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Objective. To explore the effect and underlying mechanism of Zengye decoction (ZYD), a traditional formula from China, on the
severe acute pancreatitis (SAP) rat model with acute kidney injury (AKI). Methods. -e SAP-AKI model was induced by 3.5%
sodium taurocholate. Rats were treated with normal saline or ZYD twice and sacrificed at 36 h after modeling. Amylase, lipase,
creatinine, blood urea nitrogen, kidney injury molecule 1(KIM-1), and multiple organs’ pathological examinations were used to
assess the protective effect of ZYD. Gut microbiome detected by 16S rRNA sequencing analysis and serum amino acid
metabolome analyzed by liquid chromatography-mass spectrometry explained the underlying mechanism. -e Spearman
correlation analysis presented the relationship between microflora and metabolites. Results. ZYD significantly decreased KIM-
1(P< 0.05) and the pathological score of the pancreas (P< 0.05), colon (P< 0.05), and kidney (P< 0.05). Meanwhile, ZYD shifted
the overall gut microbial structure (β-diversity, ANOSIM R� 0.14, P � 0.025) and altered the microbial compositions. Notably,
ZYD reduced the potentially pathogenic bacteria—Bacteroidetes, Clostridiales vadin BB60 group, and uncultured_Clos-
tridiales_bacterium, but promoted the short-chain fatty acid (SCFA) producers—Erysipelotrichaceae, Bifidobacterium, Lacto-
bacillus, and Moryella (all P< 0.05). Moreover, principal component analysis (PCA), partial least squares-discriminant analysis
(PLS-DA), and hierarchical clustering analysis (HCA) presented a remarkable change in amino acid metabolome after SAP-AKI
induction and an apparent regulation by ZYD treatment (R2Y 0.878, P � 0.01; Q2 0.531, P � 0.01). Spearman’s correlation
analysis suggested that gut bacteria likely influenced serum metabolites levels (absolute r> 0.4 and FDR P< 0.02). Conclusions.
ZYD attenuated SAP-AKI by modulating the gut microbiome and serum amino acid metabolome, which may be a promising
adjuvant treatment.

1. Introduction

Severe acute pancreatitis (SAP) is a changeable and possibly
lethal disease with multiple organ dysfunctions [1]. Acute
kidney injury (AKI) is a frequent complication of SAP with
extremely high mortality [2]. Metabolic reprogramming is a
part of accepted pathologies underlying SAP-AKI, but the
exact mechanism remains unclear [3]. Meanwhile, unique
treatment for SAP-AKI is still under exploration [4].

Recently, the gut microbiome-modulating endogenous
metabolism has aroused many interests [5]. More and more

research studies have indicated that gut bacterial dysbiosis
plays a vital role in the pathological mechanism of acute
pancreatitis (AP) and AKI [6, 7]. Also, reports have dem-
onstrated that improving gut microbiota could protect
against SAP [8, 9]. However, rare studies investigated the
effect of modulating microbiome on SAP-AKI. -e serum
metabolome is responsive to the gut microbiome variation
[10], and metabolomics is a powerful tool to explore po-
tential pathogenesis and effective drugs for diseases [11].
Amino acids serve as major nutrients and signaling mole-
cules to regulate various physiological processes [12].
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Nevertheless, AP and AKI cause distinct disorders in the
amino acid metabolic profile [13, 14]. Several studies pre-
sented that regulating the overall serum metabolome may
protect AP [15–17], but very little is known about the effect
of regulating the amino acid metabolome in SAP-AKI.

Zengye decoction (ZYD), a traditional Chinese medi-
cine, consists of Scrophulariae (Xuanshen), Ophiopogonis
(Maidong), and Rehmannia (Shengdi), which has been
widely used in many Asian countries for thousands of years
[18]. Research studies have reported that ZYD can ame-
liorate metabolic disorders like diabetes [19, 20]. Remark-
ably, Liu et al. proved that ZYD could regulate the gut
microbiota and amino acid metabolism pathway to cure
constipated rats [21]. To our knowledge, no report has
explored the application of ZYD on SAP or AKI. -us, we
hypothesized that ZYD could protect SAP-AKI by modu-
lating the gut microbiome and serum amino acid metab-
olome. -is study may provide a novel therapeutic method
for SAP-AKI and elucidate the potential underlying
mechanisms.

