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Abstract: The solubility values and thermodynamic parameters of a natural phytomedicine/nutrient
piperine (PPN) in Transcutol-HP (THP) + water combinations were determined. The mole fraction
solubilities (xe) of PPN in THP + water combinations were recorded at T = 298.2–318.2 K and
p = 0.1 MPa by the shake flask method. Hansen solubility parameters (HSPs) of PPN, pure THP, pure
water and THP + water mixtures free of PPN were also computed. The xe values of PPN were correlated
well with “Apelblat, Van’t Hoff, Yalkowsky–Roseman, Jouyban–Acree and Jouyban–Acree–Van’t Hoff”
models with root mean square deviations of < 2.0%. The maximum and minimum xe value of PPN was
found in pure THP (9.10× 10−2 at T = 318.2 K) and pure water (1.03× 10−5 at T = 298.2 K), respectively.
In addition, HSP of PPN was observed more closed with that of pure THP. The thermodynamic
parameters of PPN were obtained using the activity coefficient model. The results showed an
endothermic dissolution of PPN at m = 0.6–1.0 in comparison to other THP + water combinations
studied. In addition, PPN dissolution was recorded as entropy-driven at m = 0.8–1.0 compared with
other THP + water mixtures evaluated.

Keywords: activity coefficient model; bioactive compound; piperine; solubility; solution thermodynamics;
Transcutol

1. Introduction

Piperine (PPN; Figure 1) is a bioactive alkaloidal phytomedicine/nutrient that is present in the
fruits and roots of Piper nigrum and Piper longum [1,2]. The pungency and bitter taste of pepper
are due to the presence of PPN [2]. PPN is a potent bioactive compound, which has been reported
to have several therapeutic activities including “anti-metastatic [3], enzyme activity stimulator [4],
antimicrobial [5], antifertility [6], hepatoprotective [7], antiulcer [8], antiamoebic [9], antidiarrheal [10],
anti-fibrotic [11], antifungal [12], acaricidal [13], anti-inflammatory [14,15], antioxidant [2,16,17] and
anticancer activity [2,18]”. In addition, PPN has also been reported as a permeation and bioavailability
enhancer for several weakly soluble drugs as well as nutrients [1,2,19–21]. The solubilization
of phytomedicines/nutrients in co-solvent–water mixtures had significant role in their “isolation,
extraction, purification, recrystallization, drug discovery and dosage form design” [22–24]. Therefore,
the solubilization of PPN in co-solvent–water mixtures should be studied in order to obtain its
application in pharmaceutical and food industries. Transcutol-HP (THP) is a potential co-solvent
that is miscible with all proportions of water [24,25]. Its potential in increasing the solubilization of
several poorly soluble bioactive compounds including vanillin, reserpine, sinapic acid and apigenin
has been very well reported in the literature [24–27]. Some formulation technologies including solid
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dosage forms [28,29], emulsion/self-emulsifying formulations [30–32], nanomedicine-based drug
delivery systems [33–36] and solid dispersion technology [37] have been studied in order to enhance
solubility and bioactivity/bioavailability of PPN. The solubility of PPN in pure solvents including
pure water, pure propylene glycol (PG), pure polyethylene glycol-400 (PEG-400) and pure THP at
ambient temperature was reported elsewhere [1,30,31]. The solubility and mixing thermodynamic
parameters of PPN in twelve different pure solvents including “water, methanol, ethanol, isopropanol,
1-butanol, 2-butanol, ethylene glycol, PG, PEG-400, ethyl acetate, dimethyl sulfoxide and THP” at
“T = 298.2–318.2 K” and “p = 0.1 MPa” have also been reported [38]. The solubility data of PPN in
water–ethanol and water–surfactant mixtures was also found elsewhere [39–41]. The solubility values
of PPN in super critical carbon dioxide (CO2) and near critical CO2 at different temperatures has
also been reported elsewhere [42]. So far, there is no report on PPN solubilization in “THP + water”
mixtures at “T = 298.2–318.2 K” and “p = 0.1 MPa”. Therefore, in this research, the solubility profile of
PPN in various “THP + water” mixtures, including pure water and pure THP at “T = 298.2–318.2 K”
and “p = 0.1 MPa” is studied and reported. Mixing thermodynamic parameters of PPN are also
computed and reported using an activity coefficient model. The solubility values of PPN reported in
this research could be beneficial in “isolation, extraction, purification, recrystallization, drug discovery,
pre-formulation studies and dosage form design” of PPN.
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2. Results and Discussion

2.1. Experimental Solubility Values of PPN and Literature Comparison

The “mole fraction solubility (xe)” values of PPN in various “THP + water” combinations
including pure water and pure THP at “T = 298.2–318.2 K’ and “p = 0.1 MPa” are summarized in
Table 1. The solubility values of PPN in pure water and pure THP have been reported [38]. However,
its solubility values in “THP + water” mixtures have not been reported elsewhere so far.

