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Reinforcement learning is a fundamental aspect of adaptive behaviour, since it involves the acquisition and updating of
associations between actions and their outcomes based on the rewarding or punishing consequences. Acute experimental
manipulations of serotonin have provided compelling evidence for its role in reinforcement learning. However, it remains unknown
how more chronic manipulation of serotonin, which holds greater clinical relevance, affects reinforcement learning and the
underlying neural mechanisms. Consequently, we aimed to investigate the effect of a three-week administration of the SSRI,
escitalopram, on a reinforcement learning paradigm during functional magnetic resonance imaging. The study used a double-blind,
placebo-controlled design with 64 healthy volunteers. Participants were semi-randomised, ensuring matched groups for age, sex
and intelligence quotient (IQ), to receive either 20 mg of escitalopram (n= 32) or placebo (n= 32) for at least 21 days. We analysed
group differences in reinforcement learning using both analysis of covariance as well as innovative hierarchical Bayesian modelling
of the reinforcement learning task. Escitalopram reduced learning from punishment during punishment trials. A key novel finding
was that there was decreased activation of the intraparietal sulcus in the escitalopram group when compared to the placebo group
during reward trials. The involvement of the intraparietal sulcus suggests that escitalopram affects the encoding of value outcome,
which may lead to reduced reinforcement sensitivity, and thereby impacting adaptive learning from feedback. Understanding these
mechanisms may help to optimize SSRI treatment to mitigate clinical symptoms and improve quality of life for neuropsychiatric
patients, by elucidating serotonin’s effects on affect, cognition, and behaviour.
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INTRODUCTION
Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine
neurotransmitter known for its multifaceted role in regulating
mood, cognition and behaviour [1, 2]. Reinforcement learning is a
key component of adaptive behaviour, which is essential in
everyday life, therefore, understanding the role of serotonin in this
process is of particular importance. Abnormal response to
reinforcing feedback has been noted in neuropsychiatric condi-
tions and in particular in major depressive disorder (MDD) [3–5].
Specifically, individuals with MDD often show exaggerated
responses to negative feedback, whereas they fail to respond to
rewards appropriately [3, 5, 6]. This suggests that there is an
impairment in responding to rewarding and punishing feedback.
Similarly, individuals with MDD seem to have a negative bias to
emotional stimuli, where they respond faster to negative
compared to positive emotional stimuli [7, 8]. Studies have shown

that serotonin ameliorates these negative biases in depressed
patients, and also enhance the positive bias in healthy volunteers
[9]. Considering that drugs targeting the serotonin system such as
selective serotonin reuptake inhibitors (SSRIs) are the first-line
pharmacological treatments for MDD [10], it is of importance to
determine whether serotonin plays a role in learning from reward
and punishment. Understanding how serotonin modulates
reinforcement learning processes has significant implications for
elucidating the mechanisms underlying various neuropsychiatric
disorders characterized by dysregulated reinforcement learning.
Reinforcement learning is a fundamental aspect of adaptive

behaviour. It involves the acquisition and updating of associations
between actions and their outcomes based on the rewarding or
punishing consequences [11]. The involvement of serotonin in
reward learning is evident through the widespread distribution of
serotonergic receptors in brain regions implicated in reward
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processing, including the mesolimbic dopamine system, prefrontal
cortex, and amygdala [12]. Moreover, serotonergic projections
innervate key nodes of the reward circuitry, exerting intricate
regulatory effects on synaptic transmission and neural activity.
Experimental manipulations of serotonin have provided com-

pelling evidence for the involvement of serotonin in reinforce-
ment learning, yet findings vary depending on the specific
manipulation employed and the duration of administration.
Studies utilizing tryptophan depletion, the precursor to serotonin,
have consistently demonstrated impaired performance on rein-
forcement and reversal learning tasks [13–16]. Similarly, investiga-
tions into SSRI administration, both acute and chronic, have
revealed significant effects on reinforcement learning processes
[17–21].
Remarkably, serotonin may exert differential effects on learning

