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Simple Summary: Understanding biological invasion mechanisms is crucial to design effective
management strategies preventing their impacts on ecosystems. If the role of long-distance dispersal
and age-dependent fecundity in plant invasion speed has been characterized in theory, empirical
support is still rare given the difficulty to jointly fit demographic and spread parameters of dynamic
models to available data. We proposed a statistical model to fit such parameters to heterogeneous
observations collected across space and time. We can directly test hypotheses on the importance of
various mechanisms in a past invasion. We demonstrated the potential of this method by determining
the roles of human-mediated long-distance dispersal and age-dependent fecundity in the invasion of
the shrub Plectranthus barbatus in South Africa. Our model revealed a massive wave of spread driven
by human-mediated long-distance dispersal and originating from the cities of first introduction. The
species completed its invasion of all favorable areas a few years after, in the mid-1990s. Without
human-mediated long-distance dispersal, the maximum population would have been obly 30% of
the current population. The delayed reproductive maturity explained the invasion lag phase. It
highlights the importance of early eradication of weedy horticultural alien plants around urban areas
to hamper the invasive spread.

Abstract: Plant invasions generate massive ecological and economic costs worldwide. Predicting
their spatial dynamics is crucial to the design of effective management strategies and the prevention
of invasions. Earlier studies highlighted the crucial role of long-distance dispersal in explaining
the speed of many invasions. In addition, invasion speed depends highly on the duration of its lag
phase, which may depend on the scaling of fecundity with age, especially for woody plants, even
though empirical proof is still rare. Bayesian dynamic species distribution models enable the fitting
of process-based models to partial and heterogeneous observations using a state-space modeling
approach, thus offering a tool to test such hypotheses on past invasions over large spatial scales. We
use such a model to explore the roles of long-distance dispersal and age-structured fecundity in the
transient invasion dynamics of Plectranthus barbatus, a woody plant invader in South Africa. Our
lattice-based model accounts for both short and human-mediated long-distance dispersal, as well
as age-structured fecundity. We fitted our model on opportunistic occurrences, accounting for the
spatio-temporal variations of the sampling effort and the variable detection rates across datasets. The
Bayesian framework enables us to integrate a priori knowledge on demographic parameters and
control identifiability issues. The model revealed a massive wave of spatial spread driven by human-
mediated long-distance dispersal during the first decade and a subsequent drastic population growth,
leading to a global equilibrium in the mid-1990s. Without long-distance dispersal, the maximum
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population would have been equivalent to 30% of the current equilibrium population. We further
identified the reproductive maturity at three years old, which contributed to the lag phase before the
final wave of population growth. Our results highlighted the importance of the early eradication of
weedy horticultural alien plants around urban areas to hamper and delay the invasive spread.

Keywords: biological invasions; population dynamics; long-distance dispersal; human-mediated
dispersal; matrix population models; Bayesian inference; species distribution models; citizen science;
presence-only data

1. Introduction

Biological invasions are a major driver of the current biodiversity crisis and incur
tremendous cost to human societies [1]. Many studies have quantified the massive and
growing socio-economic costs of invasions. A recent estimation of the overall cost of
invasive species at the European scale quantified the amount to be approximately USD
140 billion [2] between 1960 and 2020, including both management (40%) and damage (60%)
costs. Although country-level assessments identified heterogeneous costs and knowledge
gaps [3–5] all the studies report a clear rise in the costs and suggested that these reported
costs were severely underestimated due to the lack of data for many taxa. The costs to
humans and biodiversity will continue to grow given the trend of ongoing invasions [6]
and the inertia of the invasion processes due to invasion debt [7] highlighting the need
to identify early these introduced species that are likely to become invasive and cause
impacts. Indeed, better estimation of the residence times and elucidation of the causes of
lag phases [8] are crucial for improving the efficiency of the management [9]. However,
efforts directed at early detection often incur costs and risks without an obvious return on
investment, hence the recent drive for crowdsourcing to overcome data [10].

Effective management involving the early detection and prevention of the negative
impacts of plant invasions demands a robust understanding of the past transient spatial
dynamics on which to base predictive scenarios of future invasions. It is crucial to acknowl-
edge the non-equilibrium reality of an introduced species with its invaded environment
due to its limited residence time and dispersal constraints (i.e., the non-equilibrial invasion
dynamics)[11], which must be accounted for when fitting invasive species distribution
models [12], especially given the ongoing niche shifts under climate change [13]. It is
also necessary to account for the fact that the native range of species is often restricted
when compared to their potential environmental range [14]. Quantitative calibration of
dispersal kernels and demographic rates to reconstruct invasion dynamics has often been
based on literature reviews [15,16], while estimates of such parameters in controlled ex-
periments have revealed high intrinsic variability across repetitions, even under identical
conditions [17].Although such estimates are useful, they lack coherence with historical
invasions. Statistical approaches have been used to circumvent the problem by highlighting
the relationship between invasiveness and the biological traits related to reproduction
and dispersal ability [18] or by identifying invasive-prone phylogenetic groups [19,20].
As a complementary approach to allow for more consistent interpretations with evidence
from past invasions, we advocate for fitting directly mechanistic parameters from spatio-
temporal observational data. This approach, also called mechanistic-statistical modeling,
has the potential to combine the strengths of the so-called correlative and process-based
species distribution models [21]. It was recently used to jointly fit demographic and spread
rates with environmental responses from large-scale observational data in modeling the
recolonization of wolves [22] and the invasive spread of the watermelon mosaic virus [23].
However, it has never been used to reconstruct perennial plant invasions as far as we
know. Bayesian inference is an attractive framework for this purpose as it allows us to
account for the joint uncertainty of the environmental suitability, spread, and demographic
parameters, and to explore all the possible combinations that best explain the data. It also
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allows us to define a level of constraint on each parameter around realistic values using
prior knowledge.

To design a sound dynamic model of invasion, we must ensure the coherence of the
model with plant physiology and spread mechanisms while simultaneously avoiding over-
parameterization for relevant and reliable interpretations. In particular, if environmentally
suitable areas are prerequisites for invasion success, the ability to produce propagules at
an early age and in sufficient numbers can further enhance invasion success [24]. Several
studies have shown that natural short-distance dispersal cannot explain the fast rate of
invasive spread and have highlighted the crucial role of long-distance dispersal [25,26].
More importantly, invasion success is often strongly related to the intensity and duration of
the human use of the invading species [1,27,28] highlighting the importance of introduction
pressure and human-mediated dissemination. For plants, the proximity to urbanized
areas and road network hubs favors the long-distance dispersal of seeds through the
movement of plants and soil. The variation of the fecundity across life-stages and their
relative abundances in a population are another important driver of the speed behind
invasion waves [26]. The so-called population projection matrix (PPM) models have been
developed to account for these factors [29,30]. Such stage-dependent demographic rates
are particularly influential in driving the invasion dynamics of woody plants, especially
given the variation of maturation age and the large increase in fecundity with age [31]. All
these factors must be captured when designing a dynamic model for explaining the high
variability of lag phases [32–34] and the eventual success of plant invasions.

We propose a Bayesian dynamic species distribution model to investigate the role of
human-mediated long-distance dispersal and age-structured fecundity in the large-scale
spatial dynamics of invasive perennial plants. This model is similar to other Bayesian
dynamic models [22,23,35,36] but differs in the ecological processes it models and the type
of data it uses. In a nutshell, our dynamic state-space model [37] is decomposed into
two main components: the ecological process model, determining the hidden population
dynamics, and the sampling process model, determining the likelihood of the observations
given the hidden population states. The ecological process model is itself decomposed into
a model of the initial population states and a Markov model of the transition between years.
Given some parameters, the latter computes deterministically the temporal succession
of the hidden age-structured populations over a spatial lattice of sites. We account for
human-mediated long-distance dispersal by including a gravity dispersal kernel where
the portion of seeds dispersed over long distances is proportional to the percentage of
urban land cover in a lattice cell. We also explicitly model age-structured fecundity and its
demographic effect using a type of population projection matrix (PPM) model [30]. The
sampling process model computes the likelihood of the spatio-temporal presence-only
records given the hidden population states, accounting for spatio-temporal variations in the
sampling effort and for variable detection rates across data sources. Such a data integration
approach [38] allows us to capitalize on the availability of large numbers of recent records
from large-scale crowdsourcing platforms (e.g., iNaturalist, Pl@ntNet) and older records
from herbaria and institutional monitoring schemes to reconstruct the spatial dynamics of
invasive plant species over several decades. The model is fitted in a Bayesian framework,
allowing the use of a priori knowledge through informative prior demographic parameter
distributions, in order to gain information on the detection rates and, hence, to address
parameter identifiability issues between the sampling effort and abundance [39].

