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Abstract

DNA methylation is thought to influence Quercus suber cork quality, which is the main con-

straint for its economic valorisation. However, a deep knowledge of the cytosine methylation

patterns disclosing the epigenetic variability of trees with different cork quality types is totally

missing. This study investigates the hypothesis that variations in DNA methylation contrib-

ute to differences in cork cellular characteristics directly related to original or traumatic phel-

logen activity. We used MSAPs (Methylation Sensitive Amplified Polymorphism) to assess

DNA methylation patterns of cork and leaf tissues of Q. suber adult trees growing in three

cork oak stands. The relationship between the detected polymorphisms and the diversity of

cork quality traits was explored by a marker-trait analysis focusing on the most relevant

quality characteristics. Populations differed widely in cork quality, but only slightly in degree

of epigenetic differentiation. Four MSAP markers (1.3% of the total) were significantly asso-

ciated with the most noteworthy quality traits: wood inclusions (nails) and porosity. This evi-

dence supports the potential role of cytosine methylation in the modulation of differential

phellogen activity either involved in localized cell death or in pore production, resulting in dif-

ferent cork qualities. Although, the underlying basis of the methylation polymorphism of loci

affecting cork quality traits remain unclear, the disclosure of markers statistically associated

with cork quality strengthens the potential role of DNA methylation in the regulation of these

traits, namely at the phellogen level.
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Introduction

Epigenetic variation can contribute to phenotypic plasticity and phenotype persistence in dis-

tinct environments, as has been recently suggested in long-lived forest trees (reviewed in [1]).

Epigenetics refers to the mitotically and/or meiotically heritable changes in gene expression

that do not imply modifications in DNA sequence [2–4]. Chromatin structure is affected by

the interplay between DNA methylation, histone modifications and small RNAs, with cytosine

methylation being the better-studied chromatin alteration. DNA methylation in plants is

accomplished by a family of DNA methyltransferases comprising three specific functional clas-

ses [5]: the MET (Methyltransferase) class maintains the methylation in CG context found

either within promoter regions [6,7] resulting in silencing [8] or within gene bodies [6,9,10]

associated with gene expression [7]; the CMT (Chromomethylase) class maintains the methyl-

ation in CHG context occurring mainly in transposons and pseudogenes [10]; and the DRM

(Domain-Rearranged-Methyltransferase) class associated with the de novo methylation in

CHH sequences which are typically methylated at low levels in Arabidopsis [5].

Methylation-sensitive amplified polymorphisms (MSAP) is a practical method that has

been widely used to investigate diversity of cytosine methylation and epigenetic structure in

species lacking a sequenced genome for reference, as well as to investigate correlations between

phenotypic functional traits [11–17]. Also, MSAP markers have been mapped to protein-cod-

ing genes in sorghum [18], maize [19,20] and rice [21], and also linked with stable epigenetic

quantitative trait loci (QTLepi) of diverse agronomic traits [22]. Despite the limitations in

acknowledging the exact genomic location for methylation and in whole genome coverage,

MSAP still provides a significant number of anonymous loci randomly distributed throughout

the genome in which the methylation state of restriction sites can be determined.

The cork oak (Quercus suber L.) is one of the most important forest species in the Mediter-

ranean basin. Cork oak trees are currently the exclusive commercial source of cork, a thick

periderm with insulating and protective role, made of dead cells with empty lumens and thin

highly suberized walls [23,24]. Cork is formed by the division to the outside of the phellogen, a

secondary meristem that is seasonally activated and that persists throughout the life of the tree

[23,25]. Cork produced from the original phellogen is called ‘virgin’ cork and is usually har-

vested from 18 to 25 years-old trees, when stem perimeter reaches the legal size for extraction

[26]. After cork removal, the phellogen dies and a new traumatic phellogen is formed by a pro-

cess of meristematic activation in the underlying non-conducting phloem living cells [27]. Fur-

ther cork extractions follow at a minimum of 9-years intervals, during which a cork thickness

of 2–6 cm is reached. This capacity for self-regeneration of the phellogen determines cork oak

uniqueness and makes cork the cornerstone of the economic sustainability of cork oak wood-

lands worldwide. Amadia cork, produced by a traumatic phellogen (3rd harvest onward) has

singular characteristics derived from cellular structure and chemical composition. However, as

a natural product, its quality criteria is determined by the cork tissue homogeneity and thick-

ness, due to their industry applications, for some of them without viable substitutes [28].

Cork tissue homogeneity is affected by the incidence of discontinuities in the cork layer,

such as lenticels (forming the lenticular channels) produced by the activity of the lenticular

phellogen, and lignified phloem cells, known as ‘nail’ structures [29] and caused by an inter-

rupted, abnormal phellogen activity which is highly detrimental to cork quality. In addition,

cork thickness is mostly determined by the level of phellogen activity and corresponding

cumulative annual cork growth (cork-ring width). A minimum thickness is needed in the raw

cork planks in order to allow punching natural cork stoppers, the most valuable cork product.

