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Abstract: Quorum sensing (QS) can regulate the pathogenicity of bacteria and the production of some
virulence factors. It is a promising target for screening to find anti-virulence agents in the coming
post-antibiotics era. Cyclo (L-Trp-L-Ser), one variety of cyclic dipeptides (CDPs), isolated from a
marine bacterium Rheinheimera aquimaris, exhibited anti-QS activity against Chromobacterium violaceum
CV026 and Pseudomonas aeruginosa PAO1. Unlike the CDPs composed of phenylalanine or tyrosine,
the anti-QS activity has been widely studied; however, cyclo (L-Trp-L-Ser) and derivatives, containing
one tryptophan unit and one non-aromatic amino acid, have not been systematically explored. Herein,
the cyclo (L-Trp-L-Ser) and seven derivatives were synthesized and evaluated. All tryptophane-
contained CDPs were able to decrease the production of violacein in C. violaceum CV026 and predicted
as binding within the same pocket of receptor protein CviR, but in lower binding energy compared
with the natural ligand C6HSL. As for P. aeruginosa PAO1, owning more complicated QS systems,
these CDPs also exhibited inhibitory effects on pyocyanin production, swimming motility, biofilm
formation, and adhesion. These investigations suggested a promising way to keep the tryptophan
untouched and make modifications on the non-aromatic unit to increase the anti-QS activity and
decrease the cytotoxicity, thus developing a novel CDP-based anti-virulence agent.

Keywords: anti-quorum sensing; cyclic dipeptides; tryptophane; Pseudomonas aeruginosa; biofilm;
bacterial adhesion

1. Introduction

Quorum sensing (QS) is a well-known cell-to-cell communication in microorgan-
isms [1], through which bacteria regulate cell density-dependent behavior, such as secreting
virulence factors, motility, and biofilm formation, aids bacteria in infections and drug resis-
tance [2]. In recent years, to combat the growing seriousness of antibiotic resistance, more
focus has been turned to disarming bacterial pathogenicity by decreasing their virulence
factors [3,4] and biofilm formation [5,6]. Inhibition of the QS system, which can disrupt
bacterial communication, thus affecting the secretion of virulence factors and biofilm for-
mation, rather than kill the bacteria, will pose less survival pressure on bacteria and inhibit
their evolution into drug-resistant strains and is attracting much attention [7,8]. In the QS
system, small molecules, named autoinducers (AIs), act as signals, through which bacteria
can detect the surrounding population [9]. When the concentration of AI reaches a certain
threshold, it binds with the receptor and then activates the expression of the corresponding
genes. QS inhibitors (QSIs) can block the communication through three general strategies:
(i) interfering signal molecules synthase to decrease the concentration of autoinducers;
(ii) inducing the degradation of autoinducers; (iii) inhibiting the binding between AIs and
receptor proteins [10].
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Our previous studies focus on seeking anti-QS agents from marine microorganisms
to fight against gram-negative bacteria Pseudomonas aeruginosa. P. aeruginosa is a well-
known opportunistic pathogen in hospitals and poses a huge threat to immunodeficiency
patients [11–13]. Numerous studies have shown that the expression of virulence factors for
pathogenicity in P. aeruginosa is regulated by its QS system [14,15]. In the past few years,
several known compounds, including some cyclic dipeptides, proved to exhibit anti-QS
activity, such as chrysin, tyrosol, cyclo (L-Tyr-L-Pro) from Penicillium chrysogenum [16–18],
cyclo (L-Trp-L-Ser) from Rheinheimera aquimaris [19], and cyclo (L-Phe-L-Pro) from Sphin-
gomonas sp. WG [20]. The stable and structurally diverse framework of cyclic dipeptides
with anti-QS activity attracted our interests. To date, the mechanism of how CDPs express
inhibition over QS remains undefined [21,22], but it was revealed that most reported anti-QS
and biofilm inhibiting CDPs contained phenylalanine, tyrosine, and proline [23]. Grenier
and co-workers synthesized a variety of cyclic dipeptides containing the three amino acids
above using the solid-phase synthesis strategy. They evaluated their antibiofilm and anti-
adherence ability against oral pathogenic bacteria S. mutans and fungus C. albicans [24] and
found that only the CDPs, both arms of which were aromatic residues, displayed potent
activities against both S. mutans and C. albicans. By contrast, tryptophane-containing CDPs’
antimicrobial or anti-QS ability was less studied. We isolated cyclo (L-Trp-L-Ser) from R.
aquimaris, which was identified as an anti-QS agent using a bioassay-guided method [19]:
It not only decreased the QS-mediated virulence factors production of phenotype Chro-
mobacterium violaceum CV026 and P. aeruginosa PAO1 in a dose-dependent manner but also
exhibited a good activity of antibiofilm formation against P. aeruginosa PAO1. Compared
with cyclo (L-Tyr-L-Pro) [18] and cyclo (L-Phe-L-Pro) [20], this CDP showed stronger in-
hibition of biofilm formation of P. aeruginosa PAO1. Furthermore, it would be easier to
make structural modifications to expand the anti-QS relative chemical space. Therefore,
to evaluate the effect of stereochemistry and side-chain differences on the anti-QS activity,
especially for their anti-biofilm and anti-adhesion ability against P. aeruginosa PAO1, we
employed a three-step synthetic sequence to get prepared cyclo (L-Trp-L-Ser) and seven
derivatives (Figure 1).
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Figure 1. Cyclic dipeptides for the test of anti-QS activity in this work.