We address, as a demonstration, the invasion of Plectranthus barbatus in the Southern
Cape region of South Africa as a case study. The species is native to tropical India and
likely to northeast Africa [40] was most likely introduced to South Africa around the
middle of the 20th century. We could identify the likely foci of introduction areas using
herbarium records. It was classified as invasive in South Africa in 2004 (Category 1b
taxon in the NEM:BA regulations) but has never been targeted in any substantial control
program. In the following, we introduce our model, the study area, the data, and the model
validation method. We estimate the model parameters to reconstruct the spatial dynamics
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of Plectranthus barbatus and investigate the role played by human-mediated long-distance
dispersal and age-structured fecundity. We show maps of the relative population and of the
invasion syndrome across cells for the key years of the invasion. We also compare the actual
trajectory with modeled alternative trajectories where the model is deprived of long- or
short-distance dispersal to better assess their relative importance to the invasion dynamics.

2. Materials and Methods
2.1. Ecological Process Model
2.1.1. General Structure

We propose a lattice-based spatio-temporal model with discrete time steps (years) to
represent the spatial dynamics of the age-structured population of a perennial plant species.
Each year, a number of seeds are produced by each plant depending on its age. Spatial seed
dispersal is structured with the same framework as in [16]; specifically, the seeds are partly
dispersed locally in the cell, to adjacent cells (short-distance dispersal), and to any other cell
in a proportion that is assumed to depend on the local urbanization rate (human-mediated
long-distance dispersal). Then, for a given cell, the proportion of seeds that grow into a
new plant depends on the local carrying capacity (self-regulation) and the environmental
suitability. The state of the population in cell i (=1, 2, ..., C) during year t is divided into the
population sizes per age (ni,t,1, . . . , ni,t,K) up to K = 50 years, assumed to be the maximal
age for Plectranthus barbatus, which is optimistic for this shrub. This model is thus a matrix
population model, a class of well-studied demographic models [29] but rarely calibrated
on real data. We express the transition rule, i.e., the population sizes in year t + 1 based on
their states in the previous year, in Equation (1) for plants older than one year and Equation
(2) for the newly established plants.

∀k > 1, ni,t+1,k = round((1− ρ)ni,t,k−1) (1)

In Equation (1), the parameter ρ is the mortality, i.e., the death probability of any plant
from one year to the next, which may also include removal by humans (e.g., management)
or other animals. We inform its prior distribution using the maximal age K of a plant and
the maximal carrying capacity, as explained in Appendix A.2. The function round returns
the closest integer which prohibits seed production from less than one adult plant and
thus allows the possibility of total extinction of a local population, e.g., following temporal
changes of the environment. The mortality is assumed to be independent of plant age,
which leads to a geometrically decreasing probability of survival with advancing age.

ni,t+1,1 = round(si,tci,t pi,t+1) (2)

The above Equation (2) depicts the number of newly established plants (of age 1) at
year t + 1 in cell i, which is the product of the number of seeds si,t, the proportion of seeds
surviving self-regulation si,t, and the environmental suitability during the new year pi,t+1.
Each term is expressed as follows:

- si,t = ∑C
i′=1 disp(i, i′)∑K

k′=1 fγ(k′)ni′ ,t,k′

is the number of seeds that have spread to cell i at year t (propagule pressure) which
might establish and become new plants at t + 1, and fγ(k) is the fecundity of any plant of
age k, i.e., the number of seeds produced by a plant in one year, parameterized with γ (see
Equation (3)).

- disp(i, i′) = 1/Di′ if i = i′ (within-cell dispersal),

or ds/Di′ if i′ ∈ Neig(i) (adjacent-cell short-distance dispersal),
where Neig(i) is the set of neighbor cells of cell i, including 3 to 8 cells for our

study area,
or dlai′/Di′ otherwise (long-distance dispersal)
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is the portion of seeds produced in i’ which is dispersed to i so that ∑i disp(i, i′) = 1,
where the normalization constant is defined as follows

Di′ =

(
C

∑
i′′=1

1i′′ 6=i′ ,i′′ /∈N(i′)

)
dlai′ +

(
C

∑
i′′=1

1i′′ ∈N(i′)

)
ds + 1

Hence, disp(i, i′) depends on two parameters:

- ds > 0 determines the proportion of seeds from i’ that reach i if the latter is adjacent
(short-distance dispersal), noted i′ ∈ N(i)

- dlai′ , where ai′ is the proportion of urban habitat area in cell i’, determines the pro-
portion of seeds from i’ transported via long-distance dispersal to i, i.e., when i is not
adjacent to i’, noted i′ 6= i, i′ /∈ N(i). In other words, long-distance dispersal diffuses a
portion of seeds homogeneously and instantaneously across the domain.

- The proportion of seeds from i participating in local recruitment is set as the reference
in this parametrization.

Note that all seeds produced are always distributed among the domain cells following
the formulation above, even for a border cell. It induced a negligible difference of spread
behavior between border and core cells due to the extremely low fitted values for ds and dl
in our study.

ci,t := max

(
pi,t+1 Ai ϕ−∑K

k=2 ni,t+1,k

max(pi,t+1 Ai ϕ, si,t)
, 0

)
∈ [0, 1]

is the ratio of seeds surviving self-regulation, including competition with existing plants.
This ratio is proportional to the difference between the cell’s carrying capacity (pi,t+1 Ai ϕ,
i.e., the maximum number of plants the cell can host) and the local population size of age
2 or older in the next year (∑K

k=2 ni,t+1,k). Parameter ϕ is the maximum number of plants
in a fully terrestrial cell (whose prior distribution uses external information from [16] see
Appendix A.2); Ai is the proportion of land; and pi,t+1 modulates the carrying capacity
given the environmental suitability of the cell (see below). This formulation assumes that
the cell will have pi,t+1 Ai ϕ total slots in the next year, from which we remove the number
of slots occupied by the plants surviving until the next year in order to obtain the number
of available slots for seeds to potentially grow into new plants. Each incident seed is then
distributed to one available slot, and all extra seeds are discarded. When the number of
incident seeds si,t gets larger than the cell’s carrying capacity pi,t+1 Ai ϕ, the denominator
max(pi,t+1 Ai ϕ, si,t) ensures that the number of plants will not exceed the carrying capacity
in the following year.

pi,t := pβ(xi,t) = exp
(

βTxi,t

)
/
(

1 + exp
(

βTxi,t

))
∈ [0, 1]

parameterized by β, models the probability that any seed that has not been discarded due
to self-regulation produces a new plant of age 1 given the environmental variables in the
cell at the current year xi,t. As it also modulates the carrying capacity, pi,t measures the
environmental suitability. We assume here that a seed either produces a plant or dies in the
year, and we do not account for seed bank dynamics.

Assuming a constant environment and that the propagule pressure exceeds the cell’s carry-
ing capacity, the population increases by approximately ϕ′

(
p + (pρ− p− ρ)

(
∑K−1

k=1 ni,t,k

)
/ϕ′
)

,

where p := pi,t+1 ϕ′ := pi,t+1 Ai ϕ, to simplify the notations. Hence, as long as the popu-
lation is negligible compared to the carrying capacity, the former converges towards the
latter at geometric speed (the gap to the carrying capacity is decreased by a ratio p between
t and t + 1). The mortality hampers the growth more as the population grows.
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2.1.2. Age-Structured Fecundity

The number of seeds produced by a plant in a year, i.e., its fecundity, is assumed to be
zero during the first years, as the plant needs to reach a critical photosynthetic ability that
enables reproductive maturity [31]. In a second phase, fecundity is assumed to scale to a
power of the diameter. However, [31] demonstrated that this property, called allometric
scaling, rarely holds for large plants, which most often exhibit fecundity saturation. Fecun-
dity saturation may affect our data given our study time interval exceeding 40 years. In the
absence of a mechanistic model to explain this phenomenon [31], we formulate fecundity
as a function of plant age integrating maturity, allometric scaling, and saturation, as given
in Equation (3).

fγ(k) = f loor
(

Mkθ

Mk̂θ + kθ

)
(3)

In Equation (3), k̂ is the age of reproductive maturity; θ is the allometric scaling factor
controlling the fecundity growth rate once maturity is reached; and M is the maximum
fecundity (number of seeds per plant). The f loor function ensures that the fecundity is
zero until the first year of seed production k̂. This parameterization of fγ(k) generates a
sigmoid-type curve with interpretable parameters.