Despite these critical quality parameters of raw cork, the disclosure of factors regulating cork

differentiation and quality at tree-level is in its infancy [30,31]. The high genetic variability
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found within cork oak populations [32,33], mixed with empirical assumptions of an effect of

environmental conditions, hindered any causal association with the very high cork quality vari-

ability found within and between cork oak woodlands [29]. To better understand what affects

cork quality, it is necessary to unravel the factors underlying such different phellogen activities

giving rise to such variable phenotypes. Recent studies of the epigenetics of oak populations

revealed patterns of epigenetic differentiation and single-methylation variants associated with

climate variables [34,35], indicating that oak genomes exhibit phenotypic plasticity mediated by

DNA methylation. Although the genus Quercus has already two sequenced genomes [36,37] no

genomic data was available for cork oak. Some studies have been targeting cytosine methylation

in this species [38–40] evidencing its association with cork quality, namely on cork tissue homo-

geneity [39].

Considering the role of DNA methylation in regulating phenotypic plasticity we hypothe-

sised that DNA methylation variability could be related to original or traumatic phellogen

activity, also contributing to cork cellular characteristics linked to quality. A deeper under-

standing of cytosine methylation variability at tree-level and its impact on relevant traits could

lead to a better comprehension of its role in the modulation of cork tissue homogeneity. To

test our hypothesis, we assessed the DNA methylation landscape of virgin and amadia cork tis-

sues and leaves, focusing on CG and CCG context using MSAP analysis, in trees from three

regions in Portugal with distinct edaphoclimatic conditions. Furthermore, to test for predicted

relationships between the variation in DNA methylation and phenotypic diversity, the epige-

netic polymorphisms detected were associated with the most relevant cork quality traits.

Materials and Methods

Plant material and DNA isolation

No specific permission was needed for the development of this study. Quercus suber is pro-

tected in Portugal against logging. The field studies did not involve endangered or other pro-

tected species.

Cork oak adult trees were randomly chosen from three cork oak stands (montados) in dif-

ferent locations in Portugal: Barradas da Serra (BS), Herdade dos Leitões (HL) and Companhia

das Lezı́rias (CL) (Table 1). Each stand comprised trees of controlled origin as well as trees

resulting from natural regeneration. A detailed characterization and comparison of the three

areas, in terms of climate and soil conditions, is described elsewhere [41]. Cork planks were

harvested at breast height (at 1.30 m height from soil) during the more intense period of phel-

logen activity (the period of cork commercial harvesting), and phellogen with contiguous dif-

ferentiating tissue (hereafter referred as cork tissues) were collected by scraping off the inner

side of cork planks. Leaves were also collected from all trees. Cork planks were kept to evaluate

cork quality and thickness. To avoid any developmental, and/or environmentally-related

Table 1. Material collected in three cork oak populations in distinct edaphoclimatic conditions in Portugal.

Populations Geographical Coordinates Treesb

Amadia cork Virgin cork Total

Grândola, Barradas da Serra (BS) 38 11’ N, 8 37’ W 270 m a.s.l.a 8 1 9

Montargil, Herdade dos Leitões (HL) 39 8’ N, 8 11’W 170 m a.s.l. a 11 0 11

Benavente, Companhia das Lezı́rias (CL) 38 49’ N, 8 49’ W 20 m a.s.l. a 10 11 21

a Above sea level
b Number of individuals sampled per population

doi:10.1371/journal.pone.0169018.t001
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variation in DNA methylation, fully developed leaf blades and cork tissues were collected from

each location on the same day. All living tissues were immediately stored in liquid nitrogen

until further use. Total genomic DNA from leaves, and cork tissues was isolated according to

Doyle and Doyle [42] with minor modifications: the isolation buffer contained 3% 2-mercap-

toethanol and 2% PVP-40; proteinase K was added to a final concentration of 100 μg/mL

before samples incubation at 65˚C.

MSAP procedure

MSAP is a modification of the AFLP method, which takes advantage of the differential behaviour

of two isoschizomers, HpaII and MspI, in the presence of cytosine methylation in the CCGG

context. These isoschizomers are coupled with EcoRI, which is thought to be negligibly influ-

enced by DNA cytosine methylation. MspI can cleave non-methylated CCGG sequences and

hemi- or fully-methylated CmCGG sequences but not hemi- and fully-methylated mCCGG and
mCmCGG sequences. HpaII digests only non-methylated CCGG sequences and hemi-methyl-

ated mCCGG sequences from all possible methylated CCGG variants [43]. Therefore, distinct

profiles obtained with EcoRI/HpaII and EcoRI/MspI reflect differences in the methylation status

of these restriction sites.

