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Abstract: Whole-exome sequencing has become a popular technique in research and clinical
settings, assisting in disease diagnosis and increasing the understanding of disease pathogenesis.
In this study, we aimed to compare common enrichment capture solutions available in the market.
Peripheral blood-purified DNA samples were enriched with SureSelectQXT V6 (Agilent) and various
Illumina solutions: TruSeq DNA Nano, TruSeq DNA Exome, Nextera DNA Exome, and Illumina
DNA Prep with Enrichment, and sequenced on a HiSeq 4000. We found that their percentage of
duplicate reads was as much as 2 times higher than previously reported values for the previous HiSeq
series. SureSelectQXT and Illumina DNA Prep with Enrichment showed the best average on-target
coverage, which improved when off-target regions were included. At high coverage levels and in
shared bases, these two solutions and TruSeq DNA Exome provided three of the best performances.
With respect to the number of small variants detected, SureSelectQXT presented the lowest number of
detected variants in target regions. When off-target regions were considered, its ability equalized to
other solutions. Our results show SureSelectQXT and Illumina DNA Prep with Enrichment to be the
best enrichment capture solutions.

Keywords: next-generation sequencing; whole-exome sequencing; target coverage; duplicate reads;
genetic variation

1. Introduction

Each of the steps involved in DNA sequencing has evolved to reduce the hands-on time,
increase automation and versatility, and improve upon previous solutions [1]. Genomics has developed
dramatically since the first next-generation sequencing (NGS) system was released in 2005 [2].
The introduction of NGS almost entirely displaced other alternatives for the analysis of genetic
variation and has become an essential approach to use genomics at unprecedented levels. It has opened
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new research horizons and profoundly accelerated and changed how genetic studies are conducted
and diseases are diagnosed [3–5].

For genetic disease studies, three main NGS approaches can be currently considered:
targeted sequencing (TS) of a panel of genes, whole-exome sequencing (WES), and whole-genome
sequencing (WGS). Although TS has obvious benefits by focusing only on the genes or regions of interest,
reducing the ethical problems linked to the identification of incidental (secondary) findings, it has the
drawback that the target is limited by current disease knowledge, which does not accommodate data
reanalysis with new disease gene discoveries [6]. This is one of the main reasons why WES has gained
popularity in the last years [4], evidencing clear benefits for gene discovery across many diseases,
including intellectual disability [7], inflammatory bowel disease [8], epilepsy [5,7], and a broad range
of Mendelian conditions [5,9–13]. All these studies highlight the improvement in the diagnostic
yield, reporting diagnostic yields between 25 and 30% in some cases, and, more relevantly, the proper
implementation of treatment of genetic disease and improvements in patient health outcomes thanks to
WES based on short-read sequencing (SRS). Long-read sequencing (LRS) has emerged as a promising
sequencing technique that allows avoiding the use of PCR or potential errors derived from technical
manipulations, among others [14,15]. The higher percentage of read error per base and the lower
throughput [6], linked to the need for high base accuracy in the clinical context, have motivated the
better positioning of SRS in clinical settings. Although WGS has decreased its costs in recent years [16],
its higher costs for routine testing, concerns due to the increase in findings of uncertain significance,
and associated computational difficulties (e.g., increased data storage necessities) have fostered the
widespread use of WES as a common approach in biomedical research. The most important reason
explaining this swift spread is that exome, which represents approximately 1–2% of the genome,
includes ~85% of all described disease-causing variants [17]. Over the last decade, sequencing chemistry
and sequencing systems have developed meteorically, launching multiple sequencing systems that
have improved different features such as cost-effectiveness, high-throughput, and production scale.
At the high-end of the throughput scale of Illumina, the platforms combine sequencing by synthesis
(SBS) chemistry with exclusion amplification (also known as ExAmp chemistry) and a patterned flow
cell technology [18,19]. Given the lack of published benchmarks for sequencing platforms combining
such peculiarities for WES, we aimed to assess a wide array of in-solution and bead-based enrichment
capture protocols.

2. Experimental Section

2.1. Samples

DNA samples were obtained from peripheral blood using a commercial column-based solution
(GE Healthcare, Chicago, IL, USA) from unrelated donors of European descent after informed
consent. The study was approved by the Research Ethics Committee of the hospital (PI-07/12) and
performed according to The Code of Ethics of the World Medical Association (Declaration of Helsinki).
Quality controls (QCs) were performed on the 4200 TapeStation system using the Genomic DNA
ScreenTape Assay (Agilent Technologies, Santa Clara, CA, USA) and Qubit® 3.0 Fluorometer by the
QubitTM dsDNA HS Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).

2.2. Enrichment Protocols

We focused on the following whole-exome enrichment solutions following the manufacturer’s
recommendations for library preparation:

1. SureSelectQXT Target Enrichment for Illumina Multiplexed Sequencing, V6 (Agilent Technologies,
Santa Clara, CA, USA), Protocol version D1, December 2016. Five independent samples were
processed with this solution. Fifty nanograms of genomic DNA (gDNA) was fragmented to
a 150 base pair (bp) insert size. Adaptors were added in a single enzymatic step and were,
subsequently, amplified (8 cycles). Next, up to 750 ng of each library were hybridized with the
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capture probes, and the capture was performed using streptavidin-coated beads. A postcapture
PCR amplification (10 cycles) was carried out to add two index tags per sample.