2. Materials and Methods

2.1. Animals. Twenty-one male Sprague Dawley rats
(weight: 220± 10 g, clean grade) were obtained from Dashuo
Experimental Animal Co., Ltd (Chengdu, China) (certificate
no. 512003500015140; license no. SCXK (Sichuan)
2020–030). After one week of acclimation, the animals fasted
but were free to access water 24 h ahead of the experiment.
-e experimental protocol passed the ethics of the West
China Hospital of Sichuan University and was approved by
the Animal Ethics Committee (protocol number: 2020234A,
Chengdu, China).

2.2. ZYD Preparation. ZYD decoction is composed of
Scrophulariae, Ophiopogonis, and Rehmannia. According
to the Chinese Pharmacopoeia, the appropriate daily dose of
these crude drugs for an adult (60 kg) is 15 g, 12 g, and 12 g,
respectively. Besides, the frequently used administration of
this decoction is 3 times a day. -us, a single dose per ki-
logram of body weight is about 0.21 g/kg (�0.021 g/100 g). In
line with the experimental methodology of pharmacology
written by Xu et al. [22], a 6.3-fold dose of an adult is
reasonable for Sprague Dawley rats, which is about 0.13 g/
100 g body weight.

-ese crude drugs were obtained from the Affiliated
Hospital of Chengdu University of Traditional Chinese
Medicine (Chengdu, China), where they were processed to
spray-dried particles by professionals in the pharmacy de-
partment after identification. Afterward, we reconstituted
the spray powder with 40°C distilled water at 0.13 g/ml and
treated the ZYD group experimental animals by intragastric
administration (1ml/100 g body weight).

2.3. Experimental Design. Sprague Dawley rats were ran-
domly separated into the control group (C, N � 7) with
sham operation, SAP model group (MG, N � 7), and ZYD
treatment group (ZYD, N� 7). All rats were anesthetized

with pentobarbital sodium solution (2%) by intraperitoneal
injection (50mg/kg) [23]. -e subsequent operation is
similar as Zhang et al. described in their research [24]. In
brief, the biliopancreatic duct was found and carefully
cannulated, and then, a microvascular clamp was applied to
temporarily close the hepatic duct. Next, 3.5% sodium
taurocholate (1ml/kg body weight) induced the SAP model
by infusion at a speed of 6ml/h. Finally, we replaced the
pancreas and cautiously closed the abdomen. ZYD de-
coction was applied to experimental rats at 12 h and 24 h
after SAP induction by intragastric injection, respectively.
At the same time, the C and MG were administered
equivalent volumes of saline. Rats were sacrificed at 36 h
after the SAPmodel establishment. Blood samples stood for
2 h before centrifugation (1,300 g, 10min, 4°C), and serum
samples were stored at −80°C until analysis. Fresh tissues,
including pancreas, colon, and kidney, were fixed with
paraformaldehyde at room temperature and sent to Lilai
Biotechnology Company for embedding by paraffin and
section. Fresh fecal samples taken from the colon were
rapidly preserved in a liquid nitrogen container and
maintained at −80°C until analysis.

2.4. Laboratory Tests. -e concentrations of amylase, lipase,
creatine (Cr), and blood urea nitrogen (BUN) in serum were
detected by Roche Cedex C501 automatic biochemical an-
alyzer (Switzerland). Serum kidney injury molecule 1 (KIM-
1) level was measured by ELISA Kit (Cat. No. ZC-37184)
from Zhuo Cai Technology Company (Shanghai, China) in
line with the instructions from the manufacturer.

2.5. Histopathologic Examination. -e paraffin-embedded
pancreas, colon, and kidney tissues from each group, after
sliced (5 μm), dewaxed, and stained with hematoxylin and
eosin (H&E), were observed under an upright microscope
(Zeiss, Germany) by two professional pathologists in a blind
manner. -e pancreas (×200) and kidney (×200) were
scored, respectively, for edema, neutrophil infiltration, ne-
crosis, and hemorrhage on a 0 (none) to 4 (severe) scale [25];
then, the composite scores were calculated.-e colon (×200)
was scored for inflammation-associated histological changes
using an established scoring system with a scale from 0 to 4
[26]. Random ten fields of each section were counted, and
the average of the composite scores for each field was
presented as the final pathological injury score.

