from metas-

tasis to the skin):
E¼ 96 4 kPa

Pancreas Cell, patient-
derived cells

Ex vivo AFM Young’s modulus (E) Normal pancreas: 60
E¼ 2.76 1.6 kPa;
Metastatic PDAC:
E¼ 0.66 0.1 kPa

Tissue In vitro AFM Young’s modulus (E) Normal tissue: 15
E � 500 Pa (overall);

E � 1 kPa (upper quartile); PanIN:
E � 750 Pa (overall);

E � 2 kPa (upper quartile)
PDAC:
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TABLE I. (Continued.)

Organ Cell/tissue
Experimental

setting Methods Physical properties Measuring parameters References

E � 1200 Pa (overall);
E � 4 kPa (upper quartile)

Tissue, rat Ex vivo Water exchange Molar solution of
sodium chloride

Isotonicity: 0.21 � 0.5þ within
90 mins

71

Prostate Cell In vitro AFM Young’s modulus (E) PZHPV-7: 64
E¼ 3.096 0.84 kPa; LNCaP:

E¼ 0.456 0.21 kPa;
DU-145:

E¼ 1.366 0.42 kPa;
PC-3:

E¼ 1.956 0.47 kPa
Cell, cancer-
associated
fibroblasts

Ex vivo Traction force
microscopy

Traction force (s) Normal fibroblast: s � 2 kPa;
Cancer-associated fibroblast:

76

s � 3.5 kPa

Thyroid Cell In vitro AFM Young’s modulus (E) S748: E¼ 2211–6879 Pa, S277:
E¼ 1189–1365 Pa

77

Tissue, patient-
derived tissue

Ex vivo AFM Young’s modulus (E) Papillary carcinomas: 78
E¼ 1.76 1.7 kPa;

anaplastic carcinoma:
E¼ 2.46 2.2 kPa;

poorly differentiated carcinomas:
E¼ 0.786 0.54 kPa

A
P
L
B
io
e
n
g
in
e
e
rin

g
R
E
V
IE
W

p
u
b
s
.a
ip
.o
rg
/a
ip
/a
p
b

APL
Bioeng.8,021506

(2024);doi:10.1063/5.0195389
8,021506-9

V C
Author(s)2024

pubs.aip.org/aip/apb


on-a-chip” model and provides more insights into how FSS regulates
dissemination in primary tumor lesion.

C. Solid stresses within tumors

Tumor spheroids in a gel matrix are extensively employed to
explore the effect of compressive stress.95,96 The expression of Bcl-2
was downregulated in response to the compressive stress, triggering
caspase 3 nuclear translocation, and ultimately resulting in
compression-induced cancer cell apoptosis.95 Upregulated cell apopto-
sis events and defects in proliferation contribute to reduced tumor
spheroid growth under the compressive stress.96 Following compres-
sion, there is an upregulation in the secretion of the growth differentia-
tion factor 15 by fibroblasts, which is essential to induce pancreatic
cancer cell migration.97 Cytoskeletal rearrangement and filopodia for-
mation are observed in the peripheral cells, leading to a leader cell
phenotype, characterized by fast and directional migration.98

Compression stress within the tumor microenvironment also impacts
the intraluminal blood vessels, which reduces perfusion, promotes
hypoxia, weakens immunosurveillance, decreases drug delivery effi-
ciency, and ultimately facilitates tumor progression.99

The adherent cancer cells are stretched to study the effect of ten-
sile stress.100–102 It was reported that at the region of low tensile stress
in the contact-inhibited cells, the nuclear translocation of YAP and
transcriptional coactivator with PDZ-binding motif (TAZ) is impeded
by the F-actin capping and severing proteins, including CapZ and
Cofilin.101 Nevertheless, cells under mechanical stretching exhibited
upregulated YAP/TAZ nuclear translocation and, in turn, increased
proliferation which is regulated by the actomyosin contractility. The
upregulated YAP nuclear localization and b-catenin transcriptional
activity promote cell cycle re-entry and progression through the G1 to
S phase respectively, thereby enhancing proliferation in quiescent epi-
thelial cells.100 b-catenin is phosphorylated in a Src-dependent manner
in mammalian MDCK epithelial cells under the tensile stress while cell

cycle arrest is observed in the S/G2 stage without proceeding to further
division.102

IV. MICROFLUIDIC TOOLS TO STUDY INVASION
AND INTRAVASATION

Invasion and intravasation are pivotal steps in the metastatic pro-
cess. Here, cancer cell move through confined spaces, termed confined
migration, and is a crucial in vivomigration mode.103 Microfluidics, an
invaluable engineered model, is widely used to investigate the impact
of confinement on cancer cells during migration.35 In this section, we
will introduce the microfluidic devices designed to mimic the confined
microenvironment during invasion and intravasation as well as how
cells response to the confined spaces.

The microfluidic channels, designed to mimic constrictions dur-
ing invasion and intravasation, comprise parallel migration channels
created by a series of PDMS molded features through which cells
migrate along a chemotaxis gradient [Figs. 3(a) and 3(b)].104 The chan-
nels can be functionalized with different extracellular matrix proteins
such as collagens or fibronectins to enhance cell adhesion. Most of the
features were designed for studying confined cell migration typically
involving narrow and long rectangular channels which cancer cells
must travel,105–107 enabling the investigation of cell behaviors in
response to varying capillary constriction geometries [Fig. 4(a)].