2. TruSeq Nano DNA Library Prep, currently known as TruSeq DNA Nano (Illumina Inc., San Diego,
CA, USA), Reference Guide protocol of June 2015. Five independent samples were processed
with this solution. A total of 100 ng of gDNA was sheared by sonication to 350 bp size fragments
on an M220 Focused-ultrasonicator (Covaris, Woburn, MA, USA), followed by end-repair,
adenylation of 3′ end, and ligation to the specific adapter, which included a unique index.
Libraries were amplified with Illumina primers (8 cycles), and 500 ng of each library was
pooled in a single tube before the capture. At this point, the TruSeq Nano DNA protocol was
continued as that of the Nextera DNA Exome (Illumina Inc.) protocol, performing two consecutive
hybridizations. Finally, a postcapture PCR amplification (10 cycles) was carried out.

3. TruSeq Exome Library Prep, currently known as TruSeq DNA Exome (Illumina Inc.),
Reference Guide protocol of November 2015. Five independent samples were processed with
this solution. gDNA (100 ng) was sheared using the M220 Focused-ultrasonicator (Covaris).
Fragments of 150 bp were end-repaired, adenylated on 3′ end, and ligated to the specific adapter,
which included one index per sample. A precapture PCR amplification (8 cycles) was carried
out previously to pooling libraries (100 ng) followed by two consecutive hybridizations. Finally,
a postcapture PCR amplification (8 cycles) was carried out.

4. TruSeq Rapid Exome, currently known as Nextera DNA Exome (Illumina Inc.), Reference Guide
protocol of December 2016. gDNA (50 ng) was fragmented by enzymatic digestion, and the
adaptors were ligated simultaneously. Libraries were then amplified (10 cycles) with Illumina
primers to add two indexes for each sample. Once labeled, libraries were pooled. Next,
two consecutive hybridizations were performed to capture hybridized probes to the targeted
regions of interest, with streptavidin magnetic beads. At the end, a postcapture PCR amplification
(10 cycles) was carried out. This capture was tested under three different conditions in five
independent samples for each one: (1) the standard 125 bp insert size; (2) 350 bp insert size;
and (3) 450 bp insert size.

5. Nextera Flex for Enrichment, currently known as Illumina DNA Prep with Enrichment
(Illumina Inc.), Reference Guide protocol of October 2018. Five independent samples were
processed with this solution. Enrichment-bead-linked transposons (eBLT) were used to tagment
50 ng of gDNA and attach adapter sequences to the fragments. After eBLT clean-up, the addition
of two indexes per sample by PCR amplification (9 cycles) was performed. Subsequently, 500 ng
of each library were pooled for a single hybridization reaction and capture. The last step consisted
of a postcapture PCR amplification (10 cycles).

The main differences between the enrichment protocols are summarized in Table 1.
Regarding target size, SureSelectQXT provided a target region of 60.5 Megabases (Mb), whereas all
other tested enrichments targeted 45.3 Mb of the human genome. Because of this, we considered
SureSelectQXT as the reference for all comparisons. It is common to extend the target exonic regions to
the flanking sequences by adding padding as part of the analysis pipeline. We considered two situations
in the comparisons (strict and padding). For the comparison with padding, we imposed an extension
of 100 bp on each side of exons, increasing the total target size for that comparison to 100.7 Mb for
SureSelectQXT and 85.4 Mb for the Illumina solutions.
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Table 1. Main features of the exome enrichment solutions evaluated.

Features SureS V6 TS DNA Na TS DNA Ex Nxt DNA Ex (125 bp) Nxt DNA Ex (350 bp) Nxt DNA Ex (450 bp) Ill DNA Enr

Library prep SB SB SB SB SB SB BB
Oligo probes RNA DNA DNA DNA DNA DNA DNA

Tiling Adjacent Gapped Gapped Gapped Gapped Gapped Gapped
Target size (Mb) 60.5 45.3 45.3 45.3 45.3 45.3 45.3

Input (ng) 50 100 100 50 50 50 50 a

Fragmentation Tagm Ultrasont Ultrasont Tagm Tagm Tagm Tagm
Insert size (bp) 150 350 150 125 350 450 150

Enrichment Prepool Postpool Postpool Postpool Postpool Postpool Postpool
Time (days) 1 3 4 3 3 3 2

Hybridization time (min) 79 40 + 40 b 118 + 898 b 40 + 40 b 40 + 40 b 40 + 40 b 114
Cost per sample *** ** * ** ** ** **

a Specifications indicate that this can range from 10 ng to 1 µg, depending on the type of the starting material (i.e., blood, saliva, FFPE, etc.). b Two capture steps. Relative costs are
indicated with categories, where the price correlates positively with the number of indicated asterisks (* means inexpensive, ** means intermediate cost, and *** means the most expensive).
SureS V6: SureSelectQXT Human All Exon V6, TS DNA Na: TruSeq DNA Nano, TS DNA Ex: TruSeq DNA Exome, Nxt DNA Ex: Nextera DNA Exome, Ill DNA Enr: Illumina DNA Prep
with Enrichment. bp: base pair. SB: solution-based, BB: bead-based, Tagm: tagmentation, Ultrasont: ultrasonication.
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2.3. Sequencing

Libraries were assessed by QubitTM dsDNA HS Assay Kit on Qubit® 3.0 Fluorometer
(Thermo Fisher Scientific) and the Agilent D1000 and High Sensitivity D1000 ScreenTape Assays
on the 4200 TapeStation system (Agilent Technologies). Pools of indexed samples at 2 nM loading
concentration were sequenced on an Illumina HiSeq 4000 Sequencing System (Illumina Inc.) with 75 bp
paired-end reads, along with 1% of PhiX Control V3 (Illumina Inc.) according to the manufacturer’s
instructions. Sequencing experiments were conducted at the Instituto Tecnológico y de Energías
Renovables (Santa Cruz de Tenerife, Spain).