The solubility of PPN in pure water at “T = 298.2 K” was recorded as 0.164 mg g−1 (equivalent to
xe = 1.04 × 10−5) and 10 µg g−1 (equivalent to xe = 6.31 × 10−7) by Shao et al. and Veerareddy et al.,
respectively [30,31]. In addition, the solubility of PPN in water at “T = 291.2 K” was obtained as
40 µg g−1 (equivalent to xe = 2.53 × 10−6) by another report [1]. The xe value of PPN in pure water at
“T = 298.2 K” was calculated as 1.03 × 10−5 in the current research (Table 1). The solubility of PPN in
pure THP at “T = 298.2 K” was obtained as 185.29 mg g−1 (equivalent to xe = 8.01 × 10−2) [31]. The xe

value of PPN in pure THP at “T = 298.2 K” was calculated as 7.88 × 10−2 in the current research (Table 1).
The xe values of PPN in pure water and pure THP obtained in the current research were found to be
very close to those reported by Shao et al. [31]. However, the xe value of PPN in pure water obtained
in the current research was found to have deviated much from those reported by Veerareddy et al.
and Vasavirama and Upender [1,30]. This deviation could be due to the variation in shaking speed,
equilibrium time and analysis method of PPN [1,30,38]. The solubility values of PPN in pure water
and pure THP at five different temperatures, i.e., “T = 298.2–318.2 K” have also been reported [38].
The graphical comparison between xe and literature solubility values of PPN in pure water and pure
THP at “T = 298.2–318.2 K” are summarized in Figure 2A,B, respectively. The data summarized in
Figure 2A,B suggested an excellent correlation of xe values of PPN with the literature solubility data



Molecules 2020, 25, 2743 3 of 14

of PPN in pure water and pure THP at “T = 298.2–318.2 K”. Overall, the experimental solubility
values of PPN obtained in the current research were found in good agreement with those reported
in the literature. The reliability of the proposed method of solubility measurement was verified by
obtaining the xe values of another phytomedicine/nutraceutical apigenin in pure THP at T = 298.2 K
and T = 318.2 K. The xe value of apigenin in pure THP at T = 298.2 K and T = 318.2 K was found as
3.36 × 10−1 and 3.82 × 10−1, respectively, in the literature [27]. The xe value of apigenin in pure THP at
T = 298.2 K and T = 318.2 K was determined as 3.33 × 10−1 and 3.84 × 10−1, respectively, in the current
research. These results suggested that the xe value of apigenin in pure THP obtained using the current
technique was very close to those reported in the literature [27]. Therefore, the present technique of
solubility measurement was reliable for the solubility determination of PPN.

Table 1. Experimental solubilities (xe) of piperine (PPN) in mole fraction in different “Transcutol-HP
(THP) + water” mixtures (m) at “T = 298.2–318.2 K” and “p = 0.1 MPa” a.