2.6. 16S rRNA Sequencing Analysis of Gut Microbiome

2.6.1. DNA Extraction. -e stools were sent to OE Biotech
(Shanghai, China) to perform the 16S rRNA analysis.
According to the instructions from themanufacturer, overall
genomic DNA was extracted through DNeasy PowerSoil Kit
(QIAGEN, cat. no. 12888, USA). NanoDrop (-ermo Fisher
2000, USA) and agarose gel examined the concentration of
DNA. -en, they were applied for PCR amplification with
the aid of barcoded primers and Tks Gflex DNA Polymerase
(Takara, cat. no. R060B, Japan).
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Amplifying the particular regions (V3–V4) of 16S rRNA
genes helped the bacterial diversity analysis and the wide-
spread primers: 343F (5′-TACGGRAGGCAGCAG-3′) and
798R (5′- AGGGTATCTAATCCT-3′) were used in this
study. After surveying the quality utilizing gel, purified by
AMPure XP beads (Agencourt, USA), the PCR products
were amplified for PCR again. -en, the final amplicon was
acquired by purifying again and quantified utilizing the
Qubit dsDNA assay kit (-ermo Fisher, cat. no. Q32854,
USA). In the end, these amplicons were merged at equal
amounts for subsequent sequencing.

2.6.2. Bioinformatic Analysis. Unprocessed sequencing data
were saved in the FASTQ format. Trimmomatic software
(version 0.35) was applied to preprocess the paired-end reads
for detecting and cutting off blurred bases (N) [27].-e sliding
window trimming method helped cut out the low-quality
sequences (average quality score <20). -en, Flash software
(version 1.2.11) assembled paired-end reads [28]. Parameters in
the assembly were as follows: 10 bp–200 bp of overlapping and
20% of maximum mismatch rate. QIIME software (version
1.8.0) assisted in further denoising of sequences as below:
abandoning reads with sequences that were blurred, homol-
ogous, or below 200bp; retaining reads whose 75% bases are
above Q20. -en, reads with chimera were explored and de-
leted [29].With the help of VSEARCH software (version 2.4.2),
operational taxonomic units (OTUs) were generated from the
clean reads, which were derived from primer sequence removal
and clustering (similarity cutoff: 97%) [30]. -e representative
read of each OTU was picked by the QIIME package. Analysis
for α-diversity, such as Shannon index, Simpson index, Chao 1
index, and observed species, was detailed in previous research
[31]. Linear discriminant analysis (LDA) of effect size (LEfSe)
was performed according to Zhu et al. [32]. Nonmetric
multidimensional scaling (NMDS) based on Bray-Curtis dis-
tance, analysis of similarities (ANOSIM), and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway analysis was
described in the research implemented by Lei et al. [33, 34].
Ribosomal Database Project (RDP) classifier was utilized to
annotate all typical reads against the SILVA database (version
123) with a 70% confidence threshold [35].

2.7. Serum Amino Acid Metabolome Detection. For metab-
olomic analysis, twenty-one serum samples were sent to the
West China-Washington Mitochondria and Metabolism
Research Center. A merged method for targeted analysis of
amino acids and untargeted profiling was implemented in
this study [36]. -e UltiMate 3000 rapid separation liquid
chromatography (-ermo Fisher Scientific, USA) equipped
with a BEH Amide column (100× 2.1mm, 1.7 μm, Waters,
USA) coupled with Q Exactive Plus quadrupole-Orbitrap
high-resolution mass spectrometry (-ermo Fisher Scien-
tific, USA) performed this measurement. Detailed proce-
dures from reagent preparation to liquid chromatography-
tandem mass spectrometry (LC-MS/MS) data analysis were
depicted in the research reported by Zhang et al. [37]. Special
parameters in this study were as follows. -e column
temperature was 35°C, and the elution gradient linearly

changed: 0–2min, 100% B; 2–4min, 100%–95% B; 4–9min,
95%–85% B; 9–14min, 85%–50% B; 14–17min, 50%–50% B;
17–17.1min, 50%–100% B; and 17.1–25min, 100%
B. Differentially expressed metabolites were screened under
these conditions: 1. Kruskal-Wallis test P< 0.05; 2. variable
importance for the projection (VIP) score >1. R software
(version 4.1.0) was used for statistical data analysis, such as
Kruskal-Wallis test, hierarchical clustering analysis (HCA),
principal component analysis (PCA), partial least squares-
discriminant analysis (PLS-DA), and pathway analysis
against the database KEGG [38].