2.4. Bioinformatic and Statistical Analysis

The raw sequencing data were first normalized by downsampling with seqtk v. 1.3 [20] using the
same random seed for all enrichment protocols. Genomic data were then processed on the TeideHPC
Supercomputing facility (http://teidehpc.iter.es/en) using an in-house bioinformatics pipeline based on
the Genome Analysis Toolkit (GATK) v. 3.8 Best Practices guidelines for short germline variant discovery
(single-nucleotide variants (SNVs) and small insertions and deletions (indels)) [21]. The pipeline
consisted of two stages (Figure 1): preprocessing and variant discovery.
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Figure 1. Schematic representation of the pipeline steps involved in the bioinformatic analysis.
BWA-MEM: Burrows-Wheeler Aligner with Maximal Exact Matches algorithm. BAM: Binary Alignment
Map. GATK: Genome Analysis Toolkit. gVCF: genomic Variant Calling Format. SNVs: single-nucleotide
variants. Indels: insertions and deletions. VCF: Variant Calling Format.

An initial assessment of raw FASTQ reads was performed using FastQC v. 0.11.8 [22]. In the
preprocessing stage, demultiplexed reads with trimmed adapter sequences from each sample were
aligned to the reference genome (GRCh37/hg19) using the Burrows-Wheeler Aligner with Maximal
Exact Matches algorithm (BWA-MEM) v. 0.7.15 [23]. Duplicate reads were marked, and alignments
were sorted using Picard v. 2.1.1 [24]. Base quality score recalibration was performed by GATK.
QC operations were carried out on the aligned reads prior to base score recalibration with Qualimap
v.2.2.1 [25]. In the variant discovery stage, identification of single-nucleotide variants (SNVs) and
indels was conducted using GATK HaplotypeCaller in the genomic Variant Calling Format (gVCF)

http://teidehpc.iter.es/en
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mode. This result was recalibrated and refined using GATK Variant Quality Score Recalibration
(VQSR) to distinguish variant calls that are likely to be true discoveries from those that are likely
to be false. The final variant callset was evaluated using Picard CollectVariantCallingMetrics and
GATK VariantEval by comparing relevant metrics between our results and the Single Nucleotide
Polymorphism Database (dbSNP) build 138 known truth set, producing a final analysis-ready VCF
(Figure 1). The resulting callset of each sample was combined into a single multisample VCF with
refined variants for ulterior imputation. Manifest files, including target regions, were obtained from
manufacturers of each exome capture solution.

Statistical differences among the enrichment protocol metrics were assessed in the R 4.0.2
environment considering pairwise comparisons against SureSelectQXT V6, which was considered as
the reference, based on the nonparametric Mann–Whitney U-test.

2.5. Genotype Imputation

Genotype imputation allows estimating missing genotypes based on variants supplied by VCF
and aligned to reference panels by means of different software algorithms. This approach helps to find
novel risk alleles in genome-wide association studies (GWAS) [26,27], as well as the increase in the
likelihood of identifying causal variants thanks to higher-resolution data [28]. While this approach is
widespread in GWAS, the possibilities of imputing variation from WES data is expected and will be
necessary for standardizing the datasets when combined with traditional array-based GWAS studies.
The Michigan Imputation Server [29], based on Minimac4, was used to assess the variant imputation
capability of the different exome capture protocols. For this purpose, only SNVs, such as input data,
were considered, given that indels usually result in poor call rates and genotype accuracy and lower
imputation quality [30]. Imputation was based on reference data from Europeans from the Haplotype
Reference Consortium (HRC) r1.1. 2016 panel using Eagle v. 2.4 for phasing. For simplicity, as a gross
estimate, we count variants reaching an imputation quality threshold (Rsq) > 0.3, irrespective of the
minor allele frequency.

2.6. Data Availability

The data that support the findings of this study are available on request from the corresponding
author. The genotype and sequence data are not publicly available because of privacy or
ethical restrictions.

3. Results

3.1. Alignment and Duplicates

Based on the raw data obtained, the passing filter (PF) bases and aligned PF bases showed
high variability between enrichment protocols, ranging from a mean (±SD) of 4.45 ± 0.58 to
10.61 ± 0.55 Gbases. To normalize the comparisons, we first randomly downsampled all the reads to
the lowest sequencing yield (i.e., 45.3 M reads) while keeping a 25% increment in the proportion of
reads for the SureSelect V6 enrichment protocol to adjust for its larger target size.