m xe
T = 298.2 K T = 303.2 K T = 308.2 K T = 313.2 K T = 318.2 K

0.0 1.03 × 10−5 1.17 × 10−5 1.31 × 10−5 1.47 × 10−5 1.59 × 10−5

0.1 2.57 × 10−5 2.85 × 10−5 3.19 × 10−5 3.55 × 10−5 3.80 × 10−5

0.2 6.20 × 10−5 6.88 × 10−5 7.61 × 10−5 8.40 × 10−5 9.01 × 10−5

0.3 1.59 × 10−4 1.71 × 10−4 1.86 × 10−4 1.99 × 10−4 2.15 × 10−4

0.4 3.71 × 10−4 4.07 × 10−4 4.42 × 10−4 4.79 × 10−4 5.09 × 10−4

0.5 9.06 × 10−4 9.80 × 10−4 1.08 × 10−3 1.16 × 10−3 1.25 × 10−3

0.6 2.23 × 10−3 2.39 × 10−3 2.56 × 10−3 2.74 × 10−3 2.88 × 10−3

0.7 5.40 × 10−3 5.74 × 10−3 6.10 × 10−3 6.51 × 10−3 6.80 × 10−3

0.8 1.35 × 10−2 1.40 × 10−2 1.47 × 10−2 1.55 × 10−2 1.63 × 10−2

0.9 3.26 × 10−2 3.37 × 10−2 3.53 × 10−2 3.70 × 10−2 3.87 × 10−2

1.0 7.88 × 10−2 8.12 × 10−2 8.44 × 10−2 8.79 × 10−2 9.10 × 10−2

xidl 5.13 × 10−2 6.02 × 10−2 7.06 × 10−2 8.26 × 10−2 9.63 × 10−2

a The relative uncertainties ur are ur(T) = 0.010, ur(m) = 0.001%, u(p) = 0.003 and ur(xe) = 0.11.
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As per the results summarized in Table 1, the xe values of PPN were found to increase with increases
in both THP mass fraction (m) in various “THP + water” combinations and temperature, and therefore
the minimum xe value of PPN was obtained in pure water (xe = 1.03 × 10−5) at “T = 298.2 K”, and the
maximum xe value of PPN was observed in pure THP (xe = 9.10× 10−2) at “T = 318.2 K”. The maximum
xe value of PPN in pure THP could be due to the lower polarity and low Hansen solubility parameter
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(HSP) of THP in comparison to high polarity and higher HSP of water [25,26]. The impact of m value
of THP on PPN solubility at “T = 298.15–318.15 K” is summarized in Figure 3.
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As per these results, the PPN solubility was found to increase linearly with increases in m values of
THP at all five temperatures studied. It was also observed that the xe values of PPN were significantly
enhanced from pure water to pure THP, and therefore THP could be utilized as an excellent co-solvent
in PPN solubility enhancement.

2.2. Hansen Solubility Parameters (HSPs)

The results of HSPs of different “THP + water” systems free of PPN are tabulated in Supplementary
Materials Table S1. The HSP (δ) value of PPN was computed as 22.30 MPa1/2. The HSP value for
pure THP (δ1) and pure water (δ2) were computed as 21.40 and 47.80 MPa1/2, respectively. The HSP
values for various “THP + water” mixtures free of PPN (δmix) were computed as 24.04–45.16 MPa1/2.
As per the data recorded, the HSP value of pure THP (δ2 = 21.40 MPa1/2) and “THP + water” mixtures
(at m = 0.9; δmix = 24.04 MPa1/2) were found to close to that of PPN (δ = 22.30 MPa1/2). The xe values
of PPN were also obtained at the maximum in pure THP and at m = 0.9 of THP in “THP + water”
mixtures. Hence, the obtained solubility data of PPN in various “THP + water” mixtures was in good
agreement with their HSPs

2.3. Mixing Thermodynamic Parameters of PPN Solution

The computed values of various mixing thermodynamic parameters such as “mixing Gibbs energy
(∆mixG), mixing enthalpy (∆mixH) and mixing entropy (∆mixS)” along with activity coefficients (γi)
for PPN in different “THP + water” combinations including pure water and pure THP are given in
Supplementary Materials Table S2. The ∆mixG values for PPN at m = 0.6–1.0 were found as negative
values, which decreased with the increase in temperature. Hence, PPN dissolution was proposed as
endothermic at m = 0.6–1.0. The ∆mixS values for PPN at m = 0.8–1.0 were found as positive values,
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which also decreased with increases in temperature. Therefore, PPN dissolution was proposed as
entropy-driven at m = 0.8–1.0. The ∆mixH values for PPN were found as negative values in most of the
“THP + water” combinations studied.

2.4. Solute–Solvent Molecular Interactions

The data of γi for PPN in different “THP + water” combinations including pure water and pure
THP at “T = 298.2–318.2 K” is summarized in Table 2. The γi value obtained for PPN was highest in
pure water at all five temperatures studied. However, the γi value obtained for PPN was lowest in
pure THP at all five temperatures. The highest γi value for PPN in pure water could be possible due
to the lowest xe value of PPN in pure water. As per these results, the γi value for PPN was found to
increase with increases in temperature in all “THP + water” mixtures studied. Based on these results,
the maximum solute–solvent interactions were considered in PPN–THP compared with PPN–water.