2. Results
2.1. Antimicrobial Activity

The MICs of the synthesized CDPs against C. violaceum CV026 and P. aeruginosa PAO1
were determined in MHB and M63 medium. However, except c(WE), MICs of all tested
CDPs against the two strains were higher than 15 mM, above which they could not be tested
because of the poor solubility. The inhibitory efficiency of CDPs against C. violaceum CV026
and P. aeruginosa PAO1 in M63 medium was illustrated in Table 1 and Figure 2. The MIC
of c(WE) against P. aeruginosa PAO1 was 6.3 mM in M63 medium, while in MHB, it didn’t
inhibit the bacterial growth significantly. According to our previous study about the anti-QS
evaluation of isolated c(WS) [19], we chose 1 mM, at a concentration at which the bacterial



Mar. Drugs 2022, 20, 85 3 of 15

growths were barely affected (Figures 3 and 4a), as the maximum test concentration in
this work. To avoid the precipitation of these CDPs during the experiment, dimethyl
sulfoxide (DMSO) was used as a co-solvent at a final concentration of 1% (v/v), which we
had previously confirmed does not impact the bacterial growth.

Table 1. The inhibitory efficiency of eight synthetic CDPs (15 mM) against C. violaceum CV026 and P.
aeruginosa PAO1 in M63 medium. Different letters indicate statistical significance between groups by
Tukey’s HSD test at p < 0.05.

Compound
Inhibitory Ratio (%)

CV026 PAO1

c(WS) 70% a 80% a

c(ws) 23% b 79% a

c(Ws) 50% a 77% a

c(wS) 67% a 79% a

c(WA) 39% b 80% a

c(WT) 11% b 83% a

c(WK) 27% b 76% a

c(WE) 59% a 100% a

Note: This table uses the letters a and b to show statistically significant differences between inhibitory ratios in
mean comparisons. If there are no significant differences between two inhibitory ratios, they get the same letter
(a:a or b:b). If there are significant differences between two inhibitory ratios, they get the different letters (a:b).
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2.2. Anti-QS Ability against C. violaceum CV026

C. violaceum CV026 is a typical model bacterium for anti-QS agent screening, which
lacks autoinducer synthase gene cviI. Exogenous autoinducer C6HSL can induce the produc-
tion of violacein. The anti-QS ability of CDPs could be confirmed by measuring violacein
yield. As shown in Figure 3, at a final concentration of 1 mM, all CDPs inhibited violacein
production by 40–60%, while the bacterial growth was not affected.

Molecular docking was performed to investigate the probable interaction between
CDPs and QS-related receptor protein CviR in C. violaceum. The autoinducer C6HSL was
docked in advance as a control and to establish a credible docking method. The results
suggested that all CDPs can bind at the same pocket competitively with the C6HSL in
CviR with lower binding energy. The detailed data about binding energy and hydrogen
bonding interactions were illustrated in Table 2 (the images were shown in Figure S1). Four
hydrogen bonds were found between the natural ligand C6HSL and CviR, which are highly
consistent with the reported X-ray structure [25]. The c(WS) and its enantiomer c(ws) were
found to form a hydrogen bond with Tyr88 and Ser 155 of CviR, while its isomers c(Ws)
formed a hydrogen bond with Tyr80 instead of Ser155.
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Figure 3. Effects of eight synthetic CDPs at the concentration of 1 mM on violacein production of
C. violaceum CV026. Differences in mean absorbance were compared to the untreated control and
considered significant when *** p < 0.001, according to the ANOVA.