Basic sequencing data after downsampling data is provided in Table A1. On average,
between 98.58% ± 0.05 and 99.56% ± 0.02 of the bases passing the filters aligned against the reference
genome in the enrichment solutions, regardless of using strict or padding as the targets (Figure 2).

The average number of observed duplicate reads for all enrichment protocols deserves a special
mention at this point, since TruSeq DNA Exome showed much larger proportions in the HiSeq 4000
instrument than those declared by the manufacturer specifications (Figure 3). TruSeq DNA Exome and,
strikingly, the Illumina standard for Nextera DNA Exome-125 bp provided the highest proportion
among all tested protocols, with 25.57% ± 3.73 and 18.14% ± 0.80, respectively. The lowest percentages
of duplicates were obtained for TruSeq DNA Nano (6.36% ± 0.33) and Nextera DNA Exome-450 bp
(10.58% ± 1.13) (Figure 3).
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3.2. Guanine-Cytosine Bias

The guanine-cytosine (GC) bias was evaluated for the different enrichment protocols by default
parameters of the Picard Tool, considering both strict and padding conditions. The five quintiles
of the content in the GC percentage showed a common pattern among all solutions: the quintiles
corresponding to the low percentage of GC content (<40%) have significantly lower coverage than
the mean total coverage (Table A2). On the other hand, for the quintiles with high proportions of GC
content (>60–79%), the coverage increased up to 10.18 (±1.78) times above the mean coverage. In this
comparison, TruSeq DNA Exome had an outlier behavior for the quintiles with high proportions of GC
content (Figure 4).
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3.3. Target Coverage

Coverage metrics were calculated both for on-target and off-target regions, as well as considering
the targets strictly or with padding. The best average on-target coverage was obtained for SureSelectQXT

V6 (strict: 52.37% ± 0.55; padding: 63.40% ± 1.02), whereas TruSeq DNA Nano showed the lowest
coverage (strict: 16.30% ± 0.14; padding: 24.93% ± 0.19) (Table 2). Among these two extremes,
Illumina DNA Prep with Enrichment and TruSeq DNA Exome provided the second and third best
on-target coverages, respectively. Among the Nextera DNA Exome protocols, the protocol with a
125 bp insert size was optimal for strict and padding conditions. For the strict target, SureSelectQXT V6
from Agilent and Illumina DNA Prep with Enrichment and TruSeq DNA Exome from Illumina were
the best enrichment capture solutions. Padded analyses provided the larger proportion of on-target
coverage and, consequently, the lowest off-target. Under the padding condition, SureSelectQXT V6,
Illumina DNA Prep with Enrichment, and TruSeq DNA Exome were the only solutions in which the
proportion of bases in on-target regions was higher than those off-target (Figure 5).J. Clin. Med. 2020, 9, x FOR PEER REVIEW 10 of 26 
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Table 2. On-target coverage for the exome enrichment protocols.

On-Target Bases (%) SureS V6 TS DNA Na TS DNA Ex Nxt DNA Ex (125 bp) Nxt DNA Ex (350 bp) Nxt DNA Ex (450 bp) Ill DNA Enr

Strict target 52.37 ± 0.55 16.30 ± 0.14 ** 41.98 ± 2.58 ** 34.65 ± 0.61 ** 25.59 ± 0.79 ** 22.46 ± 0.80 ** 43.79 ± 0.99 **
Padding 63.40 ± 1.02 24.93 ± 0.19 ** 51.07 ± 3.15 ** 42.66 ± 1.05 ** 38.00 ± 1.23 ** 33.61 ± 1.11 ** 58.36 ± 0.60 **

SureS V6: SureSelectQXT Human All Exon V6, TS DNA Na: TruSeq DNA Nano, TS DNA Ex: TruSeq DNA Exome, Nxt DNA Ex: Nextera DNA Exome, Ill DNA Enr: Illumina DNA Prep
with Enrichment. bp: base pair. Numbers refer to average ± standard deviation. Statistical significance of the differences between enrichment protocols compared to SureSelectQXT V6
indicated as: ns p > 0.05; * p ≤ 0.05; and ** p ≤ 0.01.
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The fraction of the target that was covered at a given depth varied widely among the protocols,
particularly at a large depth of coverage. There were no substantial differences if the target was considered
strictly or with padding at 1× depth of coverage. The TruSeq DNA Exome protocol constituted a
clear exception, as it showed a substantial decrease in the percentage of targeted bases (Figure 6).
Considering the strict target and at 10×depth of coverage, the order from best to worst was SureSelectQXT

V6, Illumina DNA Prep with Enrichment, Nextera DNA Exome-125 bp, Nextera DNA Exome-350
bp, Nextera DNA Exome-450 bp, TruSeq DNA Exome, and TruSeq DNA Nano. When padding was
considered in the analysis, a similar scenario was observed, except that Nextera DNA Exome-125 bp
ranked lower. At 50× depth of coverage, the protocols with the largest insert sizes showed the worst
depth of coverage under any situation, closely followed by TruSeq DNA Nano.
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The tested technologies have differences, including the target territory. We were interested in
assessing the different vendors and protocols when the same (shared) regions are considered. For this
end, all bases shared between the technologies were analyzed, resulting in 39.6 Mb for the strict and
80.7 Mb for the padding targets. Regardless of padding, a clear pattern was observed. For a depth of
coverage below 2X, all protocols brought an expected excellent performance, with the exception of TruSeq
DNA Exome and TruSeq DNA Nano, which had the worst performances. At depths larger than 10×,
SureSelectQXT V6, and Illumina DNA Prep with Enrichment provided the best results, being more obvious
when the analysis focused strictly on target (Figure 7). Nextera DNA Exome-125 bp presented a good
performance up to 20× depth of coverage in the strict target analysis and up to 10×when padding was
used (Figure 7). Strikingly, TruSeq DNA Exome provided one of the most gradual decreases in the fraction
of targeted bases as the covered fraction values increased. However, for coverages above 40×, it showed
one of the best results. When the padding was considered, its performance decreased perceptibly.