Table 2. Activity coefficients (γi) of PPN in different “THP + water” mixtures (m) at “T = 298.2–318.2 K”.

m
γi

T = 298.2 K T = 303.2 K T = 308.2 K T = 313.2 K T = 318.2 K

0.0 4980.00 5150.00 5380.00 5620.00 6050.00
0.1 1995.20 2108.92 2215.74 2339.59 2533.27
0.2 827.00 875.00 927.00 984.00 1070.00
0.3 322.00 353.00 380.00 416.00 448.00
0.4 138.00 148.00 160.00 173.00 189.00
0.5 56.60 61.40 65.50 71.40 77.30
0.6 23.00 25.20 27.60 30.20 33.40
0.7 5.40 5.74 6.10 6.51 6.80
0.8 3.81 4.31 4.82 5.33 5.92
0.9 1.57 1.79 2.00 2.23 2.49
1.0 0.65 0.74 0.83 0.94 1.06

2.5. Modeling of PPN Solubility

The solubility data obtained for PPN was correlated using “Van’t Hoff, Apelblat,
Yalkowsky–Roseman, Jouyban–Acree and Jouyban–Acree–Van’t Hoff” models [26,43–48]. Results of
the “Van’t Hoff model” for PPN in different “THP + water” mixtures including pure water and pure
THP are summarized in Table 3.

Table 3. Results of “Van’t Hoff model” for PPN in “THP + water” combinations (m) b.

m a b R2 RMSD (%) Overall RMSD (%)

0.0 −4.45 −2093.60 0.9960 1.11
0.1 −4.20 −1897.30 0.9963 0.91
0.2 −3.65 −1799.00 0.9973 0.70
0.3 −3.98 −1421.50 0.9982 0.33
0.4 −2.83 −1509.30 0.9968 0.62
0.5 −1.90 −1520.50 0.9981 0.77 0.65
0.6 −1.95 −1238.70 0.9985 0.42
0.7 −1.49 −1112.00 0.9973 0.42
0.8 −1.24 −916.75 0.9935 0.56
0.9 −0.64 −829.34 0.9932 1.01
1.0 −0.21 −696.21 0.9960 0.31

b The average relative uncertainties are u(a) = 0.30 and u(b) = 0.07.

The graphical correlation between xe and “Van’t Hoff model solubility (xVan’t)” of PPN is presented
in Supplementary Materials Figure S1, which shows good graphical correlation. The root mean square
deviations (RMSDs) for PPN in various “THP + water” combinations including pure water and pure
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THP were recorded as 0.31–1.11% with an average RMSD of 0.65%. In addition, the determination
coefficients (R2) were obtained as 0.9935–0.9985.

The results of the “Apelblat model” for PPN in different “THP + water” mixtures including pure
water and pure THP are summarized in Table 4.

Table 4. Results of “Apelblat model” for PPN in “THP + water” combinations (m) c.

m A B C R2 RMSD (%) Overall RMSD (%)

0.0 331.19 −17,505.00 −49.84 0.9995 0.78
0.1 224.66 −12,407.50 −33.98 0.9982 0.73
0.2 217.93 −11,974.50 −32.90 0.9993 0.58
0.3 −105.09 3214.87 15.01 0.9988 0.57
0.4 228.14 −12,114.70 −34.29 0.9999 0.60
0.5 45.42 −3697.43 −7.02 0.9981 0.45 0.54
0.6 87.58 −5351.77 −13.29 0.9991 0.34
0.7 84.34 −5054.78 −12.74 0.9981 0.44
0.8 −157.86 6268.79 23.26 0.9978 0.61
0.9 −157.97 6388.73 23.36 0.9985 0.45
1.0 −84.70 3179.61 12.54 0.9982 0.47

c The average relative uncertainties are u(A) = 0.92, u(B) = 1.54 and u(C) = 0.90.

The graphical correlation between xe and “Alelblat model solubility (xApl)” values of PPN are
presented in Figure 4, which expressed good graphical correlation.
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The RMSDs for PPN in various “THP + water” combinations including pure water and pure
THP were estimated as 0.34–0.78% with an average RMSD of 0.54%. In addition, the R2 values were
estimated as 0.9978–0.9999.