Davidson et al. designed a microfluidic chip featuring x-y axis
constriction widths formed by adjacent circular PDMS posts, starting
with 5lm, then 3lm, and finally 2lm [Fig. 4(b)]. The design of vari-
ous constrictions aims to replicate in vivo confined microenvironment
more accurately.108 A z-axis pressure-driven confinement microflui-
dics was developed to dynamically compress cells between two parallel
surfaces [Fig. 4(c)].109 By decreasing the pressure within the device, the
atmospheric pressive gradually pushed the PDMS toward cells and the
confinement can be precisely controlled down to sub-micrometer reso-
lution across the surface at the square centimeter scale. Using this

FIG. 2. In vitro strategies for studying the biomechanical properties of the primary tumor and the associated tumor ECM. (a) Sequential explanation of the tumor-on-a-chip with
bio-printed blood and a lymphatic vessel pair (TOC-BBL) recapitulating the in vivo flow environment at the tumor site. Reproduced with permission from Cao et al., Adv. Funct.
Mater. 29, 1807173 (2019). Copyright 2019 Authors, licensed under a Creative Commons Attribution (CC BY) international license.80 (b) A lymph node subcapsular sinus micro-
environment-on-a-chip system designed to study the effect of physiological shear flow in tumor microenvironment on lymphatic metastasis. Reproduced with permission from
Birmingham et al., iScience 23, 101751 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) 4.0 international license.82 (c) Schematic
structure of a microfluidic model with 3D heterogeneous ECM components including fibroblast used for studying the effect of tumor ECM composition on breast cancer cell
migration. Reproduced with permission from Lugo-Cintr�on et al., Cancers 12, 1173 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY)
license.83
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device, they manipulated the confinement degree and correlated the
morphology with a study of gene expression patterns induced by the
nuclear deformation and the dynamics of the nuclear lamina.

A widely used method for replicating 3D micro-topographies
within in vitro microfluidic channels involves the use of soft lithogra-
phy with PDMS, but which typically relate to less physiologically rele-
vant stiffness (PDMS: �800 kPa–10MPa).110 Although decreasing the
cross-linking level in PDMS can give rise to microfluidics with rela-
tively low stiffness, maintaining the structural integrity of these chan-
nels presents a significant challenge.111 The advanced method to
fabricate 3D microfluidics with adjustable stiffness, along with precise
control over channel dimension and morphology, remains an area of
active research. Afthinos et al. have proposed an innovative method
that employs polyacrylamide (PA) instead of the traditional PDMS-
based technologies, enabling the fabrication of microfluidics with a
Young’s modulus of 8, 15, and 21 kPa.112 This approach facilitates the
production of microchannels with varying lengths, heights, and widths
based on customized photolithography models, as well as ensures that
the minimum microchannel confinement reached 4lm. Nonetheless,
despite these advancements, 3D PA-based microfluidics still exhibit
stiffness greater than that of most physiological microenvironments
encountered during cancer metastasis (as indicated in Table I). This
highlights the ongoing interdisciplinary challenge within materials sci-
ence and bioengineering to address this critical issue.

A. Effects of confinement on cancer cell viability

Nucleus blebs, lamin A/C enrichment and absence of lamin B,
with elongated shapes were observed in cells after confined migration,
followed by nuclear rupture, release of nuclear localized GFP signal,
and the mislocalization of ectopic 53BP1, a DNA repair protein.113,114

As a consequence of the delayed accumulation of DNA repair proteins
at the nuclear rupture sites, lysosomes and enzymes moved into the
nucleus, leading to additional DNA damage. The upregulation of the
transcription factor GATA4 resulted in the confinement-induced elon-
gation and stabilization of mesenchymal stem cells (MSC)-like cell
shape, offering crucial evidence of genotype-phenotype changes
induced by migration. In addition to nuclear rupture-induced DNA
damage, extensive nuclear deformation-induced DNA damage hap-
pened at replication forks during the S/G2 phase of the cell cycle due
to confinement-induced replication stress, leading to increased geno-
mic instability in metastasizing cancer cells.115 Endosomal sorting
complexes required for transport III (ESCART III), an enzyme
involved in plasma membrane repair and post-mitotic nuclear enve-
lope resealing, were activated and accumulated at the rupture sites to
repair.116 Successful migrating cells through the confined microenvi-
ronment depended on the activation of DNA repair machinery located
in nuclear envelope.

Microtubules, a crucial component of the cytoskeleton, maintain
cell structure and play a vital role in intracellular transport.117 They act

FIG. 3. From in vivo to in vitro, modeling the physical cues of metastasis in a microfluidics chip. (a) and (b) Surrounding tissue or ECM confines metastasizing cancer cells.
Reproduced with permission from Lautscham et al., Biophys. J. 109, 900–913 (2015). Copyright 2015 Authors, licensed under a Creative Commons Attribution (CC BY)
license.104 (c) and (d) Constricted space in circulating system, such as small capillary, deforms CTCs. Reproduced with permission from Jiang et al., Adv. Sci. 10, 2201663
(2023). Copyright 2023 Authors, licensed under a Creative Commons Attribution (CC BY) 4.0 international license.132 (e) and (f) Arresting CTC leads to transendothelial migra-
tion (transmigration) and exiting circulatory system. Reproduced with permission from Chen et al., Nat. Protoc. 12, 865–880 (2017). Copyright 2017 Springer Nature Customer
Service Center GmbH.165
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as cellular sensors assisting cancer cell movement in response to con-
finement and ensuring cell survival in confined microenvironment.118

Cytoplasmic linker-associated proteins (CLASP) are recruited, and a
dedicated microtubule structure are reinforced under compression.
When cells migrate through confined spaces, they align their nucleus
along the migration axis. Concurrently, the CLASP at the rear of the
nucleus acts to repair and reinforce the microtubule lattice, ensuring
structural integrity during this process. Cells with depleted CLASP
show loss of confinement induced microtubule lattice resulting in
nuclear rupture and damage.