2.8. Spearman’s Correlation Analysis. -e cor.test (R soft-
ware 4.1.0) performed Spearman’s correlation analysis be-
tween serum metabolite concentration and genera
abundance. -e P-value of multiple comparisons was cor-
rected by Benjamin-Hochberg false discovery rate (FDR),
and the association was considered statistically significant if
absolute r value> 0.4 and adjusted P< 0.2 [39].

2.9. Statistical Analysis. Data (mean± standard error of
mean (SEM)) were analyzed by SPSS26.0 (Chicago, IL,
USA). -e type of parametric distribution was examined
using the Shapiro-Wilk test. One-way ANOVA with post
hoc least significant difference (LSD) test was carried out for
three groups with standard distribution data. Mann-Whit-
ney U test for two groups and Kruskal-Wallis test for three
groups were used to compare continuous variables. P< 0.05
was regarded as statistically significant.

3. Results

3.1. ZYD Showed a Protective Effect against SAP-AKI. In this
experiment, we established the SAP-AKI model by a refu-
sion of 3.5% sodium taurocholate and sacrificed rats at 36 h
after modeling to observe the effect of ZYD. Serum amylase
(P< 0.05), lipase (P< 0.05), and KIM-1 (P< 0.05) levels
significantly increased after SAP induction. Conversely,
ZYD decreased the serum concentration of amylase and
lipase and significantly reduced KIM-1 (P< 0.05)
(Figure 1(a)). -ere was no distinct difference in Cr and
BUN among the three groups (data not shown).

-e MG group showed severe morphological injuries
like edema and acinar cell necrosis in the pancreas, neu-
trophil infiltration in the colon, and hemorrhage in the
kidney compared to the C group (P< 0.05, Figure 1(b)). In
contrast, a significant injury amelioration of the pancreas
(P< 0.05), colon (P< 0.05), and kidney (P< 0.05) was
presented in the ZYD group (Figure 1(b)). In brief, these
results suggest a protective effect from ZYD on SAP-AKI.

3.2. ZYD Modulated the Gut Microbiome in SAP-AKI. To
detect the effect of ZYD on gut microflora in rats with SAP-
AKI, we analyzed 21 fecal samples using the 16S rRNA gene
sequencing method. OTUs, clustered from the high-quality
amplicon sequence variants from the gut bacterial gene V3-
V4 region, were the basis for gut microbiome comparison. A
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total of 3,083 OTUs overlapped among the three groups,
with 143, 157, and 117 OTUs specifically detected in the C,
MG, and ZYD groups, respectively (Supplementary
Figure 1(a)). -e species accumulation curves tended to
flatten out as the number of samples increased, which meant
adequate sequencing in this experiment (Supplementary
Figure 1(b)). Interestingly, four α-diversity indices among
the three groups were comparable, revealing that ZYD did
not significantly affect intrasample species richness and
diversity (Supplementary Figure 1(c)).

-e β-diversity analysis (NMDS based on Bray-Curtis
distance) displays the similarity of the overall bacterial structure
[34]. Although the cluster of samples in MG could not be
separated from the C, ZYD dramatically shifted microbial
structure from SAP-AKI status (ANOSIM R� 0.14, P � 0.025)
(Figure 2(a)). -e LDA of effect size (LEfSe) identified 10, 10,

and 14 predominant bacterial taxa in the C, MG, and ZYD,
respectively (from phyla to genera, LDA> 3, and P< 0.05)
(Figure 2(b), Supplementary Figure 1(d)), which suggests a
different microbial composition among the three groups. In
addition, potentially pathogenic bacteria [40], such as Bac-
teroidetes, were over-represented in the MG. At the same time,
short-chain fatty acid (SCFA) producers—Erysipelotrichaceae,
Bifidobacterium, and Lactobacillus—were predominant in the
ZYD [41, 42].