For MSAP assays, genomic DNA (100 ng) isolated from cork tissues and leaves of the same

genotype was first digested and ligated using 20 U of EcoRI and 5 U of MspI or HpaII (New

England Biolabs, USA), 5 pmol Eco_adaptor, 50 pmol HM_adaptor (5 μM of EcoRI and 50 μM of

MspI/HpaII adaptor pairs were previously prepared by mixing oligonucleotides and incubating at

98˚C for 5 min followed by slow cooling in aluminium foil–S1 Table), 1 U of T4 DNA ligase (Invi-

trogen, USA) in 40 μL total volume supplemented with 50 mM NaCl and 100 ug/ml BSA for 6 h

at 37˚C. The enzymes were then inactivated by heating to 65˚C for 15 min. A volume of 2 μL of

the restriction/ligation products was used in 20 μL pre-selective amplification reactions containing

1X PCR buffer (Nzytech, Portugal), 30 ng of Pre_Eco (+A) primer and 30 ng of Pre_HM primer

(S1 Table), 0.4 mM dNTPs, 1.5 mM MgCl2 and 2 U Taq polymerase (Nzytech, Portugal). PCR

conditions were 2 min at 72˚C followed by 25 cycles of 94˚C for 1 min, 56˚C for 1 min and 72˚C

for 2 min with a final extension step of 10 min at 72˚C. Initially, 25 selective primer combinations

were tested for fitness in identifying inter-specific variation and in generating reproducible MSAP

profiles using two independent DNA extractions of each tissue from four representative genotypes

(data not shown). From these, four primer combinations (S2 Table) were chosen for the compara-

tive selective amplification. Selective PCRs were then performed using 5 μL of 1:10 dilution of

pre-selective PCR products and the same reagents as the pre-selective amplification, but using 0.2

mM dNTPs and FAM labelled selective primers. The conditions of the touch-down selective PCR

were as follows: 94˚C for 30 s, 65˚C for 30 s, 12 cycles of 72˚C for 1 min (decreasing by 0.7˚C each

cycle), followed by 24 cycles of 94˚C for 30 s, 56˚C for 1 min, 72˚C for 2 min, ending with 72˚C

for 5 min. Thereafter, 1 μL of selective amplification products was mixed with 0.3 μL of ROX dye

and 12.2 μL of HiDi formamide (Applied Biosystems, USA), denatured by heating at 95˚C for 5

min and snap cooled on ice for 5 min. Fragment separation and detection was made using an ABI

PRISM 310 Genetic Analyser (Applied Biosystems, USA) and fragments were scored manually

analysing the electropherograms with GENEMAPPER 3.7 software. For each primer combina-

tion, genotyping error rates were estimated through the comparison of two technical replicates

profiles. MSAP genotyping error rates were estimated for each primer combination by running

repeated EcoRI/HpaII and EcoRI/MspI analyses for all plants and both tissues and computed as

described elsewhere [44]. Mean genotyping error rate (±SD) for the four MSAP primer combina-

tions used was 0.004% ± 0.002. A combined digestion with EcoRI/HpaII + MspI was performed in

parallel to improve the interpretation of the (absence, presence) pattern obtained for some epiloci
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in (EcoRI/MspI, EcoRI/HpaII) [43]. This approach helps to distinguish between the two situations

that may generate that pattern: the cutting of hemimethylated sites mCCGG sites by HpaII and

not by MspI; or the presence of internal CmCGG site(s) between the EcoRI site and the cleaved

distal unmethylated CCGG [43].

MSAP data analysis

Reproducible peaks with lengths between 100 and 500 bp (to minimize the incidence of frag-

ment size homoplasy [45]) were scored as presence (1) or absence (0) to form a raw data

matrix. All epiloci showing a monomorphic pattern or any fragment present/absent in all but

one individual were excluded from the data set, to prevent biased parameter estimates [46].

‘Mixed Scoring 2’ scheme and the ‘Extract_MSAP_epigenotypes’ R function described by

Schulz et al. [44] was used to convert the raw matrix (S3 Table) into three classes of markers

corresponding to unmethylated (u-loci), HMeCG + MeCG methylation (internal methylation

plus hemimethylation, m-loci) and HMeCCG methylation (external hemimethylation, h-loci).
U-loci markers displaying the same profile either for EcoRI/MspI or EcoRI/HpaII in leaves and

phellogen from the same genotype were considered as genetic variation and were removed

from the epigenetic variability analysis (40 loci).
In order to measure the epigenetic diversity within leaves and cork tissues ‘MSAP_calc.R’

script [44] was used to calculate the number and percentage of polymorphic epiloci and Shan-

non’s information index for a dominant locus:

H0 ¼ � ðpi log2 pi þ ð1 � piÞlog2ð1 � piÞÞ ð1Þ

where pi is the frequency of the epigenetic marker presence per tissue. To test the null hypothe-

sis that the distribution of Shannon´s information index is identical for both tissues, a Mann-

Whitney-Wilcoxon test was performed in R environment. To infer patterns of individual and

population epigenetic differentiation, a similarity matrix was assembled using the Soerensen

and Dice distance and used to conduct the principal coordinate analysis (PCoA).