B. Effect of confinement on cancer cell migration

Successful migration requires cells to withstand large distortions
in a dense microenvironment. The nucleus, as the largest and stiffest
organelle within the cell body, acts as the rate-limiting factor during

the confined migration.119 Nuclear lamina, including A-and B-type
Lamins, consists of intermediate filaments and forms interconnected
networks with membrane-binding partners beneath the nuclear enve-
lope. Lamin A/C confers cell stiffness and Lamin B1 imparts cell soft-
ness.120 During the confined migration, cells actively optimize the
expression of the Lamin A/C and Lamin B1. High Lamin A/C to
Lamin B1 ratio confer stiff cells and, in turn, low migration velocity.
Nevertheless, low Lamin A/C to Lamin B1 ratio leads to soft cells, fast
migration but more cell death during confined migration, since soft
cells are more susceptible to damage. Histone deacetylase 3 is activated
by the inflow of calcium ions via stretch-activated ionic channels, lead-
ing to confinement migration-induced heterochromatin.121 The
expression of heterochromatin during cell migration is strongly corre-
lated with the degree of confinement. The chromatin accessibility
decreases while part of region genes, such as chromatin silencing and
DNA damage response, has been activated during this process.

FIG. 4. Confined migration in a microfluidic platform to understand cancer invasion. (a) Representative images of cells migrating in the constriction channels. Scale bar is
20 lm. Reproduced with permission from Zhang et al., Sci. Rep. 11, 6529 (2021). Copyright 2021 Authors, licensed under a Creative Commons Attribution (CC BY) 4.0 interna-
tional license.106 (b) A simplified schematics of microfluidic device for confined cell migration. Yellow and blue are the unconfined areas for cell entrance and exit, respectively.
Red is the constriction area. Zone 1 and Zone 2 indicate the unconfined areas for cells after passing through the first and second constriction, respectively. Reproduced with
permission from Davidson et al., Integr. Biol. 7, 1534–1546 (2015). Copyright 2015 Oxford University Press.108 (c) Principle of the pressure-driven cell confinement device. By
decreasing the pressure, the PDMS piston is progressively pushed toward the cell (bottom diagram). Reproduced with permission from Berre et al., Integr. Biol. 4, 1406–1414
(2012). Copyright 2012 Oxford University Press.109 (d) Schematic of the MAqCI device, with representative time-lapse micrographs of highly motile cells migrating in the MAqCI
microfluidic channel. Highly motile cells are defined as cells migrating through the whole length of the feeder channel and entering either the 10-lm-wide or 3-lm-narrow
branches. Reproduced with permission from Wong et al., Nat. Biomed. Eng. 5, 26–40 (2021). Copyright 2020 Springer Nature.195
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When cells transverse through confinement, the nuclear envelope
unfolds and stretches, resulting in the release of calcium from internal
membrane stores.122,123 The accumulation of calcium ions in the cyto-
plasm lead to the phosphorylation of cytosolic phospholipase A2
(cPLA2), known as a molecular sensor for nuclear membrane tension
and a crucial regulator of signaling and metabolism. The phosphory-
lated cPLA2 catalyzes arachidonic acid (AA), thereby potentiating the
adenosine triphosphatase activity of myosin II. This process leads to
enhanced contractility of the actomyosin cortex, facilitating rapid cell
migration through the confinement microenvironment. A
confinement-induced rapid Arp2/3-dependent perinuclear actin
nucleation disrupts nuclear lamina, resulting in suppressing Lamin
A/C expression and downregulation of nucleus stiffness.124 This ena-
bles cells to rapidly and efficiently squeeze through constriction.
Mitochondria actively participate in various cell migration-related
activities and are observed to have a more concentrated distribution at
the site of confinement among the fast-migrating subpopulation.105

The “Osmotic Engine” model, reported in 2014 by the
Konstantopoulos group, revealed that cancer cells, with inhibited adhe-
sion, move with a faster velocity due to the osmotic gradient when cells
are fully confined (i.e., fully blocked the microchannels).125 Consistent
with mathematical modeling, the study demonstrated that the polarized
distribution of Naþ/Hþ pumps and aquaporins in the plasma mem-
brane, in response to constriction, results in a net water and ionic influx
at the cell’s leading edge and an outflow at the trailing edge, ultimately
driving fast cell movement. Liu et al. demonstrated Focal adhesion
played a dominant role in the mesenchymal-ameboid transition for
slow mesenchymal cells to adapt to the confinement.126 There is a more
than sevenfold increase in migration velocity with adhesion inhibition
when mesenchymal cells transit from mesenchymal migration with a
velocity of �0.23lm/min to ameboid migration (�5.3lm/min or
�1.7lm/min). Cells, with low adhesion and high cortical contractility,
migrate with a velocity of approximately 5.3lm/min while cells, with
low adhesion and low cortical contractility, migrate with a velocity of
around 1.7lm/min. This research established a phase diagram of migra-
tion phenotypes based on confinement, adhesion, and contractility.