Results of the “Yalkowsky–Roseman model” for PPN in different “THP + water” combinations are
listed in Table 5. The RMSD values for PPN in different “THP + water” combinations were computed
as 0.46–2.81% with an average RMSD of 1.24%.
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Table 5. Results of “Yalkowsky–Roseman model” for PPN in different “THP + water” mixtures (m) at
“T = 298.2–318.2 K”.

m
Log xYal

RMSD (%)
Overall

RMSD (%)T = 298.2 K T = 303.2 K T = 308.2 K T = 313.2 K T = 318.2 K

0.1 −4.59 −4.54 −4.50 −4.45 −4.42 1.21
0.2 −4.21 −4.16 −4.12 −4.07 −4.04 0.46
0.3 −3.82 −3.77 −3.74 −3.69 −3.67 2.81
0.4 −3.43 −3.39 −3.35 −3.32 −2.29 0.91
0.5 −3.04 −3.01 −2.97 −2.94 −2.91 2.27 1.24
0.6 −2.65 −2.62 −2.59 −2.56 −2.54 1.11
0.7 −2.26 −2.24 −2.21 −2.18 −2.16 0.38
0.8 −1.88 −1.85 −1.83 −1.81 −1.79 1.31
0.9 −1.49 −1.47 −1.45 −1.43 −1.41 0.78

Results of the “Jouyban–Acree model” for PPN in “THP + water” mixtures are listed in Table 6.
The average RMSD for PPN was estimated as 0.42%.

Table 6. Results of “Jouyban–Acree” and “Jouyban–Acree–Van’t Hoff” models for PPN in “THP +

water” combinations.

System Jouyban–Acree Jouyban–Acree–Van’t Hoff

A1–0.21
PEG-400 + water Ji–14.43 B1–696.21

A2–4.45
B2–2093.60

RMSD (%) 0.42

Ji–16.42

0.54

Results of the “Jouyban–Acree–Van’t Hoff model” for PPN in “THP + water” mixtures are
tabulated in Table 6. The average RMSD for PPN was estimated as 0.54%.

As per the results recorded for solubility modeling, it was observed that all investigated models
showed low RMSDs (average RMSD < 2.0%), which indicated good correlation of obtained solubility
data of PPN with all investigated models. However, it should be noted that the error values of every
model could not be compared with each other as each model was related with different parameters
and model coefficients [49]. In general, the performance of all investigated models was good, but the
“Jouyban–Acree model” could be considered as the most suitable model because it utilized the least
number of model coefficients in addition to having a low RMSD value.

3. Experimental

3.1. Materials

PPN and THP were procured from “Beijing Mesochem Technology Co. Pvt. Ltd. (Beijing, China)”
and “Gattefosse (Lyon, France)”, respectively. Water was collected from a Milli-Q water purification
unit. The properties of materials are listed in Table 7.
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Table 7. List of materials used.

Material Molecular
Formula

Molar Mass
(g mol−1)

CAS
Registry

No.

Purification
Method

Mass
Fraction
Purity

Analysis
Method

Analysis
Method Source

PPN C17H19NO3 285.34 94-62-2 None >0.99 HPLC HPLC Sigma
Aldrich

THP C6H14O3 134.17 111-90-0 None >0.99 GC GC Gattefosse
Water H2O 18.07 7732-18-5 None - - - Milli-Q

Purity and method of analysis were provided by supplier of each material.

3.2. PPN Solubility Measurement

A well-known saturation shake flask method was applied to measure the solubility of PPN in
various “THP + water” combinations (m = 0.1–0.9) including pure water (m = 0.0) and pure THP
(m = 1.0) [50]. This study was performed at “T = 298.2–318.2 K” and “p = 0.1 MPa”, and each study
was repeated at least for three times. Excess PPN powder was taken into glass vials having 1.0 g of
each “THP + water” mixtures including pure solvents. All the prepared samples were transferred to a
“OLS 200 Grant Scientific Biological Shaker (Grant Scientific, Cambridge, UK)” after temperature and
shaker speed settings. After equilibrium, the samples were removed from the shaker, centrifuged and
diluted using methanol (mobile phase) and utilized for the determination of PPN content using the
reported high-performance liquid chromatography method at 254 nm [38]. The amount of PPN in
each sample was determined using a calibration curve of PPN. The xe values of PPN were calculated
using Equations (1) and (2) [26,27]:

xe =
m1/M1

m1/M1 + m2/M2
(1)

xe =
m1/M1

m1/M1 + m2/M2 + m3/M3
(2)

Here, m1 = PPN mass; m2 = THP mass; m3 = water mass; M1 = PPN molar mass; M2 = THP molar
mass and M3 = water molar mass. PPN solubility in pure water and pure THP was computed by
applying Equation (1). PPN solubility in “THP + water” mixtures was calculated using Equation (2).