The epigenetic differentiation was estimated through Fst comparisons (an analogue of the

fixation index Fst, measuring population differentiation) between leaves and cork tissues and

among populations for both tissues using an analysis of molecular variance (AMOVA, [47])

and the same Soerensen and Dice similarity matrix. All these analyses were performed using R

environment.

Cork quality traits assessment

Amadia cork planks were processed according to a standard procedure [48] to assess cork

quality traits but virgin corks were not scorable by the methods used. Amadia cork thickness

was measured according to Ramos et al. [39]. Image acquisition of the two radial, two transver-

sal and one tangential sections was made through scanning at a minimum resolution of 300

dpi. Images were uploaded and then analysed using ImageProPlus1 (Media Cybernetics,

USA) image-processing software.

In each cork sample, after a calibration based on an orthogonal position correction with an

accuracy of 0.01 mm, the detection of cork tissue discontinuities was made based on threshold

manipulation within a defined area of interest (AOI). Overall cork porosity was assessed at the

tangential section, transverse and radial sections. However, only at transversal and radial sec-

tions, the overall porosity was discriminated by porosity (lenticels as lenticular channels, S1 Fig)

and ‘nail’ (lignified phloem cells, S2 Fig). Cork tissue discontinuities datasets were obtained sepa-

rately for each section, and based on the range variation of pore-variables. A set of four variables

at cork sample/section level were selected for quality assessment: average pore area, average pore

Cork Origin and Quality Is Related to DNA Methylation
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length, average pore roundness and average ‘nail’ area. Pore and ‘nail’ data were filtered out by

area, and only cork tissue discontinuities with an area equal or superior to 0.8 mm2 were kept for

analysis. Small porosity is functionally irrelevant and increases variance and variability of the

sample [49]. Pore roundness is defined by the following formula:

perimeter2

4� p� area
; ð2Þ

where circular discontinuities will have roundness� 1. When the pore is less circular the round-

ness value will be higher. The pore length is the length along the Y-axis (corresponding to the

tree radial direction in the transverse and radial sections). At cork section level, the porosity coef-

ficient and the nail coefficient were expressed as the percentage of the total pore and nail area of

the AOI.

Assessment of cork ring widths was made in amadia cork samples according to a standard

procedure [48], measuring the complete cork growth years in the transverse sections. The

mean annual cork growth (mm yr-1) was then calculated per cork sample.

The population effect on the variability of cork quality traits was studied after testing for

deviations from a normal distribution with a Shapiro-Wilk test. For traits that fitted a normal

distribution, the effects of the population were evaluated using one way ANOVA tests, fol-

lowed by Tukey´s multiple comparison test. For non-normally distributed data, Kruskal-Wal-

lis non-parametric and Dunn´s Multiple Correction post-hoc test were used. To find if cork

quality traits could be correlated, Pearson’s correlations between traits were computed. All

these analyses were performed in R environment.

Association analysis

To assess whether observed differences in the considered cork quality traits within populations

were related to DNA methylation polymorphisms, generalized linear models were fitted to

higher cork quality presence data. For such approach, all cork quality traits measured were

allocated into 2 classes—higher cork quality and lower cork quality—by applying a defined

threshold according to trait distribution and taking into account their shape in each section

(Table 2). For the response variable cork quality a logit link model was fitted assuming marker

as a fixed-effects factor with two levels (presence/1 or absence/0). To test the null hypothesis of

no effects of the marker, a likelihood ratio test was performed. The resulting p-values were

used to identify significant associations (significance level = 0.05). False discovery rate adjusted

p-value (q-value) were computed using the qvalue package [50]. We found the largest q-value

leading to an expectation of less or equal to one false significant model [i.e. q-value x (number

of models accepted as significant)�1]. For the interpretation of results, the estimated proba-

bility of success (higher cork quality, bp1) for the MSAP marker presence was computed from

the inverse link function. Additionally, for the presence of MSAP marker, the estimated odds

that higher cork quality is obtained, was computed as

bp1=1 � bp1: ð3Þ

All these analyses were performed using R environment.

Results

Epigenetic diversity and differentiation is higher in cork tissues

The methylation states of the scored loci were obtained after data transformation, yielding a

total of 339 polymorphic epiloci for cork tissues (out of 340) and 303 polymorphic epiloci for
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leaves (out of 308) (Table 3). The Shannon’s information indexes for each marker were differ-

entially distributed between the two tissues (W = 83102, p-value = 0.007749, Wilcoxon rank

sum Test). Indeed, a higher number and frequency of u-loci was found for cork tissues among

all individuals in contrast with a similar number but higher frequency of m-loci in leaves. The

number of h-loci was higher in cork tissues but the frequency was higher in leaves. Comparing

both tissues using total polymorphic loci, we found significant epigenetic differentiation (Fig 1,

Fst = 0.3321, p-value< 0.0001), probably derived from their different nature i.e. meristematic

vs. differentiated tissues. Comparing populations, epigenetic differentiation was found for

cork tissues Fst = 0.168 (p-value< 0.0001) and for leaves Fst = 0.1608 (p-value< 0.0001).