Extracellular fluid viscosity is also a key mediator during cancer cell
confined migration.4 The accumulation of the macromolecules, from the
degradation of the extracellular matrix during cancer cell invasion, and
the leakage of lymphatic vessels due to the compression from the pri-
mary tumor growth, increases the viscosity of the interstitial fluid.127

The actin polymerization, in MDA-MB-231 breast cancer cells, is facili-
tated by the activation of the Arp 2/3, promoting the uneven distribution
of Naþ/Hþ exchanger 1 (NHE1) via the actin-binding site ezrin when
cells penetrate in high viscosity and confine microenvironment.4 This
uneven distribution of NHE1 enhances cell swelling and upregulates
plasma membrane tension, driving the activation of TRPV4.
Consequently, the calcium influx via TRPV4 channels leads to increased
RhoA-dependent cell contractility, which, in turn, leads to faster cell
migration. Cancer cells that have been pre-exposed to a high-viscosity
environment show an increased tendency to colonize the lungs. This
behavior is linked to a TRPV4-dependent mechanical memory, which is
controlled by transcriptional activities within the Hippo pathway.

C. Effect of confinement on cancer cell proliferation

Confinement can drive defects in cell division and gene expres-
sion changes, which could increase genetic instability and promote

tumorigenesis.128 The human cervical carcinoma (HeLa) cell line
observed a more than 50-fold increase in stressed cell division events
under confinement than in unconfined environments, including
delayed mitosis, multi-daughter cell division events, unevenly sized
daughter cells, and cell death.129 Failure in cell round-up under con-
finement causes unsuccessful spindle assembly, and pole splitting,
leading to defects in mitotic progression.130

V. BIOMECHANICAL FORCES SHAPE CTCS AND THEIR
IMPACTS IN THE MICROCIRCULATION TRANSIT

In distant metastasis, cancer cells, either as individual cells or
clusters, detach from the primary tumor and intravasate, utilizing the
vascular system as a highway to traverse the body. These cells, known
as CTCs, travel with the bloodstream and potentially be captured in
the microcirculation—a network of small vessels and capillaries char-
acterized by extensive branching and narrow constrictions capable of
slowing CTCs.131 The residence time of CTCs in the microcirculation
ranges from hours to days, during which they are exposed to various
biomechanical cues, including the heterogeneity of blood shear stress
and geometrical constraints [Figs. 3(c) and 3(d)].7,132 Nevertheless, a
comprehensive understanding of these mechanical microenviron-
ments influencing CTCs transit and their impacts on the metastatic
process still remain largely unknown.

A. Cellular apoptosis under flow shear stress

While traveling in the circulatory system has been described as
an expressway for distant metastasis, analysis of circulating metastasis
in animal models suggested that fewer than 0.01% of CTCs success-
fully survive and extravasate to seed metastasis.133,134 In vivo observa-
tions, utilizing intravital two-photon imaging to track CTCs arrested
in mouse lung or liver capillaries, reveal the dynamic generation of
tumor microparticles,6,135 also known as migrasomes (size: 0.5–2lm).
Long-time exposure to capillary FSS might result in the tearing of the
entire cytoplast, ultimately eliminating arrested CTCs. To understand
the impact of heterogeneous FSS on cancer cells, Regmi et al., devel-
oped a microfluidic device mimicking hemodynamic microenviron-
ments [Fig. 5(b)].136 Their works demonstrated that, more metastatic
breast cancer cells perished as the increasing of culture time with FSS
environments, particularly in high FSS group (40 dyn/cm2). Other
studies targeting CTC clusters suggested a cluster disaggregation phe-
nomenon.137 Even CTCs clusters being identified as having higher
metastatic potential than single CTC, they still face challenges when
exposed to elevated FSS in microfluidic systems.

Given how microcirculation can regulate cancer cell apoptosis,
researchers have delved into the molecular changes and dynamic
responses of cell membrane and cytoskeleton, as well as the nucleus.
CTCs trapped within the microvasculature, continuously exposed to
FSS, alter the force balance at the cell surface and induce the activation
of the membrane ion channel. The cell-surface channel protein
pannexin-1 (PANX1), responding to changes in membrane tension
and mechanical stresses, has been identified as a biomarker to deter-
mine malignant properties in neuroblastoma.138 The overexpression of
PANX1 in highly metastatic breast cancer cells augments ATP release,
potentially aiding survival after lodging in the microvasculature.139

Research conducted by Tan ’s group suggests that cell stiffness corre-
lates with their survival abilities [Fig. 5(a)].140 Using the pharmacologi-
cal regents to re-organize cellular actomyosin structure, they found
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that soft tumor cells have survival advantage in resisting hemodynamic
shear stress. Recent research indicated that tumor cells may adapt FSS
environment and resist FSS-induced cell death via activating the
RhoA-ROCK pathway and contracting actomyosin networks, leading
to an upregulating of cell contractility.141 In addition, an in vitro analy-
sis of the nucleus dynamic found a rise in nuclear size in a high FSS
environment (20dyn/cm2) compared to low FSS environment (2 dyn/
cm2) as well as static environment (0 dyn/cm2).142 Suspended tumor
cells trigger the histone-acetylation-mediated nuclear expansion,
potentially causing this shear-induced apoptosis in cancer cells. High
FSS environment triggers the histone-acetylation-mediated nuclear
expansion in suspended tumor cells, which potentially responds to this
shear-induced apoptosis.142 Resistance of FSS is also related to the
expression level of Lamin A/C, crucial for maintaining the structural
integrity of the cell nucleus and providing mechanical support.143

Comparatively, nonmalignant epithelial cells with low Lamin A/C lev-
els perform relatively poor resistance under the FSS microenviron-
ment. Upon knockdown of Lamin A/C, the viability of breast cancer

cells dramatically decreased only in the flow environment, but not in
the static environment.