3.4. Ability to Detect SNVs and Small Indels

An average of 70,020 ± 9239 SNVs and small indel variants was called using the strict target
region, and 96,237 ± 17,852 when padding was included in the analysis, considering all samples for all
protocols as a whole (Table 3). Regarding the strict target, we observed the largest number of variants
with the Illumina DNA Prep with Enrichment protocol, although not far from those observed for
other Illumina protocols. The results were similar when padding was incorporated into the analyses.
However, in that case, the Nextera DNA Exome-450 bp was the protocol providing the largest number
of variants while TruSeq DNA Exome had an outlier behavior on the lower end.

When comparing called variants from the 39.6 Mb of the shared target region (80.7 Mb using
padding) for all samples and protocols, an average of 29,719± 1678 variants (69,832± 8162 variants with
padding) was observed. Irrespective of padding, the same outlier behavior of the TruSeq DNA Exome
was observed, showing the lowest number of called variants. Given that we did not use any internal
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control sample to assess the reproducibility of calls across enrichment solutions, we ten compared each
solution with itself by calculating the ratio between the number of variants detected using padding and
the number of variants using the strict condition. The rationale for this ratio is based on the notion that
a significant proportion of reads obtained by exome sequencing map outside targets and, therefore, are
usually ignored despite them allowing the detection of variants that provide information of interest
for the disease [31], particularly those located in the vicinity of exons. Ultimately, this ratio informs
about the gain of captured variants by off-target reads in the vicinity of exons for each enrichment
protocol. The ratio padding/strict was highest for SureSelectQXT V6, Nextera DNA Exome-350 bp. and
Nextera DNA Exome-450 bp, whereas the lowest ratio was obtained for TruSeq DNA Exome (Table 4).
Regardless of padding, SureSelectQXT V6, closely followed by TruSeq DNA Exome and Illumina DNA
Prep with Enrichment, offered the largest fraction of SNVs and indel variants covered under a wide
range of coverages when only shared bases among protocols were considered (Figure 8).
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3.5. Imputation Performance

When the strict target region was considered, the Illumina DNA Prep with Enrichment protocol
showed the best performance for the imputation of uncovered variants (2.7 M), whereas the TruSeq
DNA Nano protocol behaved the worst solution for imputation (2.4 M) (Table 5). Under the padding
condition, the Nextera DNA Exome-350 bp protocol had the best performance (3.0 M), while the TruSeq
DNA Exome protocol provided the lowest number of imputed variants (2.4 M).
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Table 3. Summary of called variants.

Total Variants SureS V6 TS DNA Na TS DNA Ex Nxt DNA Ex (125 bp) Nxt DNA Ex (350 bp) Nxt DNA Ex (450 bp) Ill DNA Enr

Strict target 54,418 ± 681 68,401 ± 1118 ** 65,247 ± 4410 ** 66,592 ± 1603 ** 75,309 ± 917 ** 76,809 ± 3206 ** 83,362 ± 4984 **
Padding 111,588 ±1326 98,100 ± 602 ** 68,750 ± 5408 ** 72,422 ± 2016 ** 110,479 ± 1172 ns 112,823 ± 2568 ns 99,494 ± 10,120 **

SureS V6: SureSelectQXT Human All Exon V6, TS DNA Na: TruSeq DNA Nano, TS DNA Ex: TruSeq DNA Exome, Nxt DNA Ex: Nextera DNA Exome, Ill DNA Enr: Illumina DNA Prep
with Enrichment. bp: base pair. Numbers refer to average ± standard deviation. Statistical significance of the differences between enrichment protocols compared to SureSelectQXT V6
indicated as: ns p > 0.05; * p ≤ 0.05; and ** p ≤ 0.01.

Table 4. Summary of detected variants on shared target regions across enrichment solutions.

Total Variants SureS V6 TS DNA Na TS DNA Ex Nxt DNA Ex (125 bp) Nxt DNA Ex (350 bp) Nxt DNA Ex (450 bp) Ill DNA Enr

Strict (39.6 Mb) 31,415 ± 329 28,258 ± 1279 ** 27,680 ± 1700 ** 30,297 ± 267 ** 29,844 ± 266 ** 30,569 ± 957 ns 30,863 ± 413 ns

Padding (80.7 Mb) 78,308 ± 618 67,359 ± 438 ** 57,376 ± 4419 ** 66,707 ± 1406 ** 75,289 ± 920 ** 76,578 ± 2378 ns 74,750 ± 3507 *
Ratio padding/strict 2.49 2.38 2.07 2.20 2.52 2.51 2.42

SureS V6: SureSelectQXT Human All Exon V6, TS DNA Na: TruSeq DNA Nano, TS DNA Ex: TruSeq DNA Exome, Nxt DNA Ex: Nextera DNA Exome, Ill DNA Enr: Illumina DNA Prep
with Enrichment. bp: base pair. Numbers refer to average ± standard deviation. Statistical significance of the differences between enrichment protocols compared to SureSelectQXT V6
indicated as: ns p > 0.05; * p ≤ 0.05; and ** p ≤ 0.01.