from rewards and punishments. For instance, studies have
indicated that tryptophan depletion selectively affects punish-
ment prediction, sparing reward prediction [13]. On the other
hand, after boosting serotonin, Michely et al. [19] demonstrated
that sub-chronic (7 day) SSRI administration enhanced learning
from punishment while reducing learning from reward. However,
contrasting findings from animal studies suggest an opposing
pattern, where increasing serotonin in rats decreased sensitivity to
negative feedback but heightened reward sensitivity [22].
Furthermore, some investigations propose that there may be no
inherent asymmetry in learning following serotonin manipulation
in healthy humans [20, 21]. For instance, Scholl et al. [21] found
that two weeks of SSRI administration improved learning from
both rewards and punishments. ROur own recent research [20]
has shed further light on the effects of three-week SSRI
administration on reinforcement learning using a reversal learning
task. Contrary to previous studies, they reported that reinforce-
ment learning rates remained unaffected by a 3-week SSRI
regimen. However, they did observe a reduction in reinforcement
sensitivity following three-week SSRI administration. Overall, these
findings underscore the intricate role of serotonin in reinforce-
ment learning, highlighting the nuanced effects of serotonin
manipulation on reward and punishment processing. The
variability in results across studies underscores the complexity of
serotonin’s involvement in cognitive processes and underscores
the need for further investigation to elucidate its precise
mechanisms.
One potential reason for the mixed results may stem from the

different experimental manipulations used. Acute tryptophan
depletion is thought to temporarily reduce brain serotonin levels,
whereas SSRI administration is generally assumed to increase
extracellular serotonin. However, acute SSRI as a single dose can
actually decrease serotonin in some brain regions [1]. This
complexity arises partly from the potential variations in pre- and
post-synaptic actions of these medications. Luo et al. [23] re-
examined a number of studies that manipulated serotonin in both
rats and humans and while the results show a clear role of
serotonin in learning and behavioural flexibility, it does show the
complex interactions of the different doses and administration
duration [23]. Furthermore, evidence suggests that the neuroplas-
ticity effects of SSRIs might only manifest following more
prolonged administration periods, typically spanning 14 to 21 days
[24, 25]. Indeed, Johansen et al. [26], using positron emission
tomography (PET), have recently shown that neuroplasticity was
related to the duration spent on escitalopram [26]. Consequently,
chronic SSRI administration may yield more reliable outcomes.
Notably, chronic SSRI administration serves as an experimental
paradigm closely resembling the treatment regimen for MDD,
where clinical improvement is usually only seen after several
weeks of treatment.
Reinforcement learning involves a complex interplay among

various brain regions. A number of brain regions involved in
reinforcement learning, include the ventromedial prefrontal cortex

(vmPFC), the anterior cingulate cortex (ACC), and subcortical
structures such as the striatum and nucleus accumbens
[21, 27–32]. For example, Eldar et al. [27] demonstrated that the
function and structure of the striatum were predictive of
individual harm avoidance behaviours, emphasizing its role in
reinforcement learning processes. Similarly, Niv et al. [32]
highlighted the involvement of the nucleus accumbens in risk
sensitivity, which plays a crucial role in learning.
Furthermore, additional brain regions such as the orbital frontal

cortex and parietal cortex are also implicated in the processing of
reward value [33, 34]. Importantly, Guo et al. [34] revealed that
uncertain rewards elicited more widespread activation in the
brain, indicating the involvement of multiple regions when the
reward was probabilistic or uncertain. Serotonin has also been
shown to modulate neural mechanisms during reinforcement
learning tasks. For example, Scholl et al. [21] found increased
reward and effort learning signals in the vmPFC and ACC,
respectively, following 2 weeks of SSRI administration. Notably,
the rewards and punishments used in their task differed, with
rewards being monetary and punishments involving effort, once
again highlighting the complexity of serotonin’s influence on
reinforcement learning. These findings emphasise the distributed
nature of reinforcement learning processes, with multiple brain
regions contributing to different aspects of reward and punish-
ment processing, decision-making, and learning. Understanding
the interactions among these regions and neurotransmitter
systems is crucial for elucidating the neural mechanisms under-
lying reinforcement learning and related behaviours.
In the present study, we used a double-blind placebo-controlled

design to examine the effects of the SSRI escitalopram adminis-
tered on average for 26 days, on reinforcement learning. In
addition, we examine the neural substrates, using task-based
functional magnetic resonance imaging (fMRI), that are associated
with the effect of escitalopram on reinforcement learning.
Escitalopram was chosen for the present study as it shows very
high selectivity for the serotonin transporter and is thus the best
choice for testing pharmacologic actions of SSRIs [35–37].
Moreover, escitalopram is one of the best-tolerated SSRIs
[35–37]. Given the previous literature on serotonin potentially
differentially affecting reward and punishment, our reinforcement
learning paradigm included both reward and punishment trials.
We hypothesised that SSRI treatment would affect reinforcement-
related behaviour. In addition, the SSRI treatment would affect the
brain regions previously identified as being involved in reinforce-
ment learning. This is the first study to examine the effects of
three-week SSRI using a reinforcement learning paradigm.