B. Navigation in microcirculation

As CTCs traverse through capillary constrictions, where the
diameter is almost two to four times smaller than that of the CTCs, it
has been reported in animal models that mechanical squeezing
deforms not only the cytoplasm but also the cell nucleus.37,135 Analysis
of the histologic section via using immunohistochemistry is the most
traditional method to obtain the geometrical structure of capillary ves-
sels,144 whose diameters are about 3–13lm. The development of imag-
ing systems allows for the in situ observation of 3D capillary bed
morphologies in diverse tissues and organs.135 In response to capillary-
induced constriction, cancer cells dynamically change their migration
strategies, ensuring the successful transit through capillary beds and
potentially facilitating extravasation. This navigation includes two
stages: (1) flowing with blood flow in a suspended state (passive

FIG. 5. Microfluidic approaches for studying cancer cells in microcirculation transit. (a) A peristaltic pump-based system to investigate the effort of fluid shear stress on cellular
viability. Reproduced with permission from Xu et al., J. Cell Sci. 135, jcs259586 (2022). Copyright 2022 Authors, licensed under a Creative Commons Attribution (CC BY) 4.0
international license.142 (b) The use of 3D microfluidic channels drove by a constant pressure-driven flow in studying the morphological and molecular alterations of deformed
cancer cells. Reproduced with permission from Cognart et al., Sci. Rep. 10, 6386 (2020). Copyright 2020 Authors, licensed under a Creative Commons Attribution (CC BY) 4.0
international license.150 (c) Confined spaces of capillary vessel cause deformation of CTC. Mechanical deformation selects those mechanoresilient cancer cells with enhanced
proliferation and chemoresistance. Reproduced with permission from Jiang et al., Adv. Sci. 10, 2201663 (2023). Copyright 2023 Authors, licensed under a Creative Commons
Attribution (CC BY) 4.0 international license.132 (d) Cell motility in a lymphatic flow mimicking system using a programmable syringe pump. Reproduced with permission from
Lee et al., Nat. Commun. 8, 14122 (2017). Copyright 2017 Authors, licensed under a Creative Commons Attribution (CC BY) 4.0 international license.154
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migration), and (2) squeezing into capillary vessel in an adhesive state
(active migration).

Traveling in a suspended state is the most common phenotype
for CTCs in circulation, wherein CTCs flow with the bloodstream and
passively traverse through different organs, including the brain, liver,
and lung according to cancer type. Inevitably, some CTCs circulate
into capillaries in distant organs, where their diameters are smaller
than the size of CTCs. Extensive in vivo studies using intravital imag-
ing have revealed a shaped deformation in cancer cells while transiting
capillaries.145,146 Notably, the confined stress between invasion and in
circulation is different. The process of migration for cancer cells
through the confined spaces of tissues or ECM is comparatively slow,
allowing cells adequate time to adjust to the deformation.145 In con-
trast, when cancer cells enter circulation, they are propelled rapidly by
blood flow. This rapid transit requires CTCs to compress quickly in
order to navigate through the narrow confines of blood vessels, poten-
tially subjecting them to effects that are not yet fully understood.147–149

To further understand how these narrow constrictions impact molecu-
lar changes in breast cancer cells, Cognart et al. developed several types
of microfluidic systems with different geometry and hydrodynamics
[Fig. 5(b)].150 In this microcirculation-mimicking model, the mechani-
cal squeezing significantly increases the DNA damage in epithelial-like
SK-BR-3 cells, while some epithelial-to-mesenchymal transition
markers such as Snail1, Twist2, and ZEB1 were up-regulated.150

Additionally, applying a mechanical selection of breast cancer cells by
using a microfluidics device to mimic the mechanical deformation
during capillary navigation [Fig. 5(c)].132 Researchers identified a
unique property that the survival breast cancer cells exhibit resilience
to mechanical squeezing-induced cell death. This survival subpopula-
tion, named mechanoresilient cells, achieve enhanced proliferation
and chemoresistance compared to wide-type breast cancer cells, poten-
tially explaining how microenvironmental physical stress can promote
the malignancy of metastasizing cancer cells. Particularly targeting the
squeezing of CTC clusters in in vitro and in vivo small capillary vessels,
cluster groups rapidly reorganized into single chain-like geometries
that substantially reduce the hydrodynamic resistance exerted on cell
clusters in microfluidics.151 In a way, the deformability of tumor cells
is vital for transit in capillary vessels.147,152,153