2.1.3. Initial Populations

A last component of the model is the initial population state in the first year. Most nat-
uralized plant species were introduced many years before the first naturalized population
was established. This complicates the modeling of the invasion dynamics back to the very
first introduction. We assumed that, in the first model year (1980), Plectranthus barbatus was
still restricted to the cells where at least one record was reported before 1980, thanks to the
BODATSA database. The species was initially reported in Nini = 24 cells noted iini

1 , . . . , iini
Nini ,

and we assumed it to be absent from all other cells in this first year. The fact that these
24 cells were in large urban areas supports the hypothesis that the species was still mostly
growing as cultivated specimens by then and, hence, our assumption that it was absent from
wilder areas. We accounted for the uncertainty pertaining to the initial population size and
age structure in each initial presence cell m with two parameters: popInim and ageRatiom.
More precisely, we set niini

m ,1,k = popInim(ageRatiom)
k(1− ageRatiom)

K−kK!/(k!(K− k)!),
i.e., the age-structure of the population is deterministic and proportional to the probability
function of a binomial distribution of the parameters ageRatiom and K (maximal plant age
set as 50), so that K× ageRatiom gives us the mean age of this population, while the total
cell population size is given by the parameter popInim.

2.2. Sampling Process Model

For each dataset d, the number of records observed in cell i during year t is modeled
with a Poisson distribution:

yi,t,d ∼ P(ni,t,.oi,t,d) (4)

where oi,t,d := pdetec
d NTG

i,t,d is the sampling effort on the focal species located in cell i and at
year t from dataset/monitoring scheme d and where ni,t,. = ∑K

k=1 ni,t,k is the total plant
population of cell i at year t. NTG

i,t,d is the total number of records for the target group
(TG) of the species [41] specifically chosen for dataset d as a proxy of its sampling effort
intensity across space and time, as explained further. The parameter pdetec

d is meant to
account for the global variability of the reporting interest across the datasets. This model
implicitly assumes that all plants of a cell for a given year are independently sampled with
the same small probability (oi,t,d � 1). Indeed, under the assumption that oi,t,d � 1 and if
ni,t,. is big (&30), the binomial distribution of yi,t,d of the parameters oi,t,d and ni,t,. is well
approximated by the Poisson distribution given above.

To select a TG for each dataset, we needed to account for the spatial distribution of
its constituent species, as it could induce a strong bias in our estimation of the species
distribution parameters. Specifically, we would ideally need the underlying sum of the TG
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species abundances to be as homogeneous in space as possible [42] As a simple heuristic to
approach this situation and minimize bias, we included the species in the TG one at a time,
beginning with the focal species, such that, at each step, the added species maximized the
spatio-temporal volume occupied by the TG globally. More precisely, at each step, the newly
selected species is the one that adds the most spatio-temporal volumes, i.e., combinations
of spatial cell and year that are absent from the current TG at this step. If no species adds
any spatio-temporal volume, we take the species that maximizes the Shannon entropy of
the distribution of TG species richnesses across spatio-temporal volumes. The procedure
stops when all the species are added to the TG or if all the remaining species decrease the
value of this entropy. The initial species included in the TG is the focal one, in order to
ensure that yi,t,d = 0 when NTG

i,t,d = 0. This simple procedure favors a TG whose records
cover the largest area while controlling for the spatial heterogeneity in richness and, hence,
avoiding combinations of species with correlated spatial distributions.

2.3. Data
2.3.1. Temporal and Spatial Extent

Our study area is a rectangle including most of the Western Cape and the western
end of the Eastern Cape province of South Africa (Figure 1). The study area comprises
817 square 5 min terrestrial cells (approximately 10 km size), a scale defined based on the
resolution of the past occurrence data described in the next paragraph. The temporal extent
of our model is 42 years (1980 to 2021).

Figure 1. Maps of estimated mean population sizes and ages in the initial year 1980. Top: Mean
posterior estimate of population size across the introduction cells. Bottom: Mean posterior estimate
of the mean population age across the introduction cells. The associated posterior distributions are
provided in Figures A5 and A6 of Appendix A.4.

2.3.2. Occurrence Data

We used the presence-only records from the three largest plant occurrence datasets
in South Africa with distinct aims and complementary temporal coverage: the BODATSA
database (GBIF extraction on the 01/07/21: https://doi.org/10.15468/dl.9q36sf, accessed
on 20 August 2022) gathers the records from the professional botanists of South African
herbariums since the early 20th century and was crucial to assessing the pioneer locations
of Plectranthus barbatus in 1980; SAPIA is a professional monitoring scheme that collates
records of alien plant species and was especially active between 1988 and the early 2000s;
and iNaturalist is a naturalist community platform which has collected a large amount of

https://doi.org/10.15468/dl.9q36sf
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validated (research-grade) crowdsourcing records in South Africa since 2017. However,
the records from BODATSA and significant parts of those from SAPIA are rasterized over
spatial grids. We dealt with this spatial uncertainty by aggregating the records as counts
per dataset, year, and cell of a common grid of 5 min square cells (approx. 10 km size),
being the one used by many SAPIA records. We thus build the three-dimensional array
of focal species records noted y and the one of TG records noted NTG. The BODATSA
records are rasterized over a quarter-degree grid, which is too rough for our analysis, and
each cell of this grid exactly overlaps 9 cells of our 5 min grid. Indeed, our grid is nested
inside the quarter-degree grid. Thus, we split each BODATSA record into 9 records, each
one being associated to one 5 min cell overlapped by the quarter-degree cell and being
given the same weight of 0.1111, overall summing to 1. In mathematical terms, this weight
corresponds to the probability that the record belongs to a particular 5 min cell, assuming
that its unknown location is randomly distributed across the original quarter-degree cell
area, and aims at accounting for the spatial uncertainty associated with this record. For
iNaturalist, we only used research-grade records, i.e., those that have had at least one
external review by a community member and whose species final identification has at
least a two-thirds agreement among reviewers; these were extracted on 12/02/21. Our
data comprised 190 total records for Plectranthus barbatus. The automatic selection of TG
plant species per dataset led to the selecting of 354, 169, and 348 species, respectively, for
BODATSA, SAPIA, and iNaturalist, representing a total of 106,287 TG records collected
during 1980 and 2021.

2.3.3. Environmental Variables

We used spatio-temporal environmental variables in two components of the proposed
model: the germination rate pβ(xi,t) that we formulated as a function of vector xi,t, in-
cluding land cover and bioclimatic variables, and the long-distance dispersal rate, which
depends on the urban percent cover ai of a cell i.

Land cover variables. We focused on percent-cover variables for summarizing the
land cover for each cell, i.e., the percentages of the land covered by forests, crops, and
settlements, respectively, in each cell. The latter is used for modeling pβ and the (long-
distance) dispersal kernel disp(., .). The land cover has changed substantially in recent
decades, affecting the spatial invasion dynamics. To account for these changes in our model,
we reconstructed them by linearly interpolating our percent-cover variables between the
4 sampling years where global coverage datasets were available, namely 1992, 2001, 2010,
and 2019. We also linearly extrapolated outside of these sampling years. For the year 1992,
we used GLCC-IGBP [43] (accessed on 15 October 2021) with IGBP land cover classification.
For the other years, we used MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500 m
SIN Grid (accessed on 15 October 2021), which follows the same land cover classification.

Terrestrial area within cells. We computed each cell’s terrestrial area based on the
sum of the terrestrial land cover areas for that cell using MODIS 2019 (our most recent land
cover raster) and considered it as a constant over the study period.