METHODS
Participants
This pre-registered study used a double-blind placebo-controlled design
with 64 healthy volunteers (Table 1) of whom 32 received 20mg daily of
escitalopram and 32 received placebo for at least 21 days (escitalopram,
mean(s.d.)= 26.06(2.78) days; placebo, mean(s.d.)= 26.06(3.34) days;
t(60.03)= 0.00; p= 1.00; d= 0.00). Participants were semi-randomised
(by a staff member not involved with the participants or the data analysis)
into the two groups, which were matched for age, sex and intelligence
quotient (IQ) (Reynolds Intellectual Screening Test, RIST). Participants aged
between 18 and 45 were recruited from an established database of healthy
volunteers at the Neurobiology Research Unit at the Copenhagen
University Hospital Rigshospitalet. The study was pre-registered on
clinicaltrials.gov (NCT04239339). Participants underwent a medical screen-
ing prior to enrolment in the study to ensure they were eligible for
inclusion. The study was conducted between May 2020 and October 2021.
Exclusion criteria are detailed in the Supplementary Material.

Ethics
The study was approved by the ethics committee for the Capital Region of
Copenhagen, Denmark (H-18038352) and written informed consent was
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obtained from all participants. All methods were performed in accordance
with the relevant guidelines and regulations.

Experimental procedure
After obtaining written informed consent, participants underwent screen-
ing for somatic illness, which included a medical examination, blood
screening for somatic disease, an electrocardiogram (ECG), and assessment
for the presence of psychiatric conditions using the Danish translation
version 6.0.0 of the Mini-International Neuropsychiatric Interview (Sheehan
et al., 1998). Eligible participants were then semi-randomly assigned to
receive either an effective clinical dose of escitalopram (20mg daily in
capsules of 10mg) or placebo in identical capsules provided by the Capital
Region Pharmacy, for a duration of three to five weeks. Both the
participants and the investigators involved in data acquisition and analysis
were blinded to the intervention type until completion of data analysis.
Blinded medical personnel provided participants with both oral and

written instructions on taking escitalopram, including potential side
effects. Participants were directed to take 10mg daily for the initial three
days, followed by an increase to 20mg daily from the fourth day until the
last day of examination, coinciding with the neuropsychological testing
visit and fMRI scanning session. Before the cognitive visit, participants
completed several self-report questionnaires to assess their psychological
state. The results of the cognitive and neuropsychiatric analyses are
detailed in a separate article [20].
To ensure treatment compliance, the capsule container was examined

during visits, and participants provided blood samples both at the halfway
point and during the cognitive visit, usually in the morning (see Figure S1).
Additionally, participants maintained a daily medication logbook, which
was reviewed during the follow-up assessment. Participants were directed
to ingest the drug capsule after providing the blood sample to ensure the
measurement of steady-state serum escitalopram levels. A medical
professional oversaw participant management, maintaining regular con-
tact throughout the study period.
At the end of the study, participants were asked to state whether they

believed they had received escitalopram or placebo. Among those in the
escitalopram group, 53% accurately guessed that they received escitalo-
pram, while 16.12% of participants in the placebo group thought they
received escitalopram. A comparison between the two groups revealed a
significant disparity in the ability to correctly discern group membership
(χ2 (1, N= 63)= 9.48, p = 0.01 [two-tailed]). Thus, the accuracy of guessing
the correct allocation in the escitalopram group was at chance level.

Reinforcement learning paradigm
During the fMRI scan, subjects carried out a probabilistic learning paradigm
that required making choices to maximize wins and minimize losses (Fig.
1), adapted from previous similar tasks [28–30, 38]. In each trial, one of
three possible probabilistic pairs of abstract pictures was randomly
presented: a rewarding, punishing, or neutral pair (32 trials of each
valence). For each trial, the subject used a button press to indicate a choice
of picture (the picture on the right or left). When viewing the probabilistic
rewarding pair, selection of one of the pictures led to a financial win with a
70% probability and of a no-change outcome with 30% probability,
whereas the selection of the other picture led to gain with only 30%
probability. The probabilistic punishing pair led to a financial loss on 70
and 30% trials depending on stimulus choice, and the neutral pair led to
no change. The participants completed 3 blocks with new stimuli in each
block. All blocks were analysed together to increase the number of trials
and thereby, the power in the analyses, particularly the imaging analysis.