While traveling through capillary constrictions with slower flow
velocities, size of CTCs is typically larger than the diameter of capillar-
ies, which increases the possibility of CTCs trapping in capillary ves-
sels. Subsequently, arrested CTCs transform from a suspension state to
an adhesive state and move along the capillary wall, as observed in
both in vivo and in vitro studies.7,146 When CTCs become lodged in
capillaries, they can sense and convert the mechanical signals to bio-
chemical signals, thereby activating some of the mechanotransductive
pathways and adjusting their motility strategies in responding to this
confined space within shear flow. In a study by Lee et al., a higher level
of the translocation of YAP1/TAZ to the nucleus when prostate cells
were exposed to a lymphatic vasculature-mimicking FSS (�0.05 dyn/
cm2) in a microfluidics system [Fig. 5(d)].154 The activation of the
ROCK-LIMK-YAP1 signal promotes migratory capacity in human
prostate cancer cells, potentially promoting cancer metastasis in the
lymphatic duct. Moreover, Piezo ion channels are mechanosensitive
ion channels, responding to various mechanical cues such as tension,
compression, and FSS. Piezo1 has been indicated as a blood flow regu-
lation that mediates the sense of change in blood flow and assists in

maintaining vascular integrity. FSS induce the activation of Piezo 1,
resulting in the calcium influx and the remodeling of the cytoskele-
ton.155,156 In cancer metastasis, Piezo channels, together with myosin
II, promoted the motility of malignant cells in confined space and spe-
cifically facilitated efficient migration through microfluidic narrow
channels.157,158 Under confined migration in capillary-like microflui-
dics, A-type lamins have been shown to play an essential role. Several
studies indicated that downregulation of lamins A/C with a more elas-
tic nucleus can enhance cellular motility through confined space,
which facilitates the occurrence of lung metastasis.159–161 However, as
we discussed before, low lamins A/C do not favor the resistance of
FSS.143 Further investigation is still required to understand the mecha-
nisms by which metastasizing cancer cells regulate their lamins A/C
during metastasis in microcirculation.

VI. MICROFLUIDICS TO COMPREHEND CANCER
EXTRAVASATION

At the end of the circulation, CTCs must exit the bloodstream in
order to establish new metastatic colonies. While the current develop-
ment in imaging systems provides direct evidence of cancer cell extrav-
asation in mouse models,145,162,163 the lack of a comprehensive
understanding of the molecular mechanisms regulating cancer extrav-
asation has hindered the successful targeting of this process by current
anti-metastasis strategies.164 The advancement of microfluidics pro-
vides a way for visualizing the process of in vitro extravasation and illu-
minating the underlying mechanisms [Figs. 3(e) and 3(f)].165

Researcher have created the engineered 3D microvascular networks in
microfluidic platforms (Fig. 6).94,165–171 Chen et al. reported the first
microfluidic chip containing self-assembled microvascular networks in
2009,172 and this platform has been improved to apply the visualiza-
tion of cancer extravasation by Chen et al. later [Fig. 6(b)].170 In their
models, once human umbilical vein endothelial cells (HUVECs) and
human lung fibroblasts (HLFBs) were injected into HUVEC gel micro-
fluidic channel, cell assembly grow with a microvascular network
structure. They demonstrated that the extravasation capabilities on
breast cancer cells associated with endothelial barrier function and
inflammatory cytokine stimulation. The process starts with slender
protrusions from tumor cells extending across the endothelium, lead-
ing to the extrusion of the rest of the cell body through the creation of
small openings (about 1lm) in the endothelial barrier. These openings
then expand to a larger size (approximately 8lm) to facilitate the pas-
sage of the nucleus.170 Subsequently, a new on-chip human microvas-
culature microfluidic assay allows a visualization and dynamical
quantitation of cancer extravasation over 72 h via confocal microscopy
with high-resolution [Fig. 6(d)].165 Certain resident cells in blood, such
as platelets and neutrophils, can facilitate the efficiency of extravasation
in breast (MDA-MB-231) and melanoma cells (A375-MA2).

During the process of extravasation, CTCs typically start with
attachment to endothelium and finish with trans-endothelial migra-
tion to escape the circulating system. The development of 3D micro-
vascular microfluidics is promising in enabling understanding of
cancer cell extravasation, including attachment and transmigration, as
well as its underlying mechanisms. Neuronal cadherin (N-cadherin),
expressed by both cancer cells and endothelial cells, serves as one of
the receptors that facilitates the initial arresting of cancer cells under
blood flow.173 Once CTCs attach to endothelial layer, cancer cells
quick reorganize their N-cadherin distribution to promote the cell–cell
junction. Subsequently, the formation of integrins-based adhesion
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ensures a stable attachment, which facilitate to subsequently trans-
migrate.174 A study on a 3D microfluidic device suggests MDA-MB-
231 cells formed a integrin b1 junction with endothelial cells once they
arrest in endothelial layer, and loss of this cell–cell junction would
restrain the efficiency of subsequent trans-migration.175 After the for-
mation of stable attachment, cancer cells tend to pass through the vas-
cular endothelium by forming actin-based dynamic protrusive
structures known as invadopodia.2,176 As an unique characteristic of
cancer cells, certain pericellular proteases such as MMP9 have a
enrichment of invadopodia sites which facilitate the degradation of
ECM, thereby promoting transmigration and invasion.177

Nevertheless, degradation is not the only way to elevate the transmi-
gration efficiency. Since the junction gap in endothelial layer is typi-
cally smaller than cell nuclei, one study that visualized the dynamics of
tumor cell nuclei suggested that tumor cells can adjust their nuclear
mechanical properties during transmigration.166 To facilitate this
transmigration process, tumor cells reduce the stiffness of this most
rigid organelle.