Next, the alterations of microbial compositions were
assessed by the Mann-Whitney U test. At the phylum level,
SAP-AKI increased the abundance of Bacteroidetes, but ZYD
decreased it (P< 0.05) (Figure 2(c)). At the family level, the
Clostridiales vadin BB60 group was increased by SAP-AKI
(P< 0.05) but was decreased by ZYD (P< 0.05)
(Figure 2(d)). At the genus level, 12 genera were shifted by
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Figure 1: ZYD protects against SAP-AKI. (a) Comparison of amylase, lipase, and kidney injury molecule 1(KIM-1) in serum. ∗: P< 0.05
(amylase and lipase decided by theMann-Whitney test, KIM-1 decided by the one-way ANOVA followed LSD test). (b) Pathological picture
and scores of the pancreas, colon, and kidney. Scale bar: 100 μm (×200). ∗: P< 0.05 (one-way ANOVA followed LSD test). (c) Healthy
control group with the sham operation, MG: severe acute pancreatitis model group, and ZYD: Zengye decoction treatment group. n� 7 (per
group). Data are presented as the mean± SEM.
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SAP-AKI status (P< 0.05), and 20 genera were regulated by
ZYD (P< 0.05) (Figure 2(e)). Notably, ZYD increased
Lactobacillus (P< 0.05) and Moryella (P< 0.05) while de-
creasing uncultured_Clostridiales_bacterium (P< 0.05).
Collectively, these results pointed to a significant modula-
tion effect by ZYD treatment on the gut microbial profile.

Furthermore, KEGG pathway analysis showed that the gut
microflora functional gene of amino acidmetabolismwasmore
abundant in the ZYD group, implying that the amino acid
metabolome may be regulated by ZYD (Figure 2(f)).

3.3. ZYD Regulated the Serum Amino Acid Metabolome in
SAP-AKI. To explore the effect of ZYD on the serum amino
acid metabolome, we performed the metabolomic analysis
by LC-MS/MS. Totally, 814 metabolites were identified from
the 21 serum samples. Unsupervised method PCA presented
the variation trend in the data and detected the potential
outlier of serum samples [43]. -e PCA scatter plot
(Figure 3(a)) showed that the first principal component
(PC1) covered 14.59% of the variation and separated the
SAP-AKI status and healthy control group (except one
outlier in the MG). -e second principal component (PC2)
covered 12.68% of the variation and distinctly divided the
MG and ZYD group. Furthermore, the supervised method
PLS-DA was applied to characterize the global metabolic
difference across groups [43]. According to the group,
distinguished clusters were shaped in the PLS-DA plot,
indicating that the metabolic phenotype was dramatically
changed by SAP-AKI and ZYD (Figure 3(b)). Corre-
spondingly, permutation test showed a good interpretability
and predictability of this PLS-DA model (R2Y 0.878,
P� 0.01; Q2 0.531, P � 0.01) (Figure 3(c)) [43]. -us, the
subsequent analysis could be implemented.

-e 53 metabolites with statistical significance across
groups were selected by Kruskal-Wallis test (P< 0.05) and
variable importance for the projection score (VIP >1). HCA
is an effective algorithm to sort similar samples based on the

relative areas of characteristic peaks detected by LC-MS/MS
[44]. Combining the HCA and heatmap visualization helps
discover the variation trend of these differential metabolites
[45]. Figure 3(d) presented a remarkable abundance change
in these metabolites after SAP-AKI modeling and ZYD
treatment. Plus, twenty-one serum samples were clustered
into three categories (except one outlier), and the cluster of
ZYD was closer to the control group than MGs. It can be
inferred that ZYD can regulate the disturbed metabolic
profile of amino acids in SAP-AKI.

To explore the underlying protective mechanism of
ZYD, we next performed the KEGG pathway enrichment
analysis of these metabolites. As the bubble chart showed,
multiple pathways were enriched by these metabolites
(Figure 3(e)). Among them, the KEGG pathway of alanine,
aspartate, and glutamate metabolism (P< 0.01, Impact� 0.5)
may play a critical role during the ZYD therapy for SAP-
AKI. -ese results collectively presented a remarkable
change in amino acid metabolome after SAP-AKI induction
and an apparent regulation by ZYD treatment.

3.4.Correlationbetween theDifferentialGeneraandMetabolites.
Spearman’s correlation analysis was performed on the 30
genera and 53 metabolites with a statistical difference
(Kruskal-Wallis test, P< 0.05) across the three groups. In-
terestingly, significant interactions were identified (absolute
r> 0.4 and FDR P< 0.2) among these genera and metabo-
lites, indicating that gut bacteria likely induced the change in
serum metabolite level (Figure 4).