Upon replacement of the hydroxyl group with H, the binding energy of c(WA) was
raised slightly, while three hydrogen bonds were found. The more steric hindered c(WT)
formed the same hydrogen bonds, as C6HSL with CviR, and the binding energy was lower.
The charged CDPs, c(WK) and c(WE), bound with the protein with lower energy and also
formed hydrogen bonds with Tyr88 and Ser155. Interestingly, no hydrogen bonds were
found between c(wS) or the receptor protein.

Table 2. Detail docking information of CviR with autoinducer C6HSL and tryptophan-containing CDPs.

Molecules Binding Energy (kcal/mol) Hydrogen Bonding Interactions

C6HSL −6.04 Asp97, Ser155, Trp84, Tyr80
c(WS) −7.83 Tyr88, Ser155
c(ws) −7.88 Tyr88, Ser155
c(Ws) −7.78 Tyr88, Tyr80
c(wS) −7.52 No hydrogen bonds formed
c(WA) −7.56 Tyr88, Trp84, Ser155
c(WT) −7.90 Trp84, Ser155, Asp97, Tyr80
c(WK) −8.14 Tyr88, Ser155
c(WE) −8.09 Tyr88, Ser155

2.3. Inhibition on Production of Virulence Factors of P. aeruginosa PAO1

Pyocyanin is one of the QS-regulated virulence factors that P. aeruginosa secrete. All
tested CDPs decreased the yield of pyocyanin dose-dependently at a concentration ranging
from 0.1 to 1 mM (Figure S2). As shown in Figure 4a,b, at a concentration of 1 mM, which
is the maximum treated concentration, CDPs suppressed the production of pyocyanin
obviously, but did not affect the bacterial growth, especially for c(WE), c(WT), c(wS), c(Ws),
and c(ws), which remarkably reduced the yield of pyocyanin by 75%, 70%, 89%, 81%, and
86%, respectively. Elastase activity, another important virulence factor regulated by the
QS system of P. aeruginosa, was assessed using elastin-Gongo red. The c(WS) can decrease
the elastase activity by 39% at a concentration of 1 mM, which was similar to the result of
the isolated activity [19]. Furthermore, c(WE), c(WT), and c(wS) seemed more efficient in
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suppressing the elastase activity (Figure 4b). The inhibition rate of elastase activity was
proportional to CDP concentration (Figure S3).

Swimming motility, which is also regulated by the QS system in P. aeruginosa, plays an
important role in expressing full virulence and colonization. As shown in Figure 4c, the
swimming diameter of P. aeruginosa PAO1 was shrunk by 36–57% after being treated with
CDPs at a concentration of 1 mM.
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Figure 4. Effects of eight synthetic CDPs at the concentration of 1 mM on the production of virulence
factors of P. aeruginosa PAO1. (a) The bacterial growth curve; (b) the effect of CDPs on pyocyanin
production; (c) the effect of CDPs on elastase activity of PAO1; (d) the effect of CDPs on the swimming
of PAO1. DMSO (1%, v/v) was served as the control. Each experiment was performed at least in
triplicate. Differences in mean absorbance were compared to the untreated control and considered
significant when ** p < 0.01, *** p < 0.001, according to ANOVA.

2.4. Inhibition on Biofilm and Adhesion of P. aeruginosa PAO1

The biofilm formation of P. aeruginosa, which was always considered to be QS-regulated,
is complex and associated with many persistent infections and increased antibiotic resis-
tance. All tested CDPs exhibited anti-biofilm activity against P. aeruginosa PAO1 in a
dose-dependent manner (Figure S4). The c(WS) and its isomers, c(wS) and c(Ws), inhibited
the biofilm formation by 53%, 54%, and 56%, respectively, displaying more efficiency than
other cyclic dipeptides, at a concentration of 1 mM (Figure 5a). Moreover, these CDPs de-
creased the mature biofilm by 40–56% (Figure 5b), showing a similar ability in anti-biofilm
formation. Interestingly, c(WT), c(WA), and c(WK) exhibited higher biofilm elimination
ability (56%, 50%, and 53%, respectively), while their anti-biofilm formation capability was
not superior. Bacteria and biofilm morphologies observed by SEM (Figure 5c) indicated that
the untreated bacterial cells were protected with the dense biofilm matrix, and treatment
with CDPs decreased the biofilm formation and exposed the bacterial cells. Meanwhile, the
bacterial cells were entirely observed as shot rods, indicating that bacterial cells were not
destroyed under treatment with these CDPs.