Here, we discussed various models designed to replicate the
mechanical conditions within the microcirculation system and out-
lined potential mechanotransduction pathways that enable cells to

respond to these mechanical cues. Gaining insights into the behavior
of CTCs within the microcirculation, understanding their ability to
sense and adapt to these mechanical environments, and potentially
develop a more invasive phenotype as well as their underlying mecha-
nisms will enhance our understanding of cancer metastasis. This is
particularly crucial as the microcirculation serves as the primary site
where CTCs typically interact with the endothelial layer, initiating the
process of extravasation. Subsequent section will describe in vivo and
in vitro studies that specifically focus on metastatic colonies.

VII. MECHANICAL FEATURES ON METASTATIC NICHE

Out of the entire pool of cancer cells migrating through circula-
tion, the vast majority face an inevitable fate of cell death. Only a
minute subset, approximately 0.01%, successfully survive and establish
secondary tumors in mouse experiments.178 These surviving cells fol-
low either one of the two routes: dormancy or proliferation. Typically,
disseminated tumor cells (DTCs) upon entering the secondary site
undergo a period of dormancy.179 The dormancy or awakening of
DTCs is influenced by multiple intracellular and extracellular signals.
The well-known seed-and-soil theory of cancer metastasis emphasizes
that specific types of tumors exhibit preferences for specific distant

FIG. 6. Modeling extravasation on a microfluidic system. (a) A microfluidic model that includes vessel cavity, endothelium, and perivascular matrix, to understand transendothe-
lial invasion of tumor aggregates. Reproduced with permission from Zhang et al., Lab Chip 12, 2837–2842 (2012). Copyright 2012 Royal Society of Chemistry Press.171 (b) A
physiologically relevant microfluidic platform capable of accurately modeling the entire extravasation process. Reproduced with permission from Chen et al., Integr. Biol. 5,
1262–1271 (2013). Copyright 2013 Oxford University Press.170 (c) A microfluidic model that allows the collection of extravasated cells for post-analysis. Reproduced with per-
mission from Cui et al., Biomicrofluidics 11, 014105 (2017). Copyright 2017 Authors, licensed under a Creative Commons Attribution (CC BY) license.204 (d) A 3D microvessel
bed in a microfluidics chip to understand cancer extravasation. Reproduced with permission from Chen et al., Nat. Protoc. 12, 865–880 (2017). Copyright 2017 Springer Nature
Customer Service Center GmbH.165
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metastatic niches.180 While the dissemination process may seem ran-
dom, successful colonization is favored by specific biomechanical
properties that facilitate tumor growth in metastatic niches.
Furthermore, DTCs may maintain dormancy and even possibly facing
apoptosis.

Similar to the growth in primary lesions, matrix stiffness serves as
a crucial environmental signal that dictates the fate of cancer cells—
whether they undergo proliferation or dormancy. In both in vivo and
in vitro experiments, cells tend to favor an environment with a rela-
tively higher stiffness.26 While cells seed in a relatively stiff matrix, it
can prompt the nucleus translocation of YAP, facilitating the expres-
sion of Akt to resist apoptosis.181 Surprisingly, several studies employ-
ing AFM have verified that most metastatic colonization tissues exhibit
higher stiffness as compared to healthy tissues.13,16,26,27,79 Microfluidic
devices have been designed to mimic the physical environments of
metastatic niches with the aim of understanding the biological interac-
tions between niches and DTCs.182–184 A series of CXC chemokines,
such as CXCL5 and CXCR2, have been identified for their contribu-
tions to breast-to-bone metastasis. Although metastatic niche with
higher stiffness is beneficial to cancer cell survival and proliferation,
metastasizing to soft organs, such as brain, liver, and lung with soft tis-
sue is comment in clinical medicine. Studies from Sheetz’s group iden-
tified the co-function of myosin IIA, tropomyosin 2.1 and 3.1 as
rigidity sensors, determining the rigidity-dependent growth.185

Depletion of these rigidity sensor proteins restore tumor growth in
transformed breast cancer cells, which potentially explains why DTCs
adapt to a soft colonization environment.

Growth in a metastatic niche requires a nutrient supply, typically
facilitated by the circulatory system. Accompany by nutrient transport,
heterogeneous circulating flow exerts FSS on cancer cells in secondary
colonies, relating to cell survival, proliferation, and migration. Indeed,
Tan ’s group indicated that exposure to high FSS (�20 dyn/cm2)
results in nucleus expansion and leads to over 60% of cell death within
12 h.142 However, a lower FSS value, reduced by 10 times or even
more, facilitates chemical resistance in cancer cells.186,187 Except for
the contribution of chemical resistance, low FSS also induces the acti-
vation of cell proliferation in metastatic breast cancer cells via enhanc-
ing The phosphorylation level and nucleus translocation of ERK.188

For prostate cancer cells cultured in microfluidics with low FSS
(�0.05dyn/cm2), FSS elevates the expression level of TAZ and pro-
motes its nuclear localization.189 As a result, TAZ activation drives
increased DNA synthesis, which promotes cell proliferation in prostate
cancer cells. Furthermore, while no direct evidence currently indicates
the influence of FSS on cancer migration after seeding in secondary
lesions, the presence of low FSS in the interstitial flow has verified its
positive contributions to early cancer dissemination.90,186

Considering the heterogeneous metastatic lesions, these meta-
static lesions are not always covered with tumor-favorite physical fea-
tures. Certain key mutations facilitate the adaptation of cancer cells to
unfavorable physical microenvironments, allowing for continued
growth.190 Currently, microfluidics is not the primary in vitro model
for studying the metastatic niche. Nevertheless, its significant adapt-
ability, particularly in addressing physical characteristics, should be
highlighted. We hope the advancements in microfluidic technology
will demonstrate how physical parameters in metastatic lesions,
including morphological structures, extracellular viscosity, and matrix
elasticity, can influence metastatic outcomes.