3.3. Computation of HSPs

If the solubility parameter of the solute is close to that of pure solvents or cosolvent mixtures,
the solubility of solute will be higher in that particular pure solvent or cosolvent mixtures [51].
Therefore, HSPs for PPN, pure THP, pure water and various “THP + water” mixtures free of PPN were
computed in this research. The δ value for PPN, pure THP and pure water was computed by applying
Equation (3) [49,51,52] as follows:

δ2 = δ2
d + δ2

p + δ2
h (3)

in which “δ = total HSP; δd = dispersion HSP; δp = polar HSP and δh = hydrogen-bonded HSP”.
The HSPs for PPN, pure THP and pure water were estimated using “HSPiP software (version 4.1.07,
Louisville, KY, USA)” [51]. The HSPs of various “THP + water” mixtures free of PPN (δmix) were
calculated using Equation (4) [26,53] as follows:

δmix =∝ δ1 + (1− ∝)δ2 (4)

Here, α = volume fraction of THP in “THP + water” mixtures; δ1 = HSP of pure THP and δ2 = HSP of
pure water.
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3.4. Mixing Thermodynamics Parameters of PPN Solution

Different mixing thermodynamic parameters of PPN solution were computed using the
“Lewis–Randall rule”. For an ideal solution, different mixing thermodynamic parameters such
as “mixing Gibbs energy (∆mixGid), mixing entropy (∆mixSid) and mixing enthalpy (∆mixHid)” in
different “THP + water” mixtures including pure water and pure THP can be calculated using
Equations (5)–(7) [54,55] as follows:

∆mixGid = RT (x1 ln x1 + x2 ln x2 + x3 ln x3) (5)

∆mixSid = −R (x1 ln x1 + x2 ln x2 + x3 ln x3) (6)

∆mixHid = 0 (7)

Here, R = universal gas constant (R = 8.314 J/mol/K); x1 = PPN mole fraction; x2 = THP mole fraction
and x3 = water mole fraction.

For a non-ideal solution, various mixing thermodynamic parameters such as ∆mixG, ∆mixH and
∆mixS in different “THP + water” mixtures including pure water and pure THP can be calculated using
Equations (8)–(10) [54–56] as follows:

∆mixG = ∆mixGid + GE (8)

∆mixH = ∆mixHid + HE (9)

∆mixH = ∆mixHid + HE (10)

Here, GE = excess Gibbs energy and HE = excess enthalpy. The GE and HE values were computed using
the activity coefficient-based Wilson model by applying Equations (11) and (12) [56,57] as follows:

GE = RT (x1 lnγi + x2 lnγi + x3 lnγi) (11)

HE = −T2
[
∂

(
GE/T
∂T

)]
(12)

The γi value for PPN in different THP + water combinations including pure water and pure THP was
calculated by applying Equation (13) [58–60] as follows:

γi =
xidl

xe
(13)

Here, xidl = ideal solubility of PPN which was computed using Equation (14) [58] as follows:

ln xidl =
−∆Hfus(Tfus − T)

RTfusT
+

(
∆Cp

R

)
[
Tfus − T

T
+ ln

(
T

Tfus

)
] (14)

Here, ∆Cp = difference between the molar heat capacity of solid state and liquid state; Tfus = fusion
temperature of PPN and ∆Hfus = fusion enthalpy of PPN [59,61]. The values of Tfus, ∆Hfus and ∆Cp

for PPN were taken as 404.88 K, 32.69 kJ mol−1 and 80.74 J mol−1 K−1, respectively, from reference [38].