Surface adhesion is a critical initial step that enables the establishment of biofilms.
Therefore, the effects of CDPs on the adhesion of P. aeruginosa PAO1 to an abiotic surface
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were characterized. Figure 5d shows that the PAO1 cells, which adhered to the surface
of the 96-well microplates, were sharply decreased in the groups treated with CDPs in
comparison with the control group. Thus, this suggests that the CDPs obstructed the
interactions between the abiotic surface and P. aeruginosa PAO1. Notably, isomers of cyclo
(Trp-Ser) reduced the adhesion of P. aeruginosa PAO1 to the PVC surface by approximately
three quarters.
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PAO1. (a) The effects of CDPs on biofilm formation. (b) The effects of CDPs on the disruption of
surface-established biofilms. (c) SEM images of the P.aeruginosa PAO1 biofilm, which was treated
with CDPs. (d) The effects of CDPs on PAO1 adhesion. DMSO (1%, v/v) was served as the control.
Differences in mean absorbances were compared to the untreated control and considered significant
when *** p < 0.001, according to ANOVA.

2.5. Inhibition on QS-Regulated Genes of P. aeruginosa PAO1

To explore the probable anti-QS mechanism of these CDPs, the real-time RT-PCR was
implemented to investigate the effects on QS genes expression. Although these CDPs
are structurally alike and contain a diketopiperazine core moiety and indole group, they
appeared to affect the expression of different QS genes. As shown in Figure 6, the iso-
mers inhibited the expression of each gene to some extent, especially for that baring
D-conformation Ser, which can suppress the expression of rhlI by 69% and 72%. However,
the affection of the four analogs on the genes’ expression was varying. All of them seemed
not to inhibit but promote the expression of genes in the las system. The sterically hindered
c(WT) mainly inhibited the expression of rhlR and pqsR. The c(WA), which substitutes the
hydroxyl group to hydrogen, mainly influenced the pqsA. The positively charged c(WK)
decreased the expression of rhlI, while the negatively charged c(WE) mostly downregulated
the expression of pqsR.
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2.6. Hemolysis and Cytotoxicity

Hemolysis in the presence of these CDPs was evaluated by calculating the relative
hemoglobin released at different CDPs concentrations compared with 0.1% Triton X-100,
which can cause 100% hemolysis. All tested CDPs showed little hemolytic activity at a
concentration of 1 mM (Figure 7a), and when the concentration was raised to 10 mM,
c(WA), c(WT), and c(WE) caused more than 10% hemolysis. We estimate that the enhanced
hydrophobicity of a CDP can increase its hemolysis.

To understand the toxicity of these CDPs to mammalian cells, cytotoxicity of CDPs on
A549 and NIH-3T3 were investigated using the MTT method. Figure 7b,c indicates that, at
concentrations lower than 1 mM, all CDPs displayed little toxicity to mammalian cells.
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3. Discussion

To address bacterial infections, it is essential to discover or modify anti-QS compounds.
The QS system of P. aeruginosa has been extensively studied and indicated as a promising
target for developing antimicrobial drugs against this pathogen [15].

As one kind of stable secondary metabolites, numerous cyclic dipeptides were discov-
ered from microorganisms and demonstrated as inhibitors, including antitumor, antiviral,
and antibacterial [26,27]. It was reported that many cyclic dipeptides, acting as a new class
of QS signal, were able to modulate the LuxR-Type receptor activity [28–30]. For instance,
cyclo (L-Phe-L-Pro) produced by Vibrio vulnificus could induce the expression of V. fischeri
lux genes and modulate ToxR dependent genes’ expression of Vibrio spp [30]. Additionally,
cyclo (L-Phe-L-Pro), cyclo (L-Tyr-L-Pro), and cyclo (L-Tyr-D-Pro), isolated from Lactobacillus
reuteri RC-14, were proved to affect the Gram-positive staphylococcal QS system [31].

To further explore the structural and activity of the cyclo(L-Trp-L-Ser), which was
isolated from marine bacterium R. aquimaris and displayed anti-QS activity against typical
QS-mediated phenotype C. violaceum CV026 and P. aeruginosa PAO1, we designed and
synthesized seven CDPs, including three isomers and four analogs of cyclo(L-Trp-L-Ser),
and then investigated their anti-QS ability. Results from this work demonstrated that
tryptophan-containing cyclic dipeptides exhibited potent anti-QS ability against gram-
negative bacteria C. violaceum CV026 and P. aeruginosa PAO1, plus their MICs were much
higher or even unmeasurable. All tested CDPs reduced the violacein production of C.
violaceum CV026 in a similar capacity by about 50%. In silico analysis suggested that these
CDPs bind to the same pocket with lower binding energy than the natural ligand, which
may lead to a conformational change of the active protein and may decrease the expression
of the regulated virulence factor.