Behavioural analysis
All statistical analyses were conducted in R, version 4.1.1 (R Foundation for
Statistical Computing).
The group comparisons for the accuracy and reaction time were

conducted using analysis of covariance with both within group (feedback:

reward vs punishment) and between group (administration: placebo vs
escitalopram) factors controlling for age, sex and IQ. The analysis was
conducted using the aov function in R. Multiple comparisons correction
was conducted using the Benjamini-Hochberg false discovery rate (FDR)
with q= 0.05. The p-values reported are uncorrected.
To analyse the reinforcement learning paradigm, we used sophisticated

computational modelling approach, by fitting families of hierarchical
Bayesian reinforcement learning models to trial-by-trial task data
[20, 39, 40]. Model comparison was conducted between four models
using a bridge sampling estimate of the marginal likelihood using the
bridgesampling [41] function in R. Model 1 included a reward learning rate,
punishment learning rate and reinforcement sensitivity; Model 2 included
a reward learning rate, punishment learning rate, reinforcement sensitivity
and stimulus stickiness, Model 3 included a combined learning rate,
reinforcement sensitivity and stimulus stickiness; and Model 4 used an
experience weighted approach [42] which includes learning rate, inverse
temperature and experience weight. In Model 4, learning from reinforce-
ment is modulated by an “experience weight” for a stimulus; the
experience weight for a stimulus is updated every time it is chosen, and
its change over time is governed by a decay factor. In this model, the
softmax inverse temperature was also a parameter able to vary.
We analysed the differences in parameter values between groups by

first calculating group mean differences (MDs) per parameter. The 90 and
95% highest density intervals (HDIs) of the posterior distribution per MD
were then calculated and inspected to check whether they included zero
(evidence for no difference between groups). Full details of model
formulation, model fitting, and parameter recovery are provided in the
Supplementary Material.

Image acquisition
At the end of the intervention period, participants completed an MRI scan
on a 3 T Siemens Magnetom Prisma scanner (Erlangen, Germany) using a
32-channel head coil. We acquired a high-resolution, whole-brain, T1-
weighted MPRAGE structural scan (inversion time = 972ms, repetition
time = 2000 ms, echo time = 2.58ms, flip angle = 8°, in-plane matrix =
256 × 256 mm2, in-plane resolution = 0.9 × 0.9 mm2, 224 slices, slice
thickness = 0.9 mm). We also acquired blood oxygen level-dependent
(BOLD) fMRI scans during the reinforcement learning paradigm using a
T2*-weighted gradient echo-planar imaging (EPI) sequence (TR= 2000 ms,
TE= 30ms, flip angle = 70°, in-plane matrix = 76 × 76 mm2, in-plane
Resolution=3 × 3 mm2, 35 slices (thickness = 3.0 mm, gap between slices=
0.6 mm). We acquired a gradient field map to minimise spatial distortions
in the EPI BOLD fMRI acquisition.

Image pre-processing
All pre-processing was conducted in SPM 12 (https://www.fil.ion.ucl.ac.uk/
spm/software/spm12/). Functional images were slice-timing corrected,
realigned and unwarped to correct for head movements and EPI distortions;
co-registered and segmented to normalise images into standard space
based on the MNI template, for group level analysis; and smoothed with an
8mm full-width half-maximum (FWHM) Gaussian kernel, to account for
residual inter-subject differences. The default SPM12 steps were used. We
used the FSL motion outliers’ function to determine the framewise
displacement of each image. We determined that participants with mean
framewise displacement (FD) > 0.20mm would be excluded [43]. Movement
was small in the cohort and no participants were excluded.

Neuroimaging analysis
Statistical imaging analysis was also performed in SPM 12. The data from
each participant was analysed using general linear models (GLM) and
analyses were performed according to an event-related design. The
explanatory variables (EVs) that we used were the onset times of the cue
stimuli presentation and the feedback stimuli presentation for both reward
and punishment trials. They were modelled as 0 s duration events. The 6

Table 1. Demographics.