4. Discussion

SAP-AKI raises the risk of developing chronic kidney disease
and the mortality of patients, but the exact pathological
mechanism remains unclear and unique treatments are
urgently needed [46]. -is study successfully established the
SAP-AKI rat model and observed a disturbance in the gut
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Figure 2: ZYD modulated the gut microbiome in SAP-AKI. (a) Nonmetric multidimensional scaling (NMDS) based on Bray-Curtis
distance compared gut microbial structure among the three groups. (b) Linear discriminant analysis (LDA) analysis identified the pre-
dominant bacterial taxa among the three groups. (c) ZYD decreased Bacteroidetes (∗: P< 0.05, Mann-Whitney U test). n� 7 (per group).
Data are presented as the mean± SEM. (d) -e variation trend of Clostridiales vadin BB60 group (∗: P< 0.05, Mann-Whitney U test). n� 7
(per group). Data are presented as the mean± SEM. (e) Heatmap showed the abundance change in 30 genera across the three groups,▲: C
vs. MG, P< 0.05, Mann-Whitney test; ■: MG vs. ZYD, P< 0.05, Mann-Whitney U test. n� 7 (per group). Data are presented as the
mean± SEM. (f) KEGG pathway analysis of the gut microbiota functional gene. C: Healthy control group with the sham operation, MG:
severe acute pancreatitis model group, and ZYD: Zengye decoction treatment group.
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microbiome and serum metabolome. Our results presented
that ZYD reshaped the landscape of the gut microflora,
conferred resistance to amino acid metabolic imbalance, and
showed a protective effect against SAP-AKI.

Secretion of amylase and lipase is an important function
of pancreatic acinar cells. When pancreatic acinar cells are
damaged, a mass of amylase and lipase will directly enter the
circulatory system rather than the digestive duct [47, 48].