P. aeruginosa is a well-known Gram-negative opportunistic bacterial pathogen, which
has posed serious threats to patients with cystic fibrosis or immunodeficiency, as well as
intubated patients. Recently, in P. aeruginosa infection treatment, more and more studies
have been focused on the anti-virulence factors and anti-biofilm formation [8,15,32,33].
In terms of inhibiting P. aeruginosa PAO1 at the given concentration of 1 mM, all tested
CDPs expressed inhibition over the production of QS-regulated virulence factors, biofilm
formation, and adhesion, moderately, without affecting the bacterial growth. In comparison,
the yield of pyocyanin decreased more significantly than the activity changes of elastase.
The reason might stem from the difference in the regulators of these phenotypes. It was
reported that elastase production is mainly regulated by LasR [34], while the secretion of
pyocyanin could be affected by many QS systems, and the mutations in the las, rhl, or pqs
systems would result in the loss of pyocyanin production [35]. On the other hand, their
capacities for inhibiting certain virulence phenotypes are slightly varying. We attributed
this phenomenon to the more complex QS systems that P. aeruginosa has.

Furthermore, all these CDPs showed little hemolysis and cytotoxicity to sheep red
blood cells and mammalian cells A549 and NIH-3T3, which indicated that the structural
modifications, including the reversal of stereochemistry, replacement of the hydroxyl with
other functional groups, such as H, carboxyl, or amine, and increasement of the steric
hindrance barely impact the toxicity.

In summary, we synthesized a series of tryptophane-containing cyclic dipeptides
and evaluated the anti-QS activity. It was revealed that this kind of CDP could inhibit
violacein production in C. violaceum CV026 as a competitive inhibitor of CviR and suppress
QS-mediated phenotypes in P. aeruginosa PAO1 to a certain extent. Since the differences in
how these CDPs acted against phenotypes in P. aeruginosa PAO1 were confirmed as slight,
the configuration changes of CDP overall structure and the modifications occurring on the
serine moiety were proved to exert little influence on their anti-QS activities, thus enlight-
ening us on how to efficiently make derivatization of these series of CDPs to get better
bioactivity. This work not only disclosed the progress of these tryptophane-containing
cyclic dipeptides working on bacteriostatic and biocompatibility but also showed the right
way to carry out the molecule design to improve the anti-virulence ability of this kind
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of compounds for the treatment of infectious disease. The mechanism of these CDPs on
the QS system in P. aeruginosa would be further investigated in our following work. We
anticipate that these biocompatible CDPs would be promising to be used as anti-virulence
candidates against troublesome multi-drug resistance P. aeruginosa.

4. Materials and Methods
4.1. Materials and Synthetic Methods

All commercial organic solvents and salts (Sigma Aldrich, TCI, Adamas, J&K, Energy,
etc.) were used without further purification unless otherwise stated. Cyclo(L-Trp-L-Ser)
was synthesized using Boc-Trp-OH and L-Serine methyl ester hydrochloride as starting
materials via a three-step synthetic procedure, as the literature described [36]. Briefly,
Boc-Trp-OH and L-Serine methyl ester were coupled forming the amide bond in the
presence of EDC•HCl and HOBt as the coupling reagents and Et3N as the base. After
purification, the linear dipeptide was treated with TFA/dichloromethane (1:1) to remove
the Boc group. Subsequently, the crude product was dissolved in MeOH and treated with
ammonium hydroxide for cyclization. The product for bioactivity assay was purified using
silica gel and prep-HPLC. The other CDPs were synthesized by GL Biochem (Shanghai)
Ltd. (Shanghai, China), following the reported procedures [36,37], and the quality and
purity were confirmed by NMR (Bruker 400 MHz) and HPLC (SHIMADZU LC-20A). The
characterization data was illustrated in the Supporting Information.

Agar, glucose, and other salts for preparation of the mediums were purchased from
Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China) and Aladdin. Kanamycin sulfate
was purchased from Sangon Biotech (Shanghai, China). Defibrinated Sheep Blood was
purchased from Dening Bio. The human lung epithelial cell line A549 (ATCC CCL-185)
was kindly donated by Professor Cuixia Chen, China University of Petroleum (East China).
The mouse embryonic fibroblasts NIH-3T3 were donated by Dr. Hanping Fu, Fujian
Normal University.