Placebo (n= 32) Escitalopram (n= 32) t or χ2 p Cohen’s d or phi

Age 25.38 (5.77) 24.25 (5.56) t= 0.79 0.43 d= 0.20

Sex 21 Females (65.63%) 21 Females (65.63%) χ2= 0.00 1.00 φ= 0.00

IQ 111.50 (9.51) 112.22 (9.30) t=−0.31 0.76 d= 0.08
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realignment parameters were included in the design matrix to correct for
signal changes due to head movement. An additional set of harmonic
regressors was used to account for any temporal low-pass frequency
variance within the data that is typical to fMRI signal with a cut-off of 1/
128 Hz. All regressors were convolved with the canonical haemodynamic
response function.
In the first-level analysis, the GLMs were used to generate contrast

images for our four effects of interest, which included cue presentation
and feedback presentation for both reward and punishment conditions.
For each contrast, we tested whether the parameter estimates (activation
levels) at each voxel were significantly greater than zero.
For the group level analysis to compare between the placebo and

escitalopram groups a two-sample t-test was conducted for the reward
and punishment trial separately. The analysis was conducted as a whole
brain analysis. Voxel-wise results were thresholded at p < 0.05, corrected
for family-wise error (FWE) at the peak level, to control for multiple
comparisons across the entire brain volume as per random field theory
in SPM.

RESULTS
Demographics
The analysis confirmed that the two groups were well matched and
there were no significant differences in age, sex or IQ (see Table 1).

Behavioural results
There was no main effect of group between the escitalopram and
placebo groups for accuracy (F = 0.29, p = 0.59, ŋ2 < 0.01) or

reaction times (F= 1.71, p= s.19, ŋ2 < 0.01). There was a
significant main effect of feedback (reward and punishment) for
accuracy (F= 5.83, p = 0.16, ŋ2= 0.04) and reaction time
(F= 70.67, p < 0.001, ŋ2= 0.36). The results showed that accuracy
was better in the reward trials than the punishment trials, and that
reaction time was significantly faster in reward trials compared to
punishment trials. There was no significant interaction effect
between group*task for accuracy (F = 0.93, p = 0.34, ŋ2 < 0.01) or
reaction time (F = 0.52, p = 0.47, ŋ2 < 0.01). Performance is
displayed in Fig. 2.

Computational modelling results. Hierarchical Bayesian modelling
showed that Model 2 was the best model. This revealed that for
reward trials, there were no group differences between the
escitalopram and the placebo group at the credible difference
level of 95% for any of the four model parameters: reward learning
(mean difference (MD) = −0.08 [95% HDI −0.27 to 0.10,
punishment learning (MD= 0.02 [95% HDI −0.06 to 0.10]),
stimulus stickiness (MD= 0.16 [95% HDI −0.11 to 0.43]) or
reinforcement sensitivity (MD= 0.36 [95% HDI −1.00 to 1.71]). The
results are represented in Fig. 3 and the model comparison is
presented in Table S1.
For the punishment trials, the escitalopram group had lower

punishment learning rate than the placebo group at the credible
difference level of 90% (MD=−0.15 [90% HDI −0.31 to −0.01).
There were no differences between the groups for any of the

Fig. 1 Schematic of the Reward Learning Paradigm. A shows the three different trial types and feedback probabilities. B demonstrates the
timeline of the experimental task. Participants are first presented with a fixation cue for 0.5 s, followed by the presentation cues and they have
a maximum of 2 s to respond, their choice is then displayed for 3 s until the feedback is presented for 1 s.
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other three model parameters: reward learning (MD=−0.08 [95%
HDI −0.19 to 0.04]), stimulus stickiness (MD=−0.08 [95% HDI
−0.24 to 0.06]) or reinforcement sensitivity (MD= 0.02 [95% HDI
−0.83 to 0.92]). The results are represented in Fig. 3 and the model
comparison is presented in Table S2.

Neuroimaging results
The neuroimaging results showed no group differences for cue
presentation for either the reward or punishment trials. For
feedback, the escitalopram group had reduced activation in the
intraparietal sulcus compared to the placebo group during the
reward trials. There were no differences for feedback on punish-
ment trials. The results are shown in Table 2 and Fig. 4.

DISCUSSION
In this double-blind, placebo-controlled study, a relatively large
group of healthy volunteers received either escitalopram or
placebo for an average of 26 days. This is the first study to
examine the effects of three-week SSRI using a reinforcement
learning paradigm. The key findings were that the escitalopram
group had a lower punishment learning rate when compared to
the placebo group during punishment trials. In addition, the

escitalopram group showed reduced activation in the intraparietal
sulcus compared to the placebo group during reward trials.