Table 5. Summary of imputed variants.

Imputed Variants SureS V6 TS DNA Na TS DNA Ex Nxt DNA Ex (125 bp) Nxt DNA Ex (350 bp) Nxt DNA Ex (450 bp) Ill DNA Enr

Strict target 2,486,956 2,391,563 2,392,600 2,421,952 2,669,902 2,621,444 2,748,015
Padding 2,887,442 2,690,742 2,398,783 2,450,524 2,960,721 2,891,555 2,771,099

SureS V6: SureSelectQXT Human All Exon V6, TS DNA Na: TruSeq DNA Nano, TS DNA Ex: TruSeq DNA Exome, Nxt DNA Ex: Nextera DNA Exome, Ill DNA Enr: Illumina DNA Prep
with Enrichment. bp: base pair. Numbers represent averages.
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4. Discussion

This study constitutes a broad assessment of marketed whole-exome capture solutions when
paired with short-read sequencing obtained with ExAmp chemistry and patterned flow cells. For that,
we focused on Illumina and Agilent technologies, given their widespread use in clinical settings and
accessibility and evaluating seven different protocols. Our observations support that SureSelectQXT V6
and Illumina DNA Prep with Enrichment kits are among the optimal solutions offering the most robust
results as well as the best relationship between performance and turnaround time. A summary of all
assessments and a qualitative comparison of all solutions are summarized in Table 6 for simplicity and
guidance. We warn that these assessments lack an evaluation of true positives, false positives, or false
negatives in the variant calls as our study did not include a control sample that was systematically
analyzed across the different enrichment protocols.

SureSelectQXT V6 was the only method assessed based on adjacent RNA probes for the capture,
albeit baits with overlapping regions are more desirable than on adjacent or gapped baits [32].
Agilent improves hybridization and enrichment efficiency by relying on RNA baits with more extended
probe sizes for better tolerance of hybridization mismatches [33] due to the greater binding strength
between RNA–DNA heteroduplexes. On the other hand, the recent commercialization of the Illumina
DNA Prep with Enrichment kit uses magnetic bead-based library preparation in the replacement
of solution-based library preparation, allowing DNA tagmentation and adapter-ligation to occur in
a single step. This, and the possibility to accommodate a wide range of input material, make this
kit very attractive, increasing its versatility and efficiency [34]. The use of a constant amount of
eBLT, regardless of the experiment, provides improved control in the normalization of the obtained
material and consistency in tight fragment size distributions. This is because only the genomic DNA
that attaches to the bead-based transposome complex is tagmented and adapter-ligated. Therefore,
only this fraction is subjected to all ulterior steps in the protocol. These features could underlie its
improved performance over all other Illumina protocols that were assessed, making it comparable to
the SureSelectQXT V6 solution.

In the study, the TruSeq DNA Nano and TruSeq DNA Exome solutions provided the worst results
overall. Curiously, they both have two appealing features that are not provided by any other tested
solution. The starting genomic DNA is 100 ng, which could be considered as a good starting point
due to a higher initial amount, since it is usually related to improved library complexity [35]. On the
other hand, mechanical fragmentation is the method of choice for DNA fragmentation in TruSeq
DNA Nano and TruSeq DNA Exome solutions, whose performances were poorer when compared
to the other exome enrichment alternatives assessed. However, the need for such quantities of input
material may also be a limitation in some settings (e.g., with formalin-fixed paraffin-embedded tissue
samples) because not all samples could yield such an input material [36]. The need for additional
complementary equipment and the ultrasonication-based fragmentation step might also be considered
as a drawback if high-throughput library preparation is to be pursued. Another issue was related to
the outlier behavior of TruSeq DNA Exome regarding the GC bias. The GC bias varies among the
different library protocols and sequencing platforms [37], constituting a typical issue derived from
NGS. The main reasons to explain the uneven GC coverage could be either the inherent bias of the PCR
amplification [38] or reduced efficiency of the capture probe hybridization [39]. However, since all
Illumina protocols evaluated present the same probeset, it is unlikely that the GC bias is caused by the
inefficient capture of the target region. Despite that, it is important to remark that TruSeq DNA Exome
involves a longer hybridization time.
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Table 6. Qualitative assessment of whole-exome enrichment solutions. Performance is schematically represented by a color scale, where green indicates excellent,
pale green indicates very good, yellow indicates fair, and red indicates poor performance. bp: base pair.