be
ta

-Io
no

ne
Is

ol
eu

cy
l-�

re
on

in
e

Ci
tr

ic
 ac

id
Ci

tr
ac

on
ic

 ac
id

Ac
on

iti
c a

ci
d

3-
Fu

ro
ic

 ac
id

2-
A

m
in

o-
3-

m
et

ho
xy

be
nz

oi
c a

ci
d

In
os

ito
l

Se
ric

et
in

Tr
im

et
hy

la
m

in
e N

-o
xi

de
Ile

 A
rg

L-
Le

uc
yl

-L
-A

la
ni

ne
Pi

pe
rid

in
e

Le
uc

yl
-A

rg
in

in
e

Ly
sin

e
M

et
hy

l d
ih

yd
ro

ja
sm

on
at

e
3-

H
yd

ro
xy

pr
op

an
oi

c a
ci

d
(2

E)
-2

-H
ep

te
na

l
Be

nz
en

e-
1,

2,
4-

tr
io

l
G

ly
cy

l-�
re

on
in

e
Py

ru
vi

c a
ci

d
Ly

s P
ro

 A
sn

Ca
rg

lu
m

ic
 ac

id
Ph

os
ph

os
er

in
e

A
sp

ar
tic

 ac
id

3-
(M

et
hy

lth
io

)-
1-

pr
op

en
e

M
on

oe
th

yl
he

xy
l p

ht
ha

lic
 ac

id
Ch

ol
in

e
Tr

im
et

hy
la

m
in

e
Is

ol
eu

ci
ne

H
yp

ot
au

rin
e

N
-A

ce
ty

lse
ro

to
ni

n
(L

u)
10

-H
D

oH
E

2-
D

eo
xy

ur
id

in
e

D
eo

xy
cy

tid
in

e
Va

ni
lla

ct
ic

 ac
id

2'-
D

eo
xy

cy
tid

in
e

6-
A

zu
rid

in
e

A
la

-I
le

A
sp

 L
eu

1-
(M

et
hy

lth
io

)-
pr

op
an

e
Py

ro
ph

os
ph

at
e

G
ly

ce
ric

 ac
id

G
al

ac
to

se
Ph

lo
ro

be
nz

op
he

no
ne

ga
m

m
a-

A
m

in
ob

ut
yr

ic
 ac

id
N

-A
ce

ty
la

la
ni

ne
Pa

ra
ce

ta
m

ol
 su

lfa
te

4-
G

ua
ni

di
no

bu
ty

ric
 ac

id
3-

H
yd

ro
xy

-3
-m

et
hy

lg
lu

ta
ric

 ac
id

Pr
o 

H
is

G
lu

ta
m

ic
 ac

id
Er

yt
hr

on
ol

ac
to

ne

[Ruminococcus]_torques_group
Anaerofustis
Rothia
Sellimonas
Faecalibaculum
Lactobacillus
Coriobacteriaceae_UCG-002
Moryella
Fusobacterium
Chujaibacter
Ruminococcaceae_UCG-013
Rhodanobacter
Nordella
Candidatus_Koribacter
Ruminococcus_1
Coprococcus_2
Rikenellaceae_RC9_gut_group
Dokdonella
Elusimicrobium
Prevotellaceae_Ga6A1_group
uncultured_Clostridiales_bacterium
Lachnospira
[Eubacterium]_xylanophilum_group
Sphingomonas
Gemmatimonas
Alloprevotella
Paraprevotella
Devosia
Ruminiclostridium_6
Prevotellaceae_UCG-001

-1
-0.8
-0.6
-0.4
-0.2
0
0.2
0.4
0.6
0.8
1

Figure 4: Correlation between the gut microbiota and serum metabolites. -e heatmap detailed the positive (red) and negative (blue)
correlation between the differential genera (row) and serum amino acid metabolites (column) across groups.-is significant correlation was
decided by Spearman’s correlation analysis (absolute r value> 0.4 and FDR P< 0.2).

0

1

2

3

4

–l
og

10
 (p

)

0.60.50.40.30.20.10.0
Pathway Impact

Alanine, aspartate and
glutamate metabolism

(e)

Figure 3: ZYD regulated the serum amino acid metabolome. (a) Principal component analysis (PCA) of the amino acid metabolites among
the three groups. (b) -e partial least squares-discriminant analysis (PLS-DA) compared the metabolic profile across groups. (c) Per-
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-us, amylase and lipase are the globally recommended
biomarkers for assessing acute pancreatitis severity [49]. In
this study, the significant increase in both indices and
histopathological scores suggested a successful SAP model
establishment. As expected, ZYD decreased serum amylase
and lipase to a large extent, though not reached statistical
significance, which also implied the protective effect of ZYD
to pancreatic acinar cells during SAP. -is speculation was
also supported by our histopathological results, in which the
pathological injury of acinar cells was obviously reduced by
ZYD treatment. At present, the diagnosis of AKI compli-
cating from SAP depends on the dynamic increase in serum
Cr [49]. BUN is usually used to evaluate kidney function in
clinical practice [50]. However, both do not accurately reflect
kidney injury severity, especially in early-stage SAP [51].
-erefore, the changes in Cr and BUN in this study were
slight and insignificant. One preliminary study proved the
diagnostic value of urinary KIM-1 concentration for SAP-
AKI patients, which showed the shortcomings like lasting a
short time and the need for frequent monitoring [52]. A rare
study explored the serum KIM-1 value for SAP-AKI severity
assessment [51]. But Chang et al. discovered a significant
increase in serum KIM-1 in the hemorrhagic shock rat
model with AKI [53]. Consistent with the literature, we
found that serum KIM-1 was significantly lifted in the 36 h
SAP-AKI rat model but approached normal after ZYD
treatment. So, this result suggests the diagnostic value of
serum KIM-1 for SAP-AKI in the early stage. More research
studies are needed to elucidate this point.