Epigenetic differentiation in cork tissues relates to phellogen origin

To investigate if phellogen origin (original or traumatic), and/or phellogen age could influence

the trend of epigenetic differentiation, we analysed separately the amadia cork-producing

trees (S3 Fig). Comparing with the whole sample results, a reduced epigenetic divergence

Table 2. Thresholds of cork quality traits used for the association study with MSAP markers.

Cork Quality Trait Threshold a Reference Higher cork quality Lower cork quality

Thickness 27 mm [49] Equal or above threshold Below threshold

Annual growth 3 mm/year [49]

% ‘nail’ _R 1% Outliers Below threshold Equal or above threshold

% ‘nail’ _Tr 1% Outliers

‘nail’ Area_R 3.98 mm2 Median

‘nail’ Area_Tr 3.99 mm2 Third Quartile

% Porosity_Ta 6% [49]

% Porosity_R 6% [49]

% Porosity_Tr 6.8% [49]

Pores Area_Ta 2.57 Median

Pores Area_R 5 mm2 [51]

Pores Area_Tr 4.9 mm2 [51]

Pores Roundness_Ta 1.98 Median

Pores Roundness_R 4.03 Median

Pores Roundness_Tr 4.56 Median

Pores Length_Ta 2.5 Median

Pores Length_R 5 mm [51]

Pores Length_Tr 5 mm [51]

a Cork quality traits measured in all sections were allocated into 2 classes—higher cork quality and lower cork quality—by applying a defined threshold

according to trait data distribution or previously reported values, and taking into account their shape in each section.

R—radial section; Tr—transverse section; Ta–tangential section.

doi:10.1371/journal.pone.0169018.t002

Table 3. Epigenetic diversity of cork and leaf tissues within the three cork oak populations.

Tissue u-loci m-loci h-loci Total PL

No./%PL No./%PL No./%PL

Cork tissues 161/34.1 106/27.3 72/12.5 339

Leaves 133/25.1 108/37.5 62/10.2 303

u-loci–unmethylated loci; m-loci–methylated loci; h-loci–hemi-methylated loci; No.–number of polymorphic

loci; %PL–Percentage of polymorphic loci; Total PL–Number of total polymorphic loci.

doi:10.1371/journal.pone.0169018.t003
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between populations was found for cork tissues (Fst = 0.1432, p-value< 0.0001), indicating

that virgin-producing trees could be contributing for higher population epigenetic diversity in

these tissues. Considering these results, we further investigated whether virgin and amadia
cork could be differentiated at the epigenetic level, using only leaf and cork tissues from CL

population, where 11 trees produced virgin cork and 10 produced amadia cork. PCoA showed

some epigenetic differentiation for cork samples, according to tissue type (Fig 2A) whereas no

clear organization was found for leaves (Fig 2B). Significantly higher epigenetic differentiation

was found for virgin cork tissues (Fst = 0.1196, p- value < 0.0001) when compared to leaves

from the corresponding trees (Fst = 0.0271, p-value = 0.1598). These results suggest that the

tissues generated from the original phellogen (originating virgin cork), although having similar

Fig 1. Principal Coordinate Analysis representing epigenetic differentiation between populations and

tissues. Graphical representation is based on the first two coordinates (PCO1 and PCO2) with the percentage of

the variability shown between brackets. Inverted triangles represent trees from Herdade dos Leitões (HL), circles

represent Barradas da Serra (BS) and squares represent Companhia das Lezı́rias (CL). The labels represent the

centroid for the points cloud in each population and the ellipses represent the dispersion of those points around the

centroid.

doi:10.1371/journal.pone.0169018.g001
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frequencies of the three types of loci (u, m and h), may have different epigenetic marks as com-

pared to the young traumatic phellogen formed after cork removal.

Cork quality traits are highly variable within populations

Comparing the cork quality traits assessed in the three populations, there was no statistically

significant difference in the average values determined for almost all cork quality traits evalu-

ated in each of the three different sections. In fact, most of the variability observed occurred

within the populations rather than among them, as denoted by the larger coefficients of varia-

tion (S4 Table). One of the exceptions regards the pores roundness assessed in transverse sec-

tions (where pores should appear as rectangular channels). In fact, cork from HL population

significantly differed from the other two populations (p-value = 0.0004, Fig 3A) due to its

lower roundness values, which could be associated with shorter lenticular channels radially

crossing the cork tissue. Interestingly, in radial sections this difference did not reach statistical

significance. Moreover, in tangential sections (where pores should appear with an approxi-

mately circular form), corks from BS population displayed pores with a more irregular shape

(higher values of roundness), as compared to corks from CL and HL populations (p-

value < 0.0001, Fig 3B). Another exception concerns the pores’ length in corks from BS popu-

lation, which was slightly higher than in HL population (p-value = 0.0209). This might be due

to more elongated (elliptical) shape of lenticular channels in their tangential section, generally

associated with lower cork porosity.