4.2. Strains and Growth Medium

C. violaceum CV026 (mini-Tn5 mutant of C. violaceum ATCC 31532) and P. aeruginosa
PAO1 (ATCC 27853) strains were used in this study for anti-QS evaluation. C. violaceum
CV026 was incubated in Luria-Bertani (LB) broth (yeast extract, 0.5%, w/v, peptone, 1%,
w/v, NaCl, 1%, w/v) overnight at 28 ◦C under 150 rpm. Meanwhile, P. aeruginosa PAO1 was
incubated in LB medium overnight at 37 ◦C under 165 rpm. The bacterial concentrations
were determined using a microplate reader (BioTek, Winooski, VT, USA), and the bacteria
were then diluted to the appropriate concentration for further mixing with tested CDPs.

4.3. Antimicrobial Assay and Bacterial Growth Measurement

These CDPs’ minimum inhibitory concentrations (MICs) were determined using a
modified broth microdilution method, according to the Clinical and Laboratory Standards
Institute (CLSI, 2012) [38]. Briefly, overnight activated P. aeruginosa PAO1 and C. violaceum
CV026 cells were inoculated into Mueller-Hinton Broth or M63 Broth in the presence of
different CDPs at a series of concentrations in 96-well microtiter plates. After incubation at
37 ◦C or 28 ◦C for 24 h, respectively, OD600 was tested to determine the bacterial density.
The MICs were the lowest concentrations of the samples with visible cell growth inhibition.

The growth curves of P. aeruginosa PAO1 under treatment with different CDPs (at
a concentration of 1 mM) were measured using a microplate reader. The bacterial cul-
tures were diluted with LB medium to 107 CFU/mL and incubated statically in 96-well
microplates in the presence of each CDP. DMSO (1%, v/v) was used as the negative control.
The bacterial density of each well was measured every 2 h for 24 h at a wavelength of
600 nm.
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4.4. Violacein Quantification

The production of violacein of C. violaceum CV026 was measured to evaluate the
potential anti-QS activity of these CDPs [39]. Overnight cultured C. violaceum CV026 was
diluted with 20 mL LB medium to 107 CFU/mL, followed by adding 20 µL kanamycin
sulfate (85 mM) and 100 µL of C6HSL (2 mM), then 2 mL of the above bacterial solution
was added into a 24-well plate with different cyclic dipeptides at a final concentration of
1 mM. The mixtures were allowed to shake at 150 rpm at 28 ◦C for 12 h. One milliliter
of the overnight-grown cell culture was transferred to a 1.5 mL Eppendorf tube and
centrifuged at 12,000 rpm for 10 min. The supernatant was discarded, and the sediments
were subsequently dissolved with 1 mL DMSO. After centrifugation at 12,000 rpm for
10 min, the obtained supernatant was added into a 96-well plate, and the absorbance was
measured at a wavelength of 585 nm via a microplate reader. The percent changes based
on the control group in absorption intensity were calculated to quantify the decrease of
violacein production.

4.5. Docking

The energies of the CDPs were minimized with ChemBio3D Ultra 14.0, and the
structures were saved as PDB form. The structure of autoinducer C6HSL was downloaded
from ZINC. The crystal structure of C. violaceum CviR (PDB ID: 3QP1, resolution of 2.0 Å)
was downloaded from the RCSB PDB website. Before docking, the protein’s co-crystal
organic moiety and H2O molecules were removed, and polar hydrogens were added to
the protein. Docking was accomplished using AutoDockTools-1.5.6 (downloaded from
http://mgltools.scripps.edu/, on 3 December 2020), following a general protocol [19]. The
grid box was set to the whole receptor involved in the active site. Parameters were set to a
Lamarckian genetic algorithm (GA) calculation of 100 runs. The resulting docked poses
were analyzed using cluster analysis and ranked by binding energy. PyMOL was used
for visualization.

4.6. Pyocyanin Quantification and Elastase Activity Assay

Pyocyanin production was measured as previously reported [18]. Briefly, the overnight
cultured P. aeruginosa PAO1 cultures were diluted with LB media to 107 CFU/mL, then
incubated statically in 24-well microplates with different CDP concentrations at 37 ◦C
for 18 h. DMSO (1%, v/v) was served as the negative control. After incubation, the
cultures were centrifuged at 12,000 rpm for 10 min. The supernatants were extracted with
chloroform, followed by pre-extraction with 0.2 M HCl. The solution absorbance was
measured at a wavelength of 520 nm. The percent changes in absorption intensity were
calculated to determine the inhibitory capacity of these CDPs against pyocyanin production.