Bioclimatic variables. We collated historical monthly weather data from CRU-TS
4.03 [44], downscaled with WorldClim 2.1 [45] and accessed through: https://worldclim.
org/data/monthlywth.html (accessed on 20 August 2022). This dataset provides a world-
wide coverage at a 2.5-arc-minute resolution of monthly maximum/minimum temperature
and precipitation. We derived from it (i) the annual mean diurnal range (mean of monthly
max–min temperature); (ii) the maximum temperature of the hottest month (max. of
monthly mean of daily max. temperature); (iii) the minimum temperature of the coldest
month (min. of monthly mean of daily min. temperature); (iv) the precipitation (v) the
precipitation of the wettest month; and (vi) the precipitation of the driest month for each
year from 1980 to 2018. Indeed, these six bioclimatic variables have been used to model the
invasive species’ distribution response to climate change [46]. We extrapolated the values
in each 2.5-arc-minute cell for the years from 2019 to 2021 based on the prediction of a
simple linear regression fitted over the years from 2000 to 2018. We upscaled each raster

https://worldclim.org/data/monthlywth.html
https://worldclim.org/data/monthlywth.html
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to our 5 min grid scale by averaging over the 2.5-arc-minute cells whose center fell inside
each 5 min cell. Finally, to restrict the number of parameters, we centered and scaled each
of all of the six variables and synthesized them by taking the values along the two first
axes of a singular value decomposition (SVD) of the bioclimatic variable values across the
combinations of cells and years. This pipeline is provided in our GitHub script repository:
https://github.com/ChrisBotella/plectranthus_barbatus (accessed on 20 August 2022).

2.4. Model Fitting, Convergence Assessment and Posterior Samples

We used prior knowledge from the literature and our own insights on invasive shrub
ecology to constrain the parameter prior distributions and improve parameter estimability
(See Appendix A.2). We fitted the model parameters on our data using a Monte Carlo
Markov chain (MCMC) algorithm with Metropolis–Hastings sampling (Figure 2). We used
our own implementation to better control the cost in memory. Convergence of the MCMC
was difficult to obtain given the complex and discontinuous surface of the unnormalized
posterior log-likelihood (hereafter called posterior likelihood), and in such cases, it is much
more efficient to start the MCMC in the region of the parameter space with maximal
posterior likelihood. We ran three successive sessions of nine independent chains for
100,000 iterations to progressively refine the initialization parameters Θ0. While Θ0 was
randomly drawn based on prior distributions independently for each chain for the first
session, it was set as the parameters maximizing the posterior likelihood across all samples
from the past session for the second and third sessions. Box 1 summarizes the model fitting
procedure. To assess the convergence of the last MCMC session, we analyzed visually the
parameter trace plots, including all chains (Figure A2 of Appendix A.3), and computed
their univariate and multivariate Gelman and Rubin criteria (Brooks & Gelman, 1998),
implemented in the R package coda (see Appendix A.3). We used 1678 posterior samples
in the main analysis, obtained from a thinning of samples from the last MCMC session
after applying a burnin of 15,000 iterations. We set a thinning interval of 450 to reduce the
auto-correlation between MCMC samples due to a very low acceptance rate.

Figure 2. Summarized model fitting procedure for a single Monte Carlo Markov chain with
Metropolis–Hastings sampling algorithm. The parameters Θ0 included 48 parameters for the initial
populations, 14 for the ecological process, and 3 for the sampling process.

https://github.com/ChrisBotella/plectranthus_barbatus
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2.5. Output Representations

Model interpretation. Given the lack of identifiability of certain parameters, we had
to be careful when interpreting the model output. For example, it is nearly impossible to
disentangle population size from the reporting interest pdetec

d , due to our presence-only
data (see a discussion about the problem in Hastie & Fithian, 2013); so, their identifiability
mostly relied on the constraints imposed by their prior distribution (see Appendix A.4
for comments on parameter correlations and interpretation), and such parameters had a
large posterior confidence interval. Consequently, our interpretations did not rely on the
absolute estimated population size but compared its value or order of magnitude between
spatial cells and/or from one year to another (relative population size).

Population size percentile spatio-temporal maps. We represented the relative popu-
lation size across cells and years to understand the species’ invasion dynamics. For this pur-
pose, we computed, for each parameter sample, the population size per couple (cell, year)
and discretized it by associating each to one of the percentile intervals [0, 40th percentile],
]40th percentile, 70th percentile], ]70th percentile, 90th percentile], and ]90th percentile,
maximum]. Based on this discretization scheme, we propose a simple way to deal with am-
biguous couples (cell, year) for which there is no consensus across parameter samples: Each
couple where less than two-thirds of the samples agree with their population size percentile
is tagged as “uncertain”. We were thus able to draw comparable maps of relative popula-
tion size for selected years in Figure 3 and for all years in our interactive web Appendix A.6
(R Shiny application): https://chrisbotella.shinyapps.io/plectranthus_barbatus_sa_maps/
(accessed on 20 August 2022)

Figure 3. A reconstruction of Plectranthus barbatus invasion in the Southern Cape, South Africa, Part
1. Maps of population size percentile range for selected years between 1980 and 2021.

Invasion syndrome spatio-temporal maps. We analyzed the growth and spread sta-
tus of populations across space and time. We simplified the growth and spread status
of a population by defining five discrete categories, called invasion syndromes: (i) cer-
tain population growth but uncertain dispersal (the population does not spread enough
seeds for new plants to effectively grow from it in other cells); or (ii) certain population
growth and dispersal (e.g., invasive population); or (iii) certain dispersal but no certainty
about whether the population is growing or declining (e.g., large invasive population
which is self-regulated); or (iv) certain population decline and dispersal (e.g., a large
population declining due to environmental change); or (v) certain population decline
but uncertain dispersal (e.g., a collapsing population). The growth status and spread
status of any population are determined exactly and independently for each posterior

https://chrisbotella.shinyapps.io/plectranthus_barbatus_sa_maps/
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sample. The growth (resp. decline/dispersal) status of a population is considered cer-
tain if at least two-thirds of the posterior samples agree that the population is growing
(resp. decreasing/generating new plants in other cells) from one year to the next. If the
status of growth and dispersal does not belong to any of the five invasion syndromes,
we tag the population as uncertain. We map the invasion syndrome across the cells for
6 key years in Figure 4 and for all the years in our interactive web Appendix A.6 (R
Shiny application): https://chrisbotella.shinyapps.io/plectranthus_barbatus_sa_maps/
(accessed on 20 August 2022). We also reconstructed the total population, seed production,
shanon entropy of population across cells per year (Figure 5) and the number of new trees
disseminated by long-distance dispersal per year (Figure 6).

Simulated trajectories under restricted dispersal modes. We compared the relative
importance of short-distance dispersal and human-mediated long-distance dispersal in the
past invasion dynamics by carrying out an ablation simulation experiment. We simulated
the past invasion dynamics again for each posterior sample by removing either (i) the
long-distance human-mediated dispersal (setting dl = 0) or (ii) the short-distance dispersal
(setting ds = 0) in the model, with all the parameters otherwise unchanged. For each
posterior sample, we computed yearly the difference between the ablated and the full
model for the population size and the Shannon entropy of population sizes across cells and
divided it by the full model value. We show the average across all the posterior samples
(solid curve) and the 90% confidence interval (ribbon) of this “relative difference” for the
population size (top) and the Shannon entropy (bottom) in Figure 7. Note that the first
scenario, where we removed the long-distance dispersal, is closely related to the scenario
where the plant would be systematically eradicated from every cell having a non-null
urban area. The latter would have an even more drastic negative impact because the plants
in the urban cells do not even contribute to the local and short-distance dispersal.

Fecundity versus plant age. Exploring the estimated fecundity, i.e., the number of
seeds produced as a function of plant age, as defined in Equation (3), enables us to test
our hypothesis on the role of the delay before reproductive maturity in determining the
invasion dynamics. Figure 8 shows the posterior distribution of the fecundity as a function
of plant age divided by its asymptote (M).