Behavioural results
Using the standard analysis of covariance accuracy and reaction
time, results showed no main effect of group, suggesting no
differences between the escitalopram and placebo groups for
either reward or punishment trials. There was a significant main
effect of feedback demonstrating that accuracy was decreased,
and reaction time was increased in punishment trials compared to
reward trials. There was no interaction between feedback and
group, suggesting that the placebo and escitalopram group both
performed worse in the punishment compared to reward trials.
These results together suggest that participants find it more
difficult to learn from punishment than from reward, but that
escitalopram does not have an effect on accuracy or reaction time.
For the more sophisticated computational modelling, our

results showed that the escitalopram group had a lower punish-
ment learning rate during punishment trials compared to placebo
controls. There were no group differences for learning during
reward trials. In addition, there were no group differences for
reinforcement sensitivity or stimulus stickiness between groups
for reward or punishment trials. Our results suggest that

Fig. 2 Accuracy and reaction time performance during reward and punishment trials. A depicts the accuracy performance, (B) depicts the
reaction time performance.

Fig. 3 Computational modelling results for the reward and punishment trials. Error bars indicate no credible differences in posterior
distributions between placebo and escitalopram groups for which the 90/95% highest density intervals (HDI) excluded 0. A depicts the results
for the reward trials, (B) depicts the results for the punishment trials. Error bars in orange indicate credible differences in posterior
distributions between placebo and escitalopram groups for which the 90% highest density interval (HDI) excluded 0.

Table 2. Reduced BOLD activation in the escitalopram group compared to the placebo group for feedback on reward trials.

Brain Region BA x y z z-value Cohen’s d

Intraparietal Sulcus 19 28 −66 32 5.03 0.63

BA Brodmann’s Area.
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escitalopram has a greater effect on learning from punishment
than learning from reward. Previous studies have shown a similar
asymmetry where serotonin affects learning from punishment to a
greater extent [13, 19, 22, 44]. The results from the present study
suggest that three-week escitalopram impairs punishment learn-
ing, but reward learning remains stable. It is worth noting that
these studies differ not only in the exact reinforcement learning
task used, but also the serotonin manipulation used. The present
study and that of Michely et al. [19] for example differ in the
dosage and length of SSRI administration. In our study, we used at
least 3 weeks of SSRI treatment, whereas Michely et al. [19] used
only one week. Given the findings that the neuroplasticity effects
can take 14–35 days [24–26], this may be one possible reason for
the difference in findings. For this reason, in studies of chronic
SSRI effects, the duration should be at least 21 days. In addition,
given the importance of learning from reinforcing feedback in
everyday life and the large number of individuals on SSRI
treatment it is crucial to understand the effects of chronic SSRI
to optimise treatment and quality of life for patients with
neuropsychiatric conditions. Moreover, understanding the neural
mechanisms through which serotonin exerts its effects on affect,
cognition and behaviour is of importance to reduce the severity of
clinical symptoms.

Neuroimaging results
Our fMRI results showed a key novel finding namely that there
was decreased activation in the intraparietal sulcus in the
escitalopram group compared to the placebo group during
performance on reward trials. The same region showed decreased
activation during punishment trials, but this did not survive the
peak-level FWE correction. There were no increased regions of
activation in the escitalopram group when compared to the
placebo group. Several studies have implicated the intraparietal
sulcus in reward processing. Specifically it has been shown to play
a role in both the decision-making during uncertainty [34, 45–47],
as well as being involved in a ‘value-driven attention network’
where attentional resources are allocated to valuable choices
[48–51].
For example, it has been demonstrated that neurons in the

parietal cortex of non-human primates encode the probability of
rewards, particularly through eye-movements, suggesting its
involvement in reward-based decision-making processes [45].
Neuroimaging studies in humans have also implicated the
intraparietal sulcus in reward processing. One fMRI study showed
increased activity in the parietal cortex during probabilistic reward
anticipation tasks, thereby suggesting a role in both the
anticipation of rewarding outcomes, but also during uncertainty
[46], as well as when the reward is uncertain [34]. A further fMRI
study has shown that the IPS is associated with state prediction
error which is a measure the degree of surprise in encountering a
new state, based on the subjects’ current understanding of the
probabilities that link one state to another following specific

actions [47]. Therefore, our finding of decreased IPS activation in
the escitalopram group potentially reflect an aberrant response to
the probabilistic and uncertain elements of the task. This pattern
could imply that escitalopram affects neural mechanisms involved
in processing state prediction errors or adapting to probabilistic
task demands, thereby impacting decision-making under
uncertainty.
In terms of the involvement of the intraparietal sulcus in a