VIII. CONCLUDING REMARKS AND FUTURE DIRECTION

As our understanding of cancer metastasis expands, it is increas-
ingly vital to incorporate the mechanical attributes of physiological
microenvironments into our studies. Successful metastasis requires
cancer cells to go through a heterogeneity of tissue or organ microen-
vironments and overcome the biophysical stresses exerted by these
microenvironments.2,191,192 These stresses can drive changes in cellular
morphogenesis, proliferation, migration, and even survival, which all
closely bound up the development of metastases. Even cancer cells can
memory these past mechanical stresses and future influence their
responses in a new metastatic niche.11 Our partial inability to under-
stand these mechanics-induced cellular responses and their underlying
mechanisms is due to the lack of models that accurately replicate phys-
ical microenvironments. The first conventional in vitro system to study
metastasis was the 2D wound-healing assay, which creates a “wound”
gap in a cell monolayer for observation of “healing” speeds of cells but
fails to replicate the complex pathophysiological environment, particu-
larly those physical factors.193 Advances in microfluidic models allow
the establishment of diversely physical environments with physiologi-
cal relevance which will be vital to answer more complex questions
during cancer metastasis.

Here, we reviewed how in vitro devices provide an innovative
approach to modeling these physical microenvironments during can-
cer metastasis. We particularly highlighted microfluidic devices
because of their versatility that allows for the recapitulation of physio-
logical features (Fig. 1). These have enabled us to reveal specific and
previously unknown cellular responses to mechanical microenviron-
ments. For example, microfluidic devices mimicking the confined
space during invasion suggested dynamic cancer cell migration strate-
gies.107 Tumor cells can utilize their nucleus to sense the surrounding
confined space and reorganize their myosin-mediated contractility,
resulting in cell polarization which highly determines their migra-
tion.122,194 Furthermore, squeezing through confined channels
increases the likelihood of nuclear envelope rupture, driving the activa-
tion of the ESCRT III-based repair mechanism for limiting DNA dam-
age and cell death.116 Even, a microfluidic platform, called microfluidic
assay for quantification of call invasion (MAqCI), has applied to evalu-
ate the tumor aggressiveness in patient-derived primary glioblastoma
specimens [Fig. 4(d)].195 We can anticipate the significant role of this
microfluidic technology in cancer research and further development of
cancer therapy.

Understanding the role of environmental confinement is not the
sole function of microfluidics, as numerous mechanobiological ques-
tions, particularly those related to the physical cues in cancer metasta-
sis, can be addressed using these “lab-on-a-chip” systems. For
example, viscoelasticity is a vital physical cue, influencing tumor
growth and subsequent metastasis.23,196 At present, PDMS and other
linearly elastic polyacrylamide are the most commonly used materials
for microfluidic fabrication. However, many tissues and ECMs do not
possess linearly elastic properties. Instead, they demonstrate viscoelas-
ticity, exhibiting both viscous and elastic characteristics during defor-
mation. Various hydrogel or collagen gel-based matrix systems reveal
how matrix viscoelasticity and viscoplasticity can impact cell spread-
ing,197 migration198 and, differentiation.199 Similarly, other physical
traits or cues such as liquid viscosity, osmotic pressure, and even cell
deformation when CTCs travel into constricted circulating system can
also be reconstituted in microfluidics assays. Future efforts should
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focus on developing diverse and physiological microenvironments
through advances in biomaterials and the fabrication of microfluidic
devices.

The final goal of studying metastasis is to discover more effec-
tive strategies to combat cancer. One of the major challenges in can-
cer chemotherapy is the issue of drug resistance. Currently, a variety
of genes, such as MUC1 and certain members of the ABC trans-
porter gene families, have been identified for their roles in promoting
chemoresistance.200–202 The gene expression profiles in cancer cells
are highly dynamic and often affected by the physical characteristics
of surrounding environments. For example, one study has shown
that a hydrostatic pressure microenvironment (30mm Hg) within a
microfluidic platform can enhance the doxorubicin resistance in
breast cancer cells by almost 2.5 times.203 Importantly, this increase
in drug resistance is attributed to changes in gene expression rather
than mutations in specific chemoresistance-related genes, meaning
this change is only affected by physical cues. Tumor environment
always includes diverse and complex physical cues, yet our under-
standing of how these physical cues influence the effect of conven-
tional chemotherapy drugs remains limited. Nevertheless, these
features that respond to mechanical stress in metastasizing cancer
cells might provide new direction for anti-metastatic treatments. The
evolving field of microfluidics holds promise for providing more
insights in integrating mechanobiological concepts into clinical can-
cer therapy, potentially leading to more targeted and effective treat-
ment strategies.
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