Elastase activity was investigated using an elastin-Congo-red assay [19]. P. aeruginosa
PAO1 cultures were treated as described above in pyocyanin assay. After centrifugation,
the supernatant was filtered using a 0.22 µm nylon filter. To a clean tube, 100 µL of
filtered solution was added and 400 µL Tris-HCl (pH = 7.5) containing 4 mg elastin-congo
red (Bomei, Dongguan, China). The mixture was shaken at 37 ◦C for 10 h, followed by
centrifugation at 11,000× g for 10 min. The absorbance of the supernatant was measured
spectrophotometrically at 495 nm. All experiments were performed in triplicates.

4.7. Swimming Motility

The swimming motility of P. aeruginosa PAO1 was assayed using a published
method [40,41]. Briefly, each CDP solution (100 mM in 20 µL) was diluted with 2 mL
molten swim agar (pH 7.2), which consisted of peptone (1%, w/v), sodium chloride (0.5%,
w/v), and agar (0.3%, w/v), to a final concentration of 1 mM. The cultures were dispensed
onto sterile Petri dishes and allowed to solidify at room temperature for 30 min. A 2 µL
107 CFU/mL PAO1 bacterial culture was inoculated with a pipette into the center of a
35 mm swimming agar plate and then cultured at 37 ◦C for 18 h. DMSO (1%, v/v) was

http://mgltools.scripps.edu/
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used as the negative control. The swimming zones were measured after incubation at 37 ◦C
for 18 h.

4.8. QS Genes Expression Assay

Expressions of P. aeruginosa PAO1 QS genes were investigated following the reported
protocol [42]. The overnight cultured bacterial cells were inoculated on 2 mL fresh LB
medium containing different CDPs (1 mM) in 6-well microplates, regulating the final
bacterial density at 107 CFU/mL. After incubation at 37 ◦C for 10 h, the majority of QS genes
were maximally regulated, and the bacterial cells were collected through centrifugation
at 4 ◦C at 8000 rpm. The cells (1 mL) were treated with RNAiso Plus, and chloroform
(200 µL) was subsequently added to each sample. The tubes were incubated for 5 min
at room temperature and centrifuged at 12,000 rpm for 15 min at 4 ◦C. Afterward, the
upper colorless aqueous layer (400 µL) was collected in a new RNAase-free Eppendorf tube.
Isopropanol (500 µL) was added to each tube, and the tubes were vortexed and stood for
10 min, then centrifuged at 12,000 rpm for 10 min at 4 ◦C. After discarding the supernatant,
the RNA pellet was washed twice with 75% ethanol (1 mL) and air-dried for 10–15 min.
Reverse transcription was accomplished with the iScriptTM cDNA Synthesis kit (TaKaRa
Bio, Kusatsu, Japan). The RT-qPCR reaction mixture was composed of 2 µL cDNA, 10 µL
iTaqTM Uiversal SYBR Green supermix (2x), 2 µL each primer (Table S1), and 6 µL RNAase
free water. The reaction was then performed on Bio-Rad Laboratories (Hercules, CA, USA).
The total reaction volume was 20 µL. Cycle conditions were as follows: 95 ◦C for 3 min
followed by 40 cycles of 95 ◦C for 3 s and 60 ◦C for 30 s. The ribosomal gene, rpoD, was
chosen as a control to normalize the RT-PCR data and calculate the relative gene expression
changes with the (∆∆Cq) method.

4.9. Biofilm Assay
4.9.1. Inhibition of Biofilm Formation

The biofilm formation assay was conducted using a crystal violet stain method, as
previously reported [43]. The overnight cultured P. aeruginosa PAO1 was diluted with
LB medium to 107 CFU/mL and incubated statically in 96-well plates in the presence of
different CDPs or DMSO (1%, v/v). After incubation at 37 ◦C for 24 h, the plates were
carefully washed three times with ultrapure water to remove the cultures. The remaining
biofilms were dried at 50 °C for 30 min and stained with 0.5% crystal violet for 30 min
at room temperature. The plates were then washed three times with ultrapure water to
remove the excess dye. The attached staining was dissolved in 75% ethanol for 30 min,
and OD595 was detected by a microplate reader. Each test was performed independently
in triplicates.

4.9.2. Biofilm Dispersion Assay

The biofilm dispersion was assayed following the previous procedure [44]. Briefly, P.
aeruginosa PAO1 cultures (107 CFU/mL) were added to a 96-well plate, 100 µL per well,
and incubated at 37 ◦C for 48 h. The planktonic cell cultures were then removed from the
plate and washed three times with PBS. Fresh LB media containing different CDPs was
added to each well, and DMSO (1%, v/v) was used as the control group. After incubation
for 6 h, the crystal violet stain method was conducted as described in Section 4.9.1.