‘value-driven attention network’, it has been shown in non-human
primates that the intraparietal sulcus responds to rewards during
visual attention tasks, indicating its role in integrating reward-
related information with attentional processes [48]. Similarly, it has
been shown to respond preferentially to stimuli that predict
available reward [51]. In humans, the intraparietal sulcus has been
shown to bias attentional resources to stimuli associated with
reward [49]. Our finding of reduced learning from punishment in
the escitalopram group may be due to the fact that escitalopram
disrupts the encoding of the value of reinforcing feedback. These
results make sense when considering that SSRIs are used to treat
the negative bias and responses to abnormal feedback in MDD. It
may be that SSRIs blunt reinforcement encoding, and in fact
blunted affect has often been reported by patients [52, 53] and
previously demonstrated in our own research [20]. This may lead
to reduced sensitivity to reinforcers, which thereby impacts
adaptive learning from feedback. This is in line previous findings
of disrupted reinforcement sensitivity and learning following
serotonin manipulations [17, 18, 20, 23]. However, this may be an
advantage in MDD as it reduces the abnormal response to
negative feedback.
Taken together, the involvement of the intraparietal sulcus in

reward processing and the impact of serotonin on reinforcement
learning provide a plausible framework for understanding the
observed differences in intraparietal sulcus activation between the
placebo and escitalopram groups. The interplay between seroto-
nin, reward processing, and the intraparietal sulcus highlights the
complex neurobiological mechanisms underlying the modulation
of reward-related behaviours.
We did not see differences between the groups in more

traditional brain regions associated with reward, for example the
nucleus accumbens and the anterior cingulate cortex. However,
many of these regions are involved in neuroimaging studies
examining the role of dopamine not the role of serotonin. Studies
have also demonstrated that when outcomes are uncertain there
is a much more widespread pattern of activation in the brain [34].
The outcomes in the reinforcement paradigm used in the present
study were indeed uncertain. One previous study of the effects of
citalopram on reinforcement learning showed enhanced reward
and effort learning signals in a widespread network of brain
regions, including ventromedial prefrontal and anterior cingulate
cortex [21]. In addition, we did not see group differences in
neuroimaging prediction error signals (see Supplementary Mate-
rial). However, as we have noted in the mixed behavioural

Fig. 4 Decreased BOLD activation in the escitalopram group vs the placebo group during reward trials. MNI Coordinates (28, −66, 32).
p < 0.05 peak-level FWE corrected.
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findings, the specific manipulations and durations of serotonin
seem to affect the results. Further research which examines the
chronic effects of serotonin is needed in both healthy volunteers
and patients with MDD. This is particularly important considering
that some national guidelines, for example the National Institute
for Health and Care Excellence (NICE) in the UK and the American
Psychological Association (APA) in the USA, suggest that if there is
no treatment response to increase the dosage or even change the
drug, after 4–6 weeks [54, 55]. Given that SSRIs are administered
chronically to patients with neuropsychiatric disorders, the
present findings hold more clinical relevance than acute studies.

CONCLUSION
In this double-blind placebo-controlled design of escitalopram
administered on average for 26 days to healthy individuals, we
showed that there was reduced learning from punishment in the
escitalopram group. Using fMRI, our key and novel finding was
that there was reduced activation in the intraparietal sulcus in the
escitalopram group during reward trials compared to the placebo
group. Given the role of the intraparietal sulcus in reinforcement
learning, specifically in uncertainty and outcome value it may be
that reinforcement learning is altered by serotonin through its
effects on encoding of value outcomes. This may lead to reduced
sensitivity to reinforcers, which thereby impacts adaptive learning
from feedback. In addition, it seems that escitalopram specifically
disrupts the processing of probabilistic feedback. These novel
findings provide strong evidence for a key role of serotonin and
the intraparietal sulcus in reinforcement learning. Given the
importance of learning from reinforcing feedback in everyday life
and the large number of patients on SSRI treatment it is crucial to
understand the effects of chronic SSRIs to optimise treatment and
quality of life for patients with neuropsychiatric conditions.
Moreover, understanding the neural