
transporter CorC in numerous P. multocida sequences deposited
in GenBank. The sequence of Tn7407, including the alternative
integration site, matched closely the sequence of a bovine
P. multocida isolated in 2013 in the USA (GenBank accession
no. CP015567) (Figure 1b). This finding underlined the wide distri-
bution of highly similar ICEs with variable resistance regions
among epidemiologically unrelated P. multocida from cattle.

The results of the study showed the occurrence of MDR
P. multocida and M. haemolytica isolates carrying unusual resist-
ance geneswithinmultiresistance-mediating ICEs, which have so
far not been described in Europe. These elements might enhance
the spread of resistance genes among the respective pathogens
and diminish treatment options for BRD in the future.
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Integrase strand transfer inhibitors (INSTIs) are drugs used to
combat HIV infection and have been approved by the US FDA
since 2007. This drug class includes raltegravir and elvitegravir
for the first generation, and dolutegravir, cabotegravir and
bictegravir for the second generation. They target the
strand transfer reaction of the HIV proviral DNA 3′ ends to the cel-
lular DNA and thus inhibit viral replication.1 Due to the increasing
levels of HIV drug resistance to NNRTIs in resource-limited coun-
tries (RLCs), the WHO has recently recommended INSTIs in com-
bination with NRTIs as the preferred first-line regimen for people
living with HIV and initiating or failing ART in RLCs.2

The high efficacy of INSTIs for HIV treatment, especially the
second generation that includes dolutegravir, has been docu-
mented, even in heavily treated individuals infected with viruses
carrying important resistance mutations background.3 However,
these evidences have beenmostly generated frompopulations in
developed countries, and there are major knowledge gaps on

INSTIs efficacy and resistance pathways across diverse popula-
tions and contexts, including the sub-Saharan Africa. In this
study, we investigated the role of existing viral mutations among
INSTI-naive HIV-1 non-B-infected individuals in Gabon and their
potential impact on the efficacy of this drug class. The study was
implemented in the southern region of the country in the
Haut-Ogooué Province that includes Franceville and the neigh-
bouring sub-districts.

Overall, we recruited 103 individuals tested positive for the
first-time for HIV-1 infection. Women represented 58.2% of this
population (n=60) and the median age was 37 years (IQR 28–
44). All participantswere treatment naive and reported no history
of ARV exposure. Drug resistance genotyping was successfully
carried out for all and three participants were excluded because
of epidemiological relationship indicated by the obtained phyl-
ogeny. For the remaining 100 sequences representing our final
study population, the HIV-1 subtype distribution was as follows:

Figure 1. Amino acid sequence alignment of the newly generated HIV-1 integrase region against the reference subtype B HxB2 sequence (K03455.1).
Dots indicate conserved amino acid positions when compared with the reference subtype B sequence. Dashes represent gaps. Numbers on top of the
figure represent positions associated with resistance to INSTIs.
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CRF02_AG (46%), A1 (17%), D (7%), CRF45_cpx (5%), G (7%),
CRF37_cpx (7%), H (4%), CRF11_cpx (4%), F2 (2%), CRF06_cpx
(1%), CRF09_cpx (1%), and Unknown (6%). These 100 sequences,
that cover at least amino acid positions 66 to 263 of the HIV in-
tegrase gene (Figure 1), were interpreted using the HIV French
Resistance algorithm (http://www.hivfrenchresistance.org). Two
primary drug resistancemutations, T97A and E157Q, were found
in 4 (4%) and 5 (5%) of the sequences, respectively, resulting in
an overall drug resistance prevalence of 9%. T97A is a poly-
morphic accessory mutation reported in up to 4% of viruses
from untreated persons. This mutation reduces elvitegravir sus-
ceptibility by about 3-fold and can markedly reduce raltegravir
and dolutegravir susceptibility when combined with other INSTI
resistance mutations.4,5 E157Q is frequently reported at low fre-
quencies (<5%) in INSTI-naive persons, and confers potential re-
sistance to raltegravir and elvitegravir, but minimal or no
resistance to second generation of INSTIs.6,7 Recent phenotypic
assessments of this mutation in context of CRF02_AG viruses
showed a fold change in EC50 of 1.1, 1.9 and 2.4 for raltegravir,
dolutegravir and elvitegravir, respectively,6 stressing the need
for more surveillances of this mutation in a HIV-1 non-B context,
especially in settings where CRF02_AG viruses predominate as in
Gabon and in other African countries.

Two additional mutations, L74M and L74I, considered as po-
tentially associated with resistance to INSTIs were identified at
rates of 3% and 21%, respectively, 24% overall, and in almost
all HIV-1 subtypes of our study panel, with CRF02_AG viruses
predominantly represented. These mutations are known as
polymorphic and have been reported in HIV-1 non-B viruses,
with higher frequencies (>10%) reported in CRF02_AG strains.8

By themself, L74I and L74M have minimal, if any, effect on
INSTI susceptibility.9 However, they can affect INSTI suscepti-
bility if present with other mutations such as T66K, V75I and
E92Q.10

In summary, we report here an overall high frequency of INSTI
resistance mutations in ART-naive populations. Most of these
mutations are known as associated with resistance to the first
generation of INSTIs, including raltegravir and elvitegravir; drugs
that are still recommended for neonates’ treatment in RLCs by
the WHO. The impact of these mutations on second generation
INSTIs such as dolutegravir, cabotegravir and bictegravir is lim-
ited, but their contribution to resistance can significantly increase
if they are associated with other INSTI resistance mutations. The
recent introduction of dolutegravir-based first-line regimens in
RLCs will rapidly result in millions of patients receiving
INSTI-based treatments in contexts where routine treatment
monitoring is still one of the major challenges and acquisition
of resistant viruses a major threat. Our results stress the need
for continuous surveillance of drug resistance in naive and
ART-experienced populations in these settings.

Sequence accession number
The newly reported integrase sequences have been submitted to
GenBank under accession numbers OM877162–OM877261.
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