3.5. Solute–Solvent Molecular Interactions

The molecular interactions between PPN and various “THP + water” mixtures including pure
water and pure THP can be explained using activity coefficients values. The γi values for PPN in
different “THP + water” mixtures and pure solvents at “T = 298.2–318.2 K” were calculated by applying
Equation (13) listed above.
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3.6. Thermodynamics-Based Computational Models

The solubility value obtained in the current research for PPN in various “THP + water”
combinations including pure solvents was correlated using “Van’t Hoff, Apelblat, Yalkowsky–Roseman,
Jouyban–Acree and Jouyban–Acree–Van’t Hoff” models [26,43–48]. The xVan’t value of PPN in
different “THP + water” mixtures including pure water and pure THP was calculated by applying
Equation (15) [26] as follows:

ln xVan′t = a +
b
T

(15)

in which a and b = model coefficients of Equation (15), which were determined by the graphs constructed
between ln xe of PPN and 1/T. The correlation between xe and xVan’t values of PPN was carried out
using RMSD and R2. The RMSDs of for PPN were calculated using its formula reported previously
in the literature [27]. The xApl value of PPN in various “THP + water” combinations including pure
water and pure THP was calculated using Equation (16) [43,44].

ln xApl = A +
B
T
+ C ln(T) (16)

Here, A, B and C = the model coefficients of Equation (16), which were obtained using “nonlinear
multivariate regression analysis” of xe values of PPN summarized in Table 1 [26]. The correlation
between xe and xApl values of PPN was again performed using RMSD and R2. The logarithmic
solubility of “Yalkowsky–Roseman model (log xYal)” for PPN in various “THP + water” mixtures was
calculated by applying Equation (17) [45] as follows:

log xYal = m1logx1 + m2logx2 (17)

Here, x1 = mole fraction solubility of PPN in THP; x2 = mole fraction solubility of PPN in water;
m1 = THP mass fraction and m2 = water mass fraction.

The “Jouyban–Acree model solubility (xm,T)” of PPN in different “THP + water” combinations
was calculated by applying Equation (18) [62–64] as follows:

ln xm,T = m1 ln x1 + m2 ln x2 +

m1 m2

T

2∑
i=0

Ji(m1 −m2)

 (18)

Here, Ji = model coefficient of Equation (18) which was obtained using “no-intercept regression
analysis” [65,66]. Based on the current data set, the trained version of Equation (18) can be expressed
using Equation (19).

ln xm,T = m1 ln x1 + m2 ln x2 +
−14.43m1 m2

T
(19)

The correlation between xe and xm,T of PPN was conducted using RMSD. The “Jouyban–Acree–Van’t
Hoff model solubility of PPN (xm,T)” in different “THP + water” combinations was calculated by
applying Equation (20) [26,66] as follows:

ln xm,T = m1

(
A1 +

B1

T

)
+ m2

(
A2 +

B2

T

)
+

m1m2

T

2∑
i=0

Ji(m1 −m2)

 (20)

Here, A1, B1, A2, B2 and Ji = the model coefficient of Equation (20). Based on the current data set, the
trained version of Equation (20) can be expressed using Equation (21).

ln xm,T = m1

(
−0.21−

−696.21
T

)
+ m2

(
−4.45−

−2093.60
T

)
+
−16.42m1m2

T
(21)
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4. Conclusions

This study was aimed to determine the solubility of a bioactive compound PPN in various
“THP + water” combinations including pure water and pure THP at “T = 298.2–318.2 K” and
“p = 0.1 MPa”. The solubility of PPN was recorded as increasing with arise in both m value of THP and
temperature in all “THP + water” mixtures including pure water and pure THP. Obtained solubility
data of PPN was correlated well by “Apelblat, Van’t Hoff, Yalkowsky–Roseman, Jouyban–Acree and
Jouyban–Acree–Van’t Hoff” models with an average RMSD of <2.0%. Overall, the “Jouyban–Acree
model” was found as the most suitable for this modeling. The maximum solute–solvent interactions
were observed in the PPN–THP combination in comparison to PPN–water. The results of mixing
thermodynamics showed an endothermic dissolution of PPN at m = 0.6–1.0. In addition, the dissolution
of PPN was found as entropy-driven at m = 0.8–1.0.

Supplementary Materials: The following are available online, Figure S1: Correlation of experimental solubility
values of PPN with “Van’t Hoff model” in different “THP + water” mixtures at “T = 298.2–318.2 K”; Van’t Hoff
model solubility values of PPN are represented by solid lines, and experimental solubility values of PPN are
represented by the symbols, Table S1: Hansen solubility parameters (δmix/MPa1/2) for various THP + water
mixtures free of PPN at “T = 298.2 K”, Table S2: The values of mixing enthalpy (∆mixH/J mol−1), mixing entropy
(∆mixS/J mol−1 K−1), mixing Gibbs energy (∆mixG/J mol−1) and activity coefficient (γi) for PPN dissolution in
different “THP + water” mixtures.
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