Emerging research indicated that gut microbiota plays
an essential role in the progression of acute pancreatitis
[45, 46], implying that modulating gut microbial structure
could be an efficient therapy for SAP. An earlier study re-
ported that chitosan oligosaccharides attenuated SAP by
modulating the β-diversity and predominant composition of
gut bacteria [54]. Partly in line with previous research [9],
ZYD also showed the capability to shift the gut bacterial
structure from SAP-AKI, as evidenced by NMDS and LDA-
LEfSe. -us, we speculate that ZYD improves SAP-AKI via
the modulation of gut microflora. -e Bacteroidetes (phy-
lum), potentially pathogenic bacteria [55], were a dominant
gut bacterial member in the SAP-AKI. Similarly, the
Clostridiales vadin BB60 group (family) and uncultur-
ed_Clostridiales_bacterium (genus), both belonging to the
opportunistically pathogenic Clostridiales (order) [56],
significantly increased in the SAP-AKI status. However, our
results demonstrated that these pathogenic bacteria were
effectively decreased by ZYD treatment. So, it can be inferred
that reducing pathogenic microbiota may be closely related
to the protective mechanism of ZYD. Alteration of gut
microbial composition contributes to the variation of bac-
terial metabolites, which may influence the progression of
SAP [57]. SCFAs, a widely studied metabolite of bacteria,
showed good performance in maintaining intestinal ho-
meostasis [58]. Research studies also indicated that sup-
plements of SCFAs helped ameliorate organ injuries in SAP
[59, 60]. In this study, SCFA-producing
strains—Erysipelotrichaceae, Bifidobacterium, Lactobacillus,
and Moryella, were more abundant in ZYD than MG

[42, 61]. It suggests that ZYD protects SAP-AKI by in-
creasing these bacteria to indirectly supplement SCFAs. In a
word, our results imply that ZYD ameliorates SAP-AKI by
modulating the gut microbiome, including reducing path-
ogenic bacteria and improving SCFA-producing strains.

Amino acids are a substantial energy source to fuel the
body [62]. In acute pancreatitis, systemic inflammation
causes a hypercatabolic state, contributing to increased
energy requirements and disrupting the metabolism of
amino acids [13, 63]. For critical patients with AKI, the
hypercatabolic condition also negatively affects protein
degradation and amino acid conversions [64]. So, regu-
lating the metabolism of amino acids may serve as a po-
tential therapy for SAP-AKI. -e previous study has
elucidated the capability of Chinese medicine to treat acute
pancreatitis by altering the metabolic profile [16]. As ex-
pected, the unique metabolic phenotypes of amino acids in
SAP-AKI and after ZYD treatment are presented in the
scatter plot of PCA and PLS-DA. Moreover, the variation of
the 53 differential metabolites across groups revealed that
the ZYD could alter the metabolic profile of amino acids
toward healthy status. In short, these results imply that
ZYD attenuates SAP-AKI by regulating the amino acid
metabolome. One unexpected finding was an outlier from
the MG group, but we considered it due to a lesser degree of
illness after SAP-AKI modeling. In addition, KEGG
analysis demonstrated that ZYD might affect multiple
pathways to therapy for SAP-AKI, but the way of alanine,
aspartate, and glutamate metabolism significantly enriched
by multiple metabolites is worth great attention. Alanine,
aspartate, and glutamate play an essential role in protein
structure and energy supplement through the tricarboxylic
cycle [62]. Our result showed that SAP bothered the
metabolism of these metabolites in this pathway, and ZYD
significantly regulated most of them and notably increased
glutamic acid (glutamate). -e supply of glutamine, which
can be hydrolyzed to glutamate, could improve gut per-
meability, oxidative stress, and reduce the complication
rate in SAP patients [65]. -us, it can be inferred that ZYD
could regulate energy supplements by influencing the
pathway of alanine, aspartate, and glutamate metabolism to
protect SAP-AKI, but more research studies are needed to
elucidate it.

-e metabolome is responsive to the physiological
condition and gut microflora variation [66, 67]. Amino acids
have emerged as critical signaling metabolites to regulate
metabolism and inflammation through the relationship with
microbiota and host receptors [68]. Correspondingly, in this
study, significant correlations were identified between gut
bacteria and amino acids, which were also modulated by
SAP-AKI and ZYD. -erefore, we speculate that the in-
teraction of gut microbiota and serum metabolome was
related to the underlying mechanism of ZYD protection.

-ere are several limitations to this study. First, these
experimental data come from a small number of SAP-AKI
animal models. Second, the current developing level of the
methodology may limit the detection of the gut microbiome
and metabolome in serum. However, this study provided a
new therapy to SAP-AKI and preliminary elucidated the
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underlying mechanism. Our findings may be helpful for
further comprehension of the SAP-AKI pathology and
appropriate clinical application for ZYD.

5. Conclusions

ZYD attenuated SAP-AKI by modulating the gut micro-
biome and serum amino acid metabolome, which may be a
promising adjuvant treatment.
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