SureSelectQXT V6 TruSeq DNA Nano TruSeq DNA
Exome

Nextera DNA
Exome (125 bp)

Nextera DNA
Exome (350 bp)

Nextera DNA
Exome (450 bp)

Illumina DNA Prep
with Enrichment

Library prep
Oligo probes

Tiling
Target size (Mb)

Input (ng)
Fragmentation

Enrichment
Time (days)

Hybridization time (min)
Cost per sample
Aligned PF bases

Duplicates
% on-target bases

% targeted bases 1×
% targeted bases 10×
% targeted bases 50×

% targeted
shared bases

1×
10×
30×
40×
50×

100×
Total variants (strict target)

Total variants (padding)
Total variants (in shared bases)
Imputed variants (strict target)

Imputed variants (padding)
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In short-read sequencing data obtained with ExAmp chemistry and patterned flow cells,
duplicate reads are a major issue and several types of them can be observed. On one side,
biological duplication occurs randomly when two identical fragments were produced by DNA
fragmentation, whereas the more problematic duplicates are generated in the PCR step [40] during
library preparation. Optical and ExAmp duplicates are also generated during the sequencing
process [41,42]. Optical duplicates are defined if the distance between the flow cell coordinates leading
to two reads is within a 2500-pixel distance set by Picard’s OPTICAL_DUPLICATE_PIXEL_DISTANCE
parameter. In an attempt to reduce these, newer Illumina platforms use patterned flow cells to collect
the cluster data into nanowells that are sufficiently separated. With their introduction, the ExAmp
duplicates emerged. For now, this issue has only been reported for HiSeq 3000/4000, HiSeq X Five
and Ten Systems, and the NovaSeq series, as a consequence of seeding neighboring nanowells with
identical fragments while amplification is running [43]. As a result, the rise of duplicate reads is
not trivial in these platforms. As we have shown in this study, for TruSeq DNA Exome solutions,
the increase is almost 2 times the number of average duplicates compared to kit specifications for
assessed vendors (4–15%) [32,44]. As a matter of fact, three of the five standard protocols tested in
the current study provided the highest proportion of duplicate reads, evidencing that most current
whole-exome capture protocols are ill-adapted to the most novel Illumina platforms. Regarding ExAmp
duplicates, they occur because the same library can seed one nanowell and is free to go back into
the solution and reseed other close nanowells. A way to reduce this second seed might be through
balancing between the number of polyclonal clusters and the percentage of duplicates. The higher
the loading concentration, the lower the duplicate reads percentage at the cost of a higher proportion
of polyclonal clusters [45]. Although the number of reads passing filters is much higher for the
newest platforms than that obtained for the previous models, it is up to the users if this performance
compensates the penalty for the very high percentage of duplicates observed.

Despite that SureSelectQXT V6 was the tested solution with the highest target territory and
provided the best results for the target bases (1–50×) in the strict mode, it showed the lowest number
of detected variants. However, when padding was used in the analysis, SureSelectQXT V6 duplicated
its variant detection capability to a level comparable to the rest of the whole-exome capture solutions
tested, irrespective of focusing only on shared regions across them. This fact highlights the nontrivial
number of variants that the whole-exome captures allow to keep out of target territories [32,46].
Off-target reads, which could represent 40–60% of the reads in a WES study [47–49], can also be a
source of informative genetic variation, as was evidenced by the gains (ratios) between those detected
using padding vs. the strict condition. This was less evident for the TruSeq DNA Exome solution and
was interpreted as an indication that many of its off-target sequencing reads were not informative of
the variation in flanking exons at a near distance but likely more sparsely distributed in the genome.
In agreement with this, although based on an expanded target region, this solution was previously
suggested to have a major weakness by the high proportion of off-target reads [50] and that many of
these reads map >200 bp away from the enrichment targets [48]. Although exome regions include
~85% of all described disease-causing variants [17], the rest of the genome contains functional elements
such as UTRs in 3′ and 5′, silencers, or enhancers, which are vital in the regulatory process [51–54]
and in the expression of complex disorders [55,56]. In this way, the National Human Genome
Research Institute (NHGRI) has been developing the Encyclopedia of DNA Elements (also known
as ENCODE project) [57] since 2007 to provide a catalog of functional elements in the human and
mouse genomes. Multiple studies have pinpointed the utility of including off-target reads in NGS
for routine analysis because they allow discovering genotype variants across the genome at low
coverage (1–2X) [58,59] and genotyping common variants at a minimal depth (0.2–0.5×), albeit with
high error rates [60]. Wang and colleagues [61] pointed out the importance of including low-priority
regions (i.e., off-target reads or bases in WES analysis) in the context of disease association studies [62].
According to their study, these by-products could also be used to estimate genetic ancestry even with
extremely low coverage (0.001× for worldwide continental ancestry and 0.10× for European ancestry).
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Therefore, off-target reads, which are commonly removed from the analysis of WES, could be an
attractive source of information that may be worth considering. In this respect, genotype imputation
analysis and subsequent association studies are usually carried out in array-based approaches. However,
in the last decade, a flourishing of studies relied on NGS technologies considering off-target regions
in the analyses [63,64]. Our results support this strategy as there was a clear increase in the number
of imputed variants, for example in SureSelectQXT V6, when off-target bases were considered in
the inference.

5. Conclusions

With the rapid adoption of sequencing technologies in the last decade in clinical settings and
in multidisciplinary research, diverse whole-exome capture solutions have emerged in the market.
This study was intended to serve as evidence-based guidance based on the performance comparison
among some of the most extended whole-exome capture solutions. Despite that the use of reference
samples would have been desirable to provide complementary information (i.e., the precision of the
variant callset), we opted to analyze samples drawn from unrelated donors from the same population.
We conclude that, among the tested alternatives, SureSelectQXT V6 and Illumina DNA Prep with
Enrichment demonstrated the most robust results.
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Appendix A

Table A1. Summary of sequencing data after downsampling data.