Figure 4. A reconstruction of Plectranthus barbatus invasion in the Southern Cape, South Africa, Part
1. Maps of population growth syndrome for selected years between 1980 and 2021.

https://chrisbotella.shinyapps.io/plectranthus_barbatus_sa_maps/
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Figure 5. Global invasion metrics across sample parameters (mean / black line and 95% confidence
interval / grey ribbon) over the study period (1980–2021). Top: Log10 of total population size per
year. Middle: Number of 100 km2 spatial cells colonized per year. Bottom: Log10 of total seed
production per year.
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Figure 6. Contribution of long-distance (LD) dispersal to population recruitment over years. The
posterior mean (solid curve) of the log10-number of new plants growing from seeds dispersed by
long-distance dispersal is shown with its 95% confidence interval (grey ribbon) for each year.

Figure 7. Relative reduction in population size under ablation of long-distance dispersal (red) or
short-distance dispersal (blue) per year. For each ablated dispersal mode, we show the mean and
90% confidence interval (across posterior samples) of the population difference between the ablated
model and the full one divided by the population of the full model.
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Figure 8. Posterior age-structured fecundity scaled by the maximal fecundity (M): mean posterior
estimate (solid black line) and 95% confidence interval (gray ribbon). We first computed the curve
from the three fecundity parameters (k̂, θ, M for each posterior sample and then calculated the mean
and quantile values (2.5% and 97.5%) per age.

3. Results

We analyzed the model parameters’ estimability and the predictive performance in
time. We produced a map-based reconstruction of the key years of Plectranthus barbatus’
invasion history in the Southern Cape region of South Africa in Figures 3 and 4. We
also explored several questions pertaining to the role of human-mediated long-distance
dispersal and age-structured fecundity in this invasion event.

A marked information gain on most parameters despite imperfect MCMC conver-
gence. Despite the sampling heterogeneity of our presence-only data, the convergence of
the MCMC chains was reasonable for most parameters from the visual inspection of their
trace plots and univariate convergence criteria (PSRF < 2), but the multivariate criterion
(MPSRF = 2.8) suggested that the algorithm did not fully converge to the posterior distri-
bution (see Appendix A.3). This can be partly explained by a strong negative correlation
between the detection rates and the maximal carrying capacity (Figure A7 of Appendix A.4).
This suggests that the strong observed information gain on the detection rates (Figure A4
of Appendix A.4) came mainly from the informative prior distribution of the carrying
capacity (see Appendix A.2). There was also a gain of information on mortality, with a
posterior mean of 0.5, even though this parameter did not converge well, showing a large
95% confidence interval of 0.36. Most other parameters, including the initial population
parameters, visually showed a strong information gain (Figures A4–A6 of Appendix A.4),
except the maximal fecundity M, whose posterior sample distribution was very similar to
the prior distribution.

Model validation. The model predictions in the validation depended on the time
after data deprivation. In the following, we used the taxonomy of SDM performance with
AUC [47] The validation performances for the short-term future (2000–2015), i.e., up to
15 years after data deprivation, were poor (mean AUC = 0.64) but significantly better than
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random and comparable to the training performances (mean AUC = 0.58) (see Figure A10
of Appendix A.7). In other words, the predicted population in the presence cells was
higher than the one of the non-detection cells in 64% of the random pairs of detection/non-
detection validation cells. However, the predictions failed (average AUC = 0.44) in validation
after 16 years of data deprivation (2016–2021), with performances worse than a random
guess, while the training performance was fair (mean AUC = 0.73) in the same period.

Signals of introduction hotspots and residence time. The estimated initial popula-
tion sizes in 1980 varied significantly across the 24 introduction cells. Indeed, despite some
uncertainty, the posterior estimates of the initial population size were significantly higher
in some cells than others (Figure A5 of Appendix A.4). For instance, Figure 1—top shows
that the highest population sizes (mean estimates) were in the north of Stellenbosch, near
Paarl, Cape Town, and George. Nevertheless, significant populations were also located in
other less urbanized areas. The oldest initial population was estimated to be in a coastal
cell located around Wilderness, on the east side of George (Figure 1—bottom), where the
mean age of the plants was nearly 40 years, suggesting the existence of (cultivated) plants
in the area even before 1940, while the first BODATSA observation in the whole study area
was recorded in 1963.

An early massive spread wave driven by human-mediated long-distance dispersal.
The long-distance spread of seeds from urban areas happened consistently every year
of the modeled period since 1980, with a higher impact on the invasion dynamics in the
first 15 years. Indeed, while population sizes were low everywhere in 1980, by 1996 large
populations had colonized the vicinity of two introduction areas, Stellenbosch and George,
but also areas much further from the introduction sites, such as the vicinity of Swelledam
in the middle of the study area (Figure 3). This was due to the long-distance dispersal from
the urban areas of introduction that was already occurring in 1980 (top-left map of Figure 4).
To prove that long-distance dispersal was necessary, we must compare what would have
been the population dynamics without this dispersal mode. This counterfactual evidence
is provided in Figure 7 (red curve), showing that without long-distance dispersal, the total
population would have been 10 times smaller in 1990, and still 4 times smaller by the end of
the study period, despite the slow catching up due to short-distance dispersal. Additionally,
the species would have been far from reaching its current equilibrium. The other alternative
scenario (blue curve in Figure 7), where the model is deprived of short-distance dispersal
while keeping all the other parameters constant (blue curve), showed that the absence of
short-distance dispersal can hardly affect the invasion dynamics, except for a slight delay
in overall population growth from 1990 to 1995.

A fast establishment phase driven by local reproduction. The total population grew
by about a million times between 1980 and 1996 (Figure 5—top), leading to a steady state
due to the self-regulation in our model (carrying capacity). The steep and sudden increase
in the Shannon entropy (Figure 5—middle) shows that the population sizes were rapidly
balanced between cells over the period of 1987–1994. This is explained by a synchronous
growth in environmentally suitable cells driven by local dispersal. Indeed, it is crucial to
highlight that long-distance dispersal was not intense enough to drive population growth
by itself. It only allowed the establishment of small pioneer populations in many remote
areas, while self-sustained local dispersal was responsible for driving their fast growth in a
second phase. Indeed, long-distance dispersal resulted in far too few new plants annually
(102 to 106, Figure 6) to compensate for the overall annual mortality (50 +/− 20% of the
total population, namely 107 to 109 annual deaths, according to Figure 5—top).

The time before reproductive maturity induced marked growth steps. As visible in
Figure 8, representing the scaled fecundity curve, the age before reproductive maturity was
estimated to be almost certainly three years. Indeed, despite a slightly earlier optima in the
prior distribution of this parameter and under the model assumptions, the result suggested
that the individuals were effectively reproductive in their third year. The fecundity increases
quickly with age in older plants (Figure 8), although fecundity saturation is certainly not
reached during the life span of most individuals, as 99% of plants die before the age of
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4 to 13 years (given the uncertainty about mortality). Actually, the absolute fecundity only
becomes greater than 100 with a probability of 0.95 at 5 years old, as illustrated by the
wide confidence interval on fecundity between age 4 and 20 years (Figure 8) due to the
uncertainty of the allometric scaling factor θ (estimated = 8.8 +/− 2). We thus conclude
that only a very small proportion of germinated plants end up contributing significantly
to the population growth in the fitted model. This latency phase before individual plants
become significantly fecund also explains the two marked steps in the growth of the global
seed production over time (Figure 5—bottom), and thus the lag phase. Note, we scaled
the fecundity by its maximal value M in Figure 8. Indeed, because the model did not gain
any information on this parameter from the data, its posterior distribution was the same as
its prior.

A possible lag phase of fifty years. Our results showed that the species spread
rapidly across the study domain, but the last population growth phase, which multiplied
the population size by nearly 20, only occurred in the early 1990s (Figure 5—top). Given
the inferred age-structure of the initial populations, which suggests an introduction prior
to 1940, the model predicted a lag phase of 50 years or more preceding this last population
growth phase.