The occurrence of ‘nail’ is negatively correlated with cork growth

Considering the comprehensive amount of data collected for several cork traits determining

quality, we have also assessed correlations between them (S4 Fig, S5 Table). In addition to the

expected correlation between aspects of the same trait in transverse and radial sections, we also

found a predictable strong positive correlation between cork thickness and annual growth

Fig 2. Principal Coordinate Analysis representing epigenetic differentiation in cork (A) and leaf (B) tissues,

between trees producing virgin cork (V) and amadia cork (A) from CL population. Graphical representation is

based on the first two coordinates (PCO1 and PCO2) with the percentage of the variability explained shown

between brackets. Triangles represent ‘virgin’ cork producing trees and diamonds amadia cork producing trees.

The labels represent the centroid for the points cloud in each population and the ellipses represent the dispersion of

those points around the centroid.

doi:10.1371/journal.pone.0169018.g002
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(r = 0.875, p-value = 5.78e-07). Significant positive correlation was also found between cork

thickness and pore area and pore length, in transverse sections, revealing that lenticular phello-

gen producing pores follow the same annual regularity as phellogen. Interestingly, we found a

significant negative correlation between ‘nail’ parameters and cork thickness/ annual growth,

suggesting that the localized death of phellogen (creating ‘nails’) has a negative impact on cork

growth. This was particularly evident in transverse sections, in which the average area of ‘nail’

and cork thickness or annual growth showed a moderate correlation of -0.501 (p-value = 0.0065)

or -0.434 (p-value = 0.0211), respectively. For ‘nail’ percentage, in the same section, the moderate

correlation with cork thickness or annual growth was -0.4624957 (p-value = 0.01321) or -0.462

(p-value = 0.013), respectively.

MSAP markers are associated with cork quality traits

The association study among the 315 MSAP polymorphic markers found for amadia cork tis-

sues and the considered cork quality traits revealed 7 significant associations (Table 4). These

significant marker-trait associations included 4 anonymous loci (1.3% of the total markers

tested per trait), one of which in two different states of methylation and 3 of the studied traits

that mostly contributes to cork quality: annual growth porosity and ‘nail’ presence. One MSAP

marker (hemi-methylated C4_487) was associated with the ‘nail’ percentage in transverse sec-

tions, that when present there is an estimated probability that 95% of the individuals have a

low percentage of ‘nail’ (high cork quality). Another interesting association was found between

the C1_175 MSAP marker, that can be present either in methylated or unmethylated state, and

the porosity coefficient and pores’ area. When this sequence is methylated, the estimated prob-

ability of corks showing lower pore area (high cork quality) is 94%.

Fig 3. Boxplots representing the distribution of pores roundness. (A) in transverse section (Tr) and (B)

tangential section (Ta) in samples from amadia cork planks collected from the three populations: Companhia das

Lezı́rias (CL), Barradas da Serra (BS) and Herdade dos Leitões (HL).

doi:10.1371/journal.pone.0169018.g003
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Discussion

In this study differences in DNA methylation patterns in virgin and amadia corks, and in leaf

tissues of Q. suber adult trees were analysed. The comparison of DNA methylation profiles of

cork and leaves, two different tissues from the same genotype, allowed differentiating genetic

from epigenetic polymorphisms. The detected epigenetic polymorphisms were further associ-

ated with the most relevant cork quality traits: growth, porosity and presence of ‘nails’. MSAP

was the method chosen for this study although the impossibility in identifying the sequence,

location in the genome and the genes affected by the methylation. Regardless of these limita-

tions we were able to assess the diversity of DNA methylation patterns in a significant number

of CG and CCG loci, as well as to investigate associations with phenotypic traits, in a species

without sequenced genome. Moreover, the MSAP scoring used in this study and previously

suggested by Schulz and colleagues [44] allowed for scoring either methylated, unmethylated

or external hemimethylated fragments, providing an extended view of genome methylation,

that single scoring methods do not allow.

Epigenetic differentiation in cork stands

In order to differentiate methylated from mutated loci, cork tissues and leaves from the same

individuals were used. However, this information could be achieved only for u-loci, when both

HpaII and MspI were used for DNA digestion and equal MSAP profiles were found for both

tissues in the same genotype. Thus, any difference in MSAP profiles between distinct geno-

types should reflect mutated loci which were kept out of the analysis due to its reduced num-

ber, comparing with the number of epiloci found. To our knowledge, this is the first work

making use of this approach in trees, to reduce some bias due to genetic variation.