4.9.3. Observation of Morphology

Morphologies of the bacteria and bacterial biofilm were observed using scanning
electron microscopy (SEM). The SEM samples were prepared as previously reported [45].
The P. aeruginosa PAO1 bacterial suspension (107 CFU/mL) was incubated in the presence
or absence of tested CDPs (1 mM) in 6-well microplates with a piece of glass on each
bottom at 37 ◦C for 48 h. Subsequently, the coverslips were washed with PBS, and the
residual bacterial biofilm was fixed with 2.5% glutaraldehyde for 12 h. After removing
the remaining glutaraldehyde, dehydration of the samples was performed with gradient
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concentrations of ethanol (50%, 70%, 80%, 90%, 100%, v/v). At last, the samples were
airdried and sputtered with gold.

4.10. Adherence Assay

The anti-adhesion ability of these CDPs against P. aeruginosa PAO1 onto the PVC
surface was evaluated using the plate counting method [46,47]. P. aeruginosa PAO1 cultures
(107 CFU/mL) were added to a 96-well plate, 100 µL per well, and cultured with or without
CDPs (1 mM) at 37 ◦C for 3 h. After incubation, the planktonic cells and culture medium
were rinsed out using PBS. 100 µL PBS was added to each well, and the plate was sonicated
at 40 Hz for 30 min at room temperature. The contents of each well were diluted 10 times
with 0.9% NaCl solution, and 100 µL of the dilutions were spread onto LB agar plates. After
incubation at 37 ◦C for 18 h, the colonies on plates were counted using Image J.

4.11. Cytotoxicity and Hemolytic Activity

Cytotoxicity assay was conducted through the MTT method [48]. Briefly, A549 and
NIH-3T3 were proliferated in F-12K or Dulbecco’s Modified Eagle’s Medium (DMEM)
within 1% Penicillin-streptomycin and 10% heat-inactivated fetal bovine serum under
5% CO2 at 37 ◦C. A549 or NIH-3T3 cells (2000 cells per well) were seeded into a 96-well
plate and incubated at 37 ◦C for 24 h under a 5% CO2 atmosphere. The cells were then
treated with CDPs in different concentrations ranging from 0.1 to 10 mM, and PBS (1%
DMSO)-treated cells were used as the control group. All cells were cultured for 24 h under
the same cultivating conditions. Subsequently, the attached cells were washed twice with
the medium. A total of 10 µL of PBS containing MTT (5 mg/mL) was added to each well
and co-cultured with the cells for a further 4 h. The culture medium was then removed,
and DMSO was added and co-incubated at 37 ◦C for 20 min on a shaker at 120 rpm to
dissolve the generated formazan crystal. The absorbance of each well was measured using
a microplate reader at a wavelength of 570 nm. The cytotoxicity of the CDPs was evaluated
using the relative viability of the cell, for which the blank control was 100%. Every tested
concentration was repeated independently three times.

The hemolytic activities of these cyclic dipeptides were evaluated using sheep red
blood cells (sRBCs). Briefly, sRBCs were suspended in PBS buffer (pH 7.4) at 2% (v/v) and
mixed thoroughly with CDPs at different concentrations. After incubation at 37 ◦C for
4 h, the cells were centrifugated at 7100× g for 1 min, and the supernatant was collected
and added into a 96-well plate. The hemoglobin release was measured at 540 nm using
a microplate reader. PBS (1% DMSO) and 0.1% Triton X-100 were used as negative and
positive controls. Each test was performed three times independently. The hemolytic
activity of each CDP can be calculated using the following equation:

Hemolytic activity (%) =
A540 CDP − A540PBS

A540Triton X−100 − A540PBS
× 100%

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/md20020085/s1, Figure S1: Docked conformation of the natural ligand and CDPs with
CviR; Figure S2: Effects of synthetic CDPs over a range of concentrations (0.1–1 mM) on pyocyanin
production of P. aeruginosa PAO1.; Figure S3: Effects of synthetic CDPs over a range of concentrations
(0.1–1 mM) on elastase production of P. aeruginosa PAO1; Figure S4: Effects of synthetic CDPs over a
range of concentrations (0.1–1 mM) on biofilm production of P. aeruginosa PAO1; Table S1: Specific
amplification primer sets for PAO1; Scheme S1: Synthesis of c(WS); Table S2: The FT-IR data of
CDPs; Figure S5: Circular dichroism spectra of c(WS), c(Ws), c(wS), c(ws); Figures S6–S21: The NMR
spectrum of CDPs; Figures S22–S29: The HPLC analysis of CDPs.
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