4. Discussion

We introduced a new Bayesian dynamic species distribution model to reconstruct
the invasion dynamics of a perennial plant species from the occurrence data. This type of
model merges the strengths of mechanistic dynamic models that may produce realistic and
extrapolatable predictions, as shown here, with those of statistical Bayesian inference that
leverages heterogeneous data and prior knowledge for parameter calibration. Although
this large class of models has been used for related purposes [22,35,36,48], their potential to
reconstruct and predict biological invasions has been little touched upon to date. In the
model, we have accounted for two dispersal modes and age-structured fecundity during
the transient phase of invasion dynamics. We exemplified it with the recent invasion of
Plectranthus barbatus in South Africa. Our results highlighted the crucial importance of
long-distance dispersal in determining the past spread and, indirectly, population growth
(and invasiveness) of the species, most likely mediated by humans. Indeed, according to
our estimates and ablation study, although Plectranthus barbatus reached an equilibrium
population by 2000 or earlier, it would have been far below this equilibrium over the same
period without long-distance dispersal. Hence, our results support the opinion that urban
areas act as launching sites for invasive plants in natural areas of South Africa [49].

The fitted ecological process model could also be useful for formulating management
strategies by testing the impact of different action scenarios. We are, however, not aware
of any substantial management efforts directed at Plectranthus barbatus in South Africa in
the past, which means that the invasion dynamics of the species have not been affected
(negatively or positively) by management. This makes our model a coherent simulation
tool for assessing what impact an eradication plan could have had on the invasion trajectory.
More specifically, our complementary simulation, redrawing the invasion trajectory of the
species without human-mediated long-distance dispersal, could actually be interpreted
as a scenario of what the invasion would have been if the plant had been extirpated early
and systematically around urban areas. Indeed, this simulation suggested that around
1996 the population would have been suppressed by 10 compared to the historical scenario
where it had already reached equilibrium at this time. This strategy could buy time for
broad-scale management and regulations to be coordinated. Whereas South Africa has
advanced strategies for managing invasive species, none are systematically implemented
for invasions in urban areas [50]. Urban-oriented management strategies are also less
costly than actions in remote or protected areas. For instance, such strategies could more
easily involve volunteers from citizen science programs by organizing mutually beneficial
actions [51]. Our results on the age-structured fecundity also suggest that removing
only the oldest plants (e.g., older than 5 years for Plectranthus barbatus), which is only a
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tiny proportion of the population but several orders of magnitude more fecund, would
drastically reduce the management effort for the same level of control effectiveness.

A limitation of our study is that we did not account for introductions that may have
happened in unreported areas or later than 1980, likely in the context of private gardens.
This possibility is supported by the fact that our results suggested a first introduction prior
to 1940 followed by a 50-year lag phase, which would have given more than enough time
for nurseries and gardeners to propagate the species. The knowledge of early introductions
in other sites would have likely decreased the estimated importance of long-distance dis-
persal in our model, but it would not alter our conclusion that humans have been crucial in
propagating the species, ensuring its fast invasion dynamics. The intensity of gardening
and the residence time have been shown to be major factors explaining the chances of culti-
vation escapes and the naturalization of woody plants [1]. However, this interdependent
knowledge of planted population sizes, residence time, and lag phase is often lacking or
approximative for non-native plant species [52]. Our model actually provided information
on initial population size and age structure, filling these knowledge gaps.

If this study has revealed the hidden value of massive and heterogeneous crowd-
sourcing records (e.g., iNaturalist) for invasion monitoring, it also supports the broader
call for better access to biodiversity data in urban areas in order to better manage the
regional landscape [53]. For instance, improving the knowledge of urban plant ecology
is tied to the availability of better data on urban biodiversity habitats [54]. In addition,
large biodiversity occurrence datasets explicitly tagging cultivated (or captive) versus wild
alien individuals, such as those hosted by iNaturalist, are rare. Such information is highly
relevant for quantifying the propagule pressure during the naturalization phase, which
is crucial for determining later invasion success and could be better accounted for in the
kind of model proposed here. Another way to address this challenge of implicit tagging
would be to apply automated procedures to classify a posteriori biodiversity records as
cultivated/captive or wild.

We also showed that the last population burst of Plectranthus barbatus, which occurred
in the early 1990s and led to the final equilibrium phase, was most likely preceded by at least
50 years of apparent lag phase since its introduction time, which is coherent with the lag
phases of naturalized shrubs in the literature [8]. In agreement with our initial hypothesis,
we showed that this lag phase is partly explained by the age-structured fecundity of
Plectranthus barbatus. Indeed, according to our model reconstruction, the last decade of
this lag phase, between 1980 and 1990, was due to the interplay between the low initial
population size, the delayed reproductive maturity, and the high mortality. Empirical
evidence for these types of phenomena, often documented in theory [29], have been scarce
until now [26]. However, our model did not account for the period before 1980, when the
data were too scarce, and the role of the age-structured fecundity in this early phase remains
uncertain. In addition, even though our model inference accounted for the spatio-temporal
variations of the sampling effort, the very low sampling effort in the early phase of the
invasion questions the ability of our model to capture a significant signal of age-structure
changes in the early populations and, hence, the large uncertainty of our reconstruction
for this period. This brings us back to the harsh reality of the difficulty of separating a real
invasion lag phase from the seemingly similar effect of an increasing sampling effort over
time [55]. Still, our methodology should become more powerful given the increasing pace
of museum data digitization [56] and of data collection through crowdsourcing.

Although our approach targeted interpretation and not future prediction, evaluating
model fit and its future predictions through validation enabled us to characterize the
relevance of the modeled processes in capturing the complexity of the drivers behind the
actual invasion dynamics. The AUC performance on the training data was poor to fair
(using the performance taxonomy from [47]) likely due to the relative simplicity of our
environmental suitability model. The validation performances were poor in the short-term
future, and with the training performances in the same period, but still significantly greater
than random predictions and comparable to the AUCs obtained by [57], who evaluated
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SDM spatial transferability on 54 plant species. Hence, the model seems to have captured
some transferable features for the environmental preferences, demographic, and dispersal
rates of the species. However, the failure of long-term predictions in validation, after 16
years of data deprivation, illustrated the many sources of errors that may affect this kind of
projection and their evaluation. Indeed, on the one hand, the predictability of invasions has
often been fundamentally questioned [16,58], especially due to the intrinsic stochasticity of
demographic events and inter-individual variability, and thus, it seems undeniable that
predicting the future invasion dynamics remains an open problem. In addition, various
other reasons can explain these overall low validation performances here, including the
amount of false absences hidden in the non-detections used in the validation, and the many
other potential environmental or biotic drivers not accounted for here.

The estimation precision of the current framework could be significantly improved
by using more and/or better prior knowledge. We used informative prior distributions
on the carrying capacity, which constrained the population size and the detection rates
given the observed data and reduced the identifiability issues on these quantities [39]. Even
though reduced, this identifiability issue was still present, as indicated by the residual
correlation between the estimated parameters. Furthermore, the absence of evidence of
information gain on the maximal fecundity from fitting the data questions the model design
and its input data structure. Further work should determine whether the lack of parameter
identifiability and information are structural or if information could be gained with more
or better data structure and prior knowledge. Such questions could be addressed using
simulations and Bayesian identifiability diagnostic tools [59]. Some iconic invasive species
have a better documented physiology, ecology, and history of introduction and spread,
providing the opportunity to use such greater knowledge to specifically reduce uncertainty
on the population size and demographic rates. For instance, reproductive traits could be
used to constrain more precisely the features of the age-structured fecundity curve, such
as the maximum number of seeds per plant and the age before maturity, and account for
vegetative reproduction. Estimates of detection probabilities obtained at finer spatial scales
than the dense presence-only datasets and site-occupancy models [60] could inform prior
distribution on the detection rates. Finally, the approximate age of reported individuals
could be determined from images of crowdsourcing records (e.g., iNaturalist and Pl@ntNet)
and could be added as a complementary data and fed into the model to better inform the
estimation of mortality.

Although Bayesian inference is an important aspect of our methodology, given its
capacity to account for prior knowledge on parameters, it induced algorithmic difficulties
and heavy computational costs due to the complexity of our model. Indeed, we faced
important convergence issues with our Metropolis–Hastings MCMC sampling algorithm.
Initializing the algorithm with parameters of maximal posterior likelihood was crucial for
obtaining a reasonable level of convergence. However, refining these parameter starting
values required heavy preliminary runs. Moreover, the high-level sample auto-correlations
in the final chains, due to an extremely low acceptance rate, required drastic thinning
intervals, attesting to the inefficiency of the MCMC algorithm for exploring the parameter
space (or the presence of a flat and rugged likelihood surface). Efficiently sampling complex
and potentially multi-modal posterior likelihood surfaces is a known fundamental problem
in Bayesian statistics [61], even though recent MCMC algorithms such as differential
evolution MCMC [62] have been successfully applied to infer multi-species dynamic
interaction models [48].
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Appendix A

Appendix A.1. Illustration of Fecundity Function

Figure A1. An example of the fecundity of a perennial plant as a function of the plant’s age (k̂ = 7 as
represented by the red vertical line, i.e., age of reproductive maturity, M = 100, 000, θ = 8).