Cork and leaf tissues showed a higher frequency of mCG methylation (m-loci) compared to
mCCG (h-loci) in agreement with the overall methylation frequencies found in plant genomes

[10,52]. Still, the frequency of all methylated loci (m-loci plus h-loci) was higher in leaves than

in cork tissues and the opposite was found for unmethylated loci. However, it must be

Table 4. Statistically significant logistic regressions relating cork quality traits and MSAP marker presence.

MSAP marker Restriction site methylation state Cork quality trait Significance of MSAP marker effect a q-value b bp1

c Odds d

p-value

C4_487 Hemi-methylated % ‘Nails’_Tr 0.00094 0.0681 0.95 20.0

C1_175 Unmethylated Pore area_Tr 0.00020 0.0140 0.31 0.44

% Porosity_R 0.00054 0.0237 0.12 0.14

Methylated Pore area_Tr 0.00020 0.0140 0.94 15.0

% Porosity_R 0.00054 0.0237 0.50 1.00

C2_101 Unmethylated Pore area_Tr 0.00002 0.0040 0.27 0.36

C1_296 Unmethylated Pore area_Tr 0.00056 0.0293 0.18 0.22

Generalized linear models were fitted to higher cork quality presence data browsed for the N = 29 amadia cork samples (see Table 3 for details), using a

logit link model and assuming fixed effects for MSAP marker.
a Likelihood ratio tests to verify the null hypothesis of no effects of the marker were performed.
b Largest q-value leading to an expectation of less or equal than one falsely significant model [i.e. q-value x (number of models accepted as significant)�1].
c Estimated probability of success (higher cork quality), when MSAP marker is present.

d The estimated odds to obtain higher cork quality (success) when the marker is present is bp1=1 � bp1.

R—radial section; Tr—transverse section

doi:10.1371/journal.pone.0169018.t004
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highlighted that MSAP does not detect all methylation contexts or fully methylated external

sites associated with plant heterochromatin [44,52]. Nevertheless, these results may arise from

the different nature of both tissues, as cells were fully differentiated in leaves while meriste-

matic activity is found in the phellogen of cork tissues. Indeed, since fully differentiated cells in

cork are devoid of cellular content [24], cork samples include mostly meristematic cells (in the

phellogen most intense activity period) and contiguous young cells at early differentiation

stage [53,54]. Also, the distinct cell differentiation stages present in these two tissues might

contribute to the significantly higher cytosine methylation diversity found in cork tissues, as

also observed in juvenile or undifferentiated Pinus tissues [55,56].

The three cork oak populations analysed showed a relatively high level of epigenetic dif-

ferentiation (Fst = 0.16) for either leaf or cork samples. Previous work in Q. lobata, using

reduced-representation bisulphite sequencing reported higher levels of population differen-

tiation at CG contexts (FST = 0.28) than at CHG contexts (FST = 0.08) [34]. Differences in

epigenetic differentiation between cork and valley oaks can be explained by the distinct

methods used: for cork oak, CG and CCG contexts were evaluated together while for valley

oaks these two contexts were used separately. Still, our result may reflect some degree of

local adaptation related to polymorphic epiloci, as also suggested for valley oaks [34], proba-

bly due to stable epialleles appearing during these trees’ long life on the same environment.

Nevertheless, most of the variability was found within populations which is consistent with

the patterns observed also for the genetic variability of this oak populations [32,33] and for

cork quality [29,57]. Heritable DNA methylation variants can arise spontaneously in the

absence of genetic control [58,59] and potentially affect adaptation. However, it remains

undetermined if the epigenetic variation found here is autonomous or an effect of underly-

ing genetic variation, given the cork oak high genetic variability.

DNA methylation patterns differ according to the phellogen origin and

age

Our results indicate that virgin and amadia corks show distinct DNA methylation profiles, lead-

ing to some degree of epigenetic differentiation, while no variation was found in leaves of the

same trees. After formation, phellogen remains seasonally active throughout the life of the tree

and produces virgin cork for several years. When cork is removed the original phellogen dies and

a traumatic phellogen is formed in response to the wounding stimulus, by a process of meriste-

matic activation of the non-conducting phloem living cells [28,60]. Therefore, virgin and amadia
corks have distinct origins and develop from phellogens with different ages, since the traumatic

phellogen has nine years old whereas the original phellogen has at least 25 years of age. Younger

phellogens have been reported as having higher growth activity [48], and methylation profiles

can be determined by underlying mechanistic differences linked to ageing, as seen in other plants

[55,56,61]. Another hypothesis is related to the different origin and growth activity of original

and traumatic phellogen. Plants have mechanisms to regenerate tissues via dedifferentiation or

transdifferentiation, as seen in the xylem activation of meristematic activity during vascular repair

(reviewed in [62]). Genes involved in chromatin modifications and remodelling, together with

cell cycle genes were found to be up-regulated during the early regeneration process after bark

girdling in Populus [63]. These results reveal that the capacity of xylem cells to change their fate is

modulated by epigenetic regulation when cell cycle is activated [63]. Considering this, we may

also hypothesize that after traumatic chromatin remodelling, some “memory” may have been

imprinted in the newly formed phellogen, thus accounting for differences in methylation patterns

between amadia and virgin cork tissues.
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The presence of ‘nails’ is associated with DNA methylation

The extent of cork defects measured in this study, as well as the variability found among popula-

tions are within the values reported in previous publications [29,57]. Although the origin of

these cork traits can be explained in the context of development, the genes controlling their fre-

quency or shape are unknown. In this work we found a negative association between cork

growth parameters (thickness and average annual growth) and the percentage of nail inclusions.