Sequencing Data. SureS V6 TS DNA Na TS DNA Ex Nxt DNA Ex (125 bp) Nxt DNA Ex (350 bp) Nxt DNA Ex (450 bp) Ill DNA Enr

Total GBases a 4.27 ± 0.0003 3.42 ± 0.0001 3.42 ± 0.001 3.39 ± 0.004 3.42 ± 0.0002 3.42 ± 0.001 3.41 ± 0.001

GBases in Q30 a 4.01 ± 0.01 3.13 ± 0.01 3.32 ± 0.003 3.21 ± 0.01 3.13 ± 0.01 3.10 ± 0.02 3.23 ± 0.01

PF Mreads a 56.59 45.27 45.27 45.27 45.27 45.27 45.27

PF Mreads aligned a 56.50 ± 0.01 45.02 ± 0.02 45.10 ± 0.07 45.17 ± 0.02 45.14 ± 0.01 45.11 ± 0.02 45.23 ± 0.005

Coverage a

Strict target 36.82 ± 27.49 12.10 ± 13.15 31.37 ± 36.83 25.82 ± 20.71 19.13 ± 16.34 16.74 ± 14.06 32.85 ± 23.49

Coverage a

Padding 26.76 ± 25.84 9.83 ± 11.14 20.26 ± 30.61 16.87 ± 18.58 15.08 ± 14.14 13.30 ± 12.22 23.24 ± 21.58

Mapping Q b

Strict target
56.89 ± 0.03 56.77 ± 0.04 56.51 ± 0.08 56.61 ± 0.03 56.71 ± 0.04 56.76 ± 0.01 56.68 ± 0.04

Mapping Q b

Padding
56.83 ± 0.04 57.12 ± 0.04 56.73 ± 0.11 56.97 ± 0.04 57.08 ± 0.04 57.12 ± 0.01 57.03 ± 0.04

GC percentage b

Strict target
54.13 ± 0.17 49.48 ± 0.09 58.67 ± 1.67 49.63 ± 0.24 50.27 ± 0.33 49.83 ± 1.44 52.49 ± 0.73

GC percentage b

Padding
53.80 ± 0.25 47.33 ± 0.12 58.57 ± 1.76 48.93 ± 0.27 48.89 ± 0.39 48.34 ± 1.60 51.60 ± 0.65

SureS V6: SureSelectQXT Human All Exon V6, TS DNA Na: TruSeq DNA Nano, TS DNA Ex: TruSeq DNA Exome, Nxt DNA Ex: Nextera DNA Exome, Ill DNA Enr: Illumina DNA
Prep with Enrichment. bp: base pair. GBases: Gigabases. Q: Phred-like quality scores. PF: passing filter. Mreads: Megareads. GC: guanine-cytosine. Mapping Q: Mapping Quality.
Numbers refer to average ± standard deviation. a Metrics from Picard Tools, b Metrics from Qualimap.
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Table A2. GC bias distribution by quintiles (Q) among the exome enrichment protocols.

Quintiles SureS V6 TS DNA Na TS DNA Ex Nxt DNA Ex (125 bp) Nxt DNA Ex (350 bp) Nxt DNA Ex (450 bp) Ill DNA Enr

Q1 (0–19%) 0.04 ± 0.01 0.73 ± 0.02 ** 0.02 ± 0.004 ns 0.12 ± 0.01 ** 0.29 ± 0.02 ** 0.35 ± 0.06 ** 0.08 ± 0.02 *
Q2 (20–39%) 0.26 ± 0.02 0.81 ± 0.01 ** 0.06 ± 0.02 ** 0.47 ± 0.01 ** 0.58 ± 0.02 ** 0.66 ± 0.08 ** 0.31 ± 0.02 **
Q3 (40–59%) 1.22 ± 0.01 1.08 ± 0.01 ** 1.04 ± 0.17 ns 1.32 ± 0.01 ** 1.20 ± 0.01 * 1.17 ± 0.01 ** 1.29 ± 0.03 **
Q4 (60–89%) 6.36 ± 0.20 2.19 ± 0.04 ** 10.18 ± 1.78 ** 3.34 ± 0.11 ** 3.35 ± 0.12 ** 2.92 ± 0.73 ** 5.28 ± 0.44 **
Q5 (90–100%) 2.91 ± 0.41 0.43 ± 0.03 ** 1.22 ± 0.25 ** 0.29 ± 0.03 ** 0.36 ± 0.03 ** 0.34 ± 0.10 ** 0.40 ± 0.03 **

SureS V6: SureSelectQXT Human All Exon V6, TS DNA Na: TruSeq DNA Nano, TS DNA Ex: TruSeq DNA Exome, Nxt DNA Ex: Nextera DNA Exome, Ill DNA Enr: Illumina DNA Prep
with Enrichment. bp: base pair. Q: quintile. Numbers refer to the average ± standard deviation. Statistical significance of the differences between enrichment protocols compared to
SureSelectQXT V6 indicated as: ns, p > 0.05; *, p ≤ 0.05; and **, p ≤ 0.01.
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