Appendix A.2. Parameter Prior Distributions

- pdetec
. , dl , ds ∼ U(0, 1)

- β. ∼ N(0, 900)
- θ ∼ U(0, 100) , which in practice does not constrain the potential functional shapes of

the fecundity as an increase of this factor makes the shape converge quickly towards a
step function.

-
(

k̂− 1
)
∼ B(6, 0.3)

- log(M) ∼ N
(
log
(
2× 105), 0.25

)
: the expectation of M is then approximately

200,000 seeds/plant/year, and its standard deviation is 50,000, which is coherent with
prior knowledge on woody plant fecundity while acknowledging a large uncertainty.

- log(ϕ) ∼ N(15.95, 0.5) : the expectation of ϕ is 9.5 million plants/cell (of 10 × 10 km).
This number is very close to the one taken for Acacia longifolia from [16]. The standard
deviation is set so that the standard deviation of ϕ is of approximately 8 million
plants/cell, acknowledging a large uncertainty around this number.

https://doi.org/10.5281/zenodo.6921965
https://github.com/ChrisBotella/plectranthus_barbatus
http://www.sun.ac.za/hpc
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- ρ ∼ U
(

1−
(
1/
(
9.5× 106))1/50, 1

)
: the lower bound is defined such that all plants

of an approximately saturated cell population will certainly die before reaching the
maximal age, set as 50 in our application.

- popIni. ∼ U(0, 1000)
- ageRatio. ∼ U(0, 1)

Appendix A.3. MCMC Procedure and Convergence Tests

MCMC procedure. We provide here more details about our fitting procedure and
the reasons that have led us to these choices. The surface of our posterior likelihood was
complex and discontinuous, especially because of the nonlinear components of the transi-
tion equations (e.g., the self-regulation coefficient) and also by population rounding and
by the lack of identifiability of certain parameters. In such cases, the reference acceptance
rate of 0.23, which optimizes the exploration of the parameter space by Metropolis-type
MCMC algorithms under classic assumptions on the regularity of the posterior likelihood,
does not hold anymore. As noted by Rosenthal [63], when the posterior likelihood has a
complex surface with multiple modes, the optimal acceptance rate is lower and potentially
much lower. We observed this phenomenon in numerous experiments not reported here:
aiming at a high acceptance rate of our MCMC systematically forced us to decrease the
variance of the samplers enormously, resulting in a much too local exploration of the
chains, particularly when starting the chains in high likelihood regions. Hence, we set
a relatively high variance for all parameter samplers to ensure a wide exploration of the
parameter space, increasing our chances to detect multiple modalities and identifiability
issues and to avoid getting stuck in sub-optimal regions. It was naturally at the cost of
a high rejection rate (as visible from Figure A2 of this appendix), leading to high auto-
correlation of samples. The downside is that we needed to refine the initial parameters
and run many iterations to obtain a reasonable level of convergence. Hence, we ran a first
MCMC session (10 parallel chains of 100,000 iterations) where the initialization parameters
Θ0 were randomly drawn, independently for each chain, based on their prior distributions.
Then, we retained the parameter sample, maximizing the posterior likelihood, and used
it to initialize 10 chains of a new MCMC session. We repeated the procedure for a third
and last session. Indeed, in contrast to the first and second MCMC sessions, the posterior
likelihood value almost did not increase over the third session (visible from Figure A2
of this appendix), showing that the initialization parameter was likely close to the global
maximizer of the posterior likelihood.

MCMC Convergence tests. In addition, the visual inspection of the main parameter
trace plots of this last session including all chains (Figure A3 of this Appendix) show that,
for most parameters, despite the low acceptance rate, the chain trajectories largely overlap
and show no trend in their variation. However, this is not true for parameters ρ, θ, dl , ds, for
which the different chains tended to diverge towards different ranges of values. It might be
due to a too small variance of the proposed distribution of the samplers of these parameters.
We checked the overall convergence accounting for all chains and all parameters using the
multivariate Gelman and Rubin criterion (MPSRF, [64]), implemented in the R package coda.
A value close to one indicates a good level of convergence, whereas in our case the MPSRF
estimate was 2.8, suggesting that convergence was not fully achieved, but we may still
interpret our posterior samples as a reasonable approximation of the posterior distribution.
The univariate version of the Gelman and Rubin criterion was also computed for the
16 main model parameters, and their values are provided in Table A1 of this appendix.
They showed that some parameters converged better than others, with a criterion less
than 1.5 for most parameters (10 over the 16), and the maximal criterion value was 2.1 for
parameter ρ. The very low rejection rate was dealt with by selecting a very large thinning
interval of 450 for all 9 chains. We also removed a burnin of 15,000 iterations, yielding a
total of 1678 posterior samples used in the main analysis.
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Figure A2. Posterior log-likelihood for iterations of the 10 independent Monte Carlo Markov chains
of the third and last session. All chains were initialized with the same parameters obtained from the
two previous MCMC sessions.

Figure A3. Trace plots of the 18 main model parameters for the 100,000 iterations of the third and last
MCMC session and for 10 independent chains.
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Table A1. Point estimate and upper confidence interval of the univariate Gelman and Rubin conver-
gence criteria (PSRFs; Brooks & Gelman, 1998) for each of the main model parameters. These criteria
were computed on the 9 chains of the last MCMC session. The multivariate upper bound (MPSRF),
accounting jointly for all parameters, was 2.80. Values closer to 1 indicate a better convergence.

Parameter PSRF’s Point Estimate PSRF’s Upper Confidence Interval Bound

θ 1.99 3.37

k̂ 1.54 4.63

ds 1.75 2.82

dl 1.50 2.24

ρ 2.1 3.50

log(ϕ) 1.43 1.87

log(M) 1.08 1.17

β1 1.36 1.82

β2 1.18 1.39

β3 1.07 1.15

β6 1.61 2.41

β7 1.40 1.84

β8 1.48 2.15

pdetec
1 1.42 1.86

pdetec
2 1.53 2.07

pdetec
3 1.37 1.76

Appendix A.4. Parameter Estimability

One important question to address, given the complexity of the proposed model as
well as the heterogeneity of the data, is: how much have the data and the model structure
(reflecting knowledge on the process) improved our knowledge about each parameter?
A good measure of this is how much its parameter posterior distribution diverges from
its prior distribution [59]. The posterior distribution is approximated by the empirical
distribution of parameter values across the samples at the convergence of the MCMC
algorithm. Thus, we plotted simultaneously in Figures A4–A6 of this appendix (i) the
empirical posterior distribution based on the posterior samples used in the manuscript
in the form of a histogram (plain red histogram) at a probability density scale and (ii) the
prior probability (density) function for each parameter (blue curve).

Most parameters showed a drastic information gain, including age of maturity (matur);
the fecundity allometric scaling factor (theta, Figure A4 in this appendix); the dispersal
rates (d_l and d_s, Figure A4 in this appendix); the environmental suitability parameters
(Beta_X, Figure A4 in this appendix); the detection rates (pdetec_X, Figure A4 in this ap-
pendix); the initial population sizes (Figure A5); and the mean age of the initial populations
(Figure A6). Conversely, there was very little information gained for the maximal carrying
capacity (phi) and none for the maximal fecundity (M).
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Figure A4. Posterior sample density (red histogram) and prior density (blue curve) for all 16 pa-
rameters of the model, excluding the initial population parameters (see below) and β4, β5 = 0.
The deviation of the posterior sample density from the prior density enables us to visualize the
information gained on the parameters from the data.
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Figure A5. Posterior sample density (red histogram) and prior density (blue curve) for the initial
population size (popIni) in 1980 for each introduction cell. The mean posterior sample value of a cell
is used as the cell value in Figure 1—top of the main manuscript.
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Figure A6. Posterior sample density (red histogram) and prior density (blue curve) for the mean age
of the initial population (ageRatio) of each introduction cell. The mean posterior sample value of a
cell is used as the cell value in Figure 1—bottom of the main manuscript.