The width of the annual growth ring has been attributed to the number of cells produced by

each phellogen mother-cell [64]. In turn, ‘nails’ are formed when small portions of the phello-

gen die and a new meristematic capacity arises in living cells inside the underlying phloem,

isolating part of the later inside the suberized tissue [23]. Thus, both parameters are dependent

on phellogen activity, and the negative correlation found between them can be explained by

the temporary cessation of phellogen activity, even in small localized regions, having a drastic

impact on cork growth and depreciating its quality. Interestingly, we found one DNA methyla-

tion polymorphism (C4_487) that strongly correlates with low percentage of ‘nails’, i.e. high

cork quality, and more stable phellogens. This result seems to indicate a potential role of cyto-

sine methylation in the regulation of phellogen-localized death, which is also corroborated by

the higher expression of QsDMAP1 in low quality corks [39]. QsDMAP1 is a putative Methyl-

transferase 1 Associated Protein 1, homologous of the yeast chromatin remodelling complex

SWR1 [65], shown to be involved in DNA methylation, DNA repair [66] and cell cycle control

[67].

DNA methylation may be involved in lenticular phellogen activity

A significant positive correlation was found between cork thickness and the area and length of

cork pores. Previous studies about the effect of growth rate on cork structure already describe

this correlation [64]. Pores are naturally found in all cork planks, however their number, dimen-

sion and distribution vary widely among trees [23,24,27], with high quality corks showing fewer

and small diameter pores and bad quality corks showing the opposite pattern. Pores have been

regarded as gas trade structures that exchange gases across the trunk [68] resembling stomata in

terms of function. Indeed, the lenticular channels in the young virgin cork are formed below

stomata [24] suggesting a common initial development regulation. Moreover, a recent study

shows that bad quality cork-producing trees have higher expression of putative stomatal/lentic-

ular-associated genes than good quality corks [31]. Regardless of lenticels development below

stomata in the cork oak first periderm, in amadia corks stomata do not occur, although lenticu-

lar channels are present. Actually, phellogen originates two different types of cells to the outside:

cells that either differentiate as suberized cork cells or, in a very small proportion, cells forming

a loosely filling tissue, whose disaggregation leads to the lenticular channels or pores that radi-

ally cross the cork [24]. Similarly to the phellogen, the vascular cambium contains two types of

morphologically distinct cell types—fusiform initials and ray initials that give rise to the axial

and radial components of xylem, respectively [60]. The identity of cambial cells is rather deter-

mined by positional cues (reviewed in [69]) but the determination of phellogen cells’ identity

and the molecular mechanisms underlying those differences are intriguing issues still to be

uncovered. Thus, it is not known how or when phellogen cells fate is established. However,

DNA methylation is likely involved in such differentiation as we found a MSAP sequence that is

unmethylated in almost all corks with high pore area. Another particular fragment appears in

two states: unmethylated in almost all corks with high pore area, and methylated in three quar-

ters of the corks with small pores. These MSAP sequences and their methylation status seem to

be good candidates to be used as markers for the pore area, which is one of the most important

cork quality traits.
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Conclusions

This is the first work involving a genome-wide approach to correlate cork quality traits and

DNA methylation in living cork cells. This study offers evidence that DNA methylation is asso-

ciated with differences in cork cellular characteristics directly related to original or traumatic

phellogen activity. The presence of cork quality trait-associated markers and their distribution

across the three populations, support the hypothesis of a DNA methylation role in the regula-

tion of cork quality traits. After confirmation of epigenetic status inheritance, further demon-

stration of a causative linkage between these methylation polymorphisms and cork quality

traits will require additional investigation, namely by: (1) comparing with a reference genome

to identify the sequence and genomic context of these markers, and their relationship with

potential targets and gene expression, allowing to determine the methylation mechanisms

underlying the phenotypic variation observed; (2) unravelling if these DNA methylation vari-

ants are independent of genetic variation by searching candidate genetic loci associated with

them; (3) bisulphite-converted restriction site associated DNA sequencing (BsRADseq) [70] or

whole epigenome analysis for a thorough genome DNA methylation study of the phellogen

types producing contrasting cork qualities. This would allow mapping major DNA methyla-

tion differences, and finding other candidate epiloci associated with cork quality.

As final conclusion, our findings provide new tools to assess cork quality, and may still

motivate further studies about the involvement of DNA methylation in altered forest trees

phenotypes.
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