Identifiability issues. However, looking at marginal parameter posterior distribution,
as previously, is not enough to answer the important question of the statistical possibility
to fully disentangle all parameters, a property tied to the model design and data called
identifiability. A lack of identifiability may lead to an apparently large marginal variance
hiding in fact strong correlations between different parameter estimates. This would
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indicate that even though some information was captured on the parameters, there existed
trade-offs between them, yielding equally likely values. For this reason, we also plotted
and analyzed hereafter the correlation matrix of sample parameter pairs in Figure A7
of this appendix. A trade-off between the carrying capacity phi (strongly related to the
final total population size) and the parameters related to the species detectability (pdetec)
is structurally necessary to ensure that the number of model-predicted records per cell
remains in line with the data when the underlying total population increases. Indeed,
Figure A7 shows this expected negative correlation between pdetec and phi. This negative
dependence was mentioned in the manuscript and already discussed in [39]. Indeed,
estimating precisely the absolute total population size is nearly impossible given the
presence-only data we have, unless relying on strong hypotheses/prior knowledge. We
actually used prior knowledge in our model to constrain the prior distribution of phi and
M, which at least partly explains the marked information gain on the detection rates (see
pdetec_1, 2 and 3 in Figure A4 of this Appendix). Figure A7 also shows much more discrete
trade-offs that seem to have appeared between the fecundity allometric factor (theta),
the mortality (rho), the spread rates (d_l and d_s), and some environmental suitability
parameters (Beta_7 and Beta_8), but the correlations are not strong enough to interpret
them as identifiability problems, and better data would most likely reduce the variations of
these parameter estimates.

Figure A7. Scatterplots and Pearson correlations between pairs of model parameters across samples
of the 9 chains of the last MCMC session.
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Appendix A.5. Environmental Suitability Estimates and Interpretations

In our model, the effect of the abiotic environment on the plant survival is twofold:
the environment affects the germination rate and the carrying capacity of a cell (see section
Ecological process model). Both effects are applied through the same coefficient pβ(xi,t), a
function of the vector xi,t, which concatenates the value 1 (x1

i,t) associated with the intercept,
and the environmental covariables in cell i at year t (x2

i,t, . . . , x8
i,t). The coefficient pβ(xi,t) is

expressed as follows:

pβ(xi,t) = exp
(

βTxi,t

)
/
(

1 + exp
(

βTxi,t

))
∈ [0, 1]

With the environmental covariables ordered as follows: x2
i,t is the first synthetic biocli-

matic variable (see explanation below), labeled “I(svd1)” in Figure A8; x3
i,t is the second

synthetic bioclimatic variable, labeled “I(svd2)”; x4
i,t is the quadratic transformation of the

first bioclimatic variable, labeled “I(svd1ˆ2)”; x5
i,t is the quadratic transformation of the

second one, labeled “I(svd2ˆ2)”; x6
i,t is the percent of forest cover in the cell labeled “forest”;

x7
i,t is the percent of cropland cover in the cell labeled “crop”; and x8

i,t is the percent of urban
cover in the cell labeled “urb”.

Coefficient β ∈ R8 is the vector of parameters encapsulating the intercept and the
effects of the environmental variables. Figure A8 in this appendix shows the posterior
sample distributions per component of β. It shows that the germination and maximal
population of Plectranthus barbatus are strongly related to a high percentage of urban
and forest land cover, whereas they are more slightly disfavored by a high percentage of
cropland land cover. Hence, it explains why the Garden Route, an area intensely exploited
for forestry and also coastal tourism, has become the major area of invasion.

Figure A8. Box plot of environmental suitability parameter posterior distribution. For each com-
ponent of β, we summarize the posterior sample values in a box plot. Each colored point cor-
responds to an MCMC chain and iteration consistently with other figures. I(svd1) and I(svd2)
are the components associated with the 2 synthetic bioclimatic axes (see section Environmental
variables—Bioclimatic variables of the main manuscript), while I(svd1ˆ2) and I(svd2ˆ2) are associ-
ated with their quadratic transformation.
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As explained in the main manuscript, the two synthetic bioclimatic axes svd1 and
svd2 are the two first axes of a singular value decomposition applied to the values of six
bioclimatic variables. These variables turned out to have a non-significant and negligible
effect. For instance, changing the value of svd1 from its maximal to its minimal value in the
study area would not change the germination probability and carrying capacity. In other
words, we found no evidence that bioclimatic aspects are constraining the distribution of
Plectranthus barbatus in this area.

Appendix A.6. Complete Sequence of Growth and Population Maps

The full sequence of relative population and invasion syndrom maps (same format as
Figure 4 of the main manuscript) from 1980 to 2021 is provided as an online interactive R
Shiny application at the following link: https://chrisbotella.shinyapps.io/plectranthus_
barbatus_sa_maps/ (accessed on 20 August 2022).

Appendix A.7. Model Validation

To validate our model we measured its ability to predict the future dynamics in a
subset of validation cells whose data were hidden from the model during its calibration.
Note that in this experiment we fitted an instance of the model independently of the one
presented in the main manuscript, which used all the available data.

Validation data subset. We selected 50 cells to validate the predictions over the
validation period 2000–2021. These cells were selected randomly under certain constraints:
Plectranthus barbatus was detected in half of them (25 detection cells) over the validation
period and not detected, despite the evidence of the sampling effort (TG records), in the
others (25 non-detection cells). In addition, for the detection (resp. non-detection) cells,
there was at least one detection (resp. non-detection) among the 25 cells during each 3-year
interval. The 50 validation cells are represented in green in Figure A9 of this Appendix. All
data collected in these cells during 2000–2021 (Plectranthus records and TG records) were
hidden from the model during its fit so that the fitted model could not account for their
information and so that we could test predictive performances over these last two decades
in the 50 validation cells. In practice, the number of focal species records as well as the TG
records were simply set to zero, respectively, in y and NTG, inside the validation cells for
the years 2000 to 2021. To synthesize, compared to the main model fitted on all the data,
our validation model was deprived of a part of the data and used 121 presence records
(64%), 88 detections (69%), and 17,628 non-detections (97%).

Figure A9. Study area in the Southern Cape of Africa and its rasterization into 817 square cells of
approximately 10km size: 50 validation cells (light green) were drawn and, from the year 2000, their
validation data were hidden from the model fitting. We then used the validation data to the test
model predictions over the period 2000 to 2021. The cells containing at least one TG record whose
data were fully used in the model fitting (i.e., training) are shown in red, while cells without any
record are in gray.

Training and validation predictive performances. We split the validation period into
two consecutive intervals with balanced amounts of data: 2000–2015 and 2016–2021. This
way, we can evaluate model predictions per interval to measure the predictive power in a

https://chrisbotella.shinyapps.io/plectranthus_barbatus_sa_maps/
https://chrisbotella.shinyapps.io/plectranthus_barbatus_sa_maps/
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more or less distant future. For each time interval, we applied a procedure to avoid a class-
imbalance evaluation bias, given the prevalence of non-detections compared to detections,
and used a measure of the sampling effort (the TG records) to minimize the chances of false
absences in the non-detections. More precisely, we subsampled the non-detections (couples
of a cell and a year) having the most TG records so that their number did not exceed twice
the number of detections. This subsampling both balanced the numbers of detections and
non-detections and extracted the non-detections having more chances to be real absences,
minimizing the bias in the evaluation metric. Then, for each time interval, for the training
and validation cells, and for each of the posterior samples, we computed the area under the
ROC curve (AUC, [65]) of the predicted population sizes over the sampled couples of cell
and year. These results are synthesized in Figure A10 of this appendix. We highlight that
this AUC is different from the presence-background type AUCs that have been criticized
for SDM evaluation [65]. Here, a detection is not used as a negative sample, and hence,
our metric could vary from 0 (detections always have a lower predicted population than
non-detections) to 1 (the contrary) through to 0.5 (equivalent to a random guess).

Figure A10. Evaluation of model predictions on training and validation data per time period. For
two periods (2000–2015) and (2016–2021), we computed the AUC over all validation (resp. training)
cells and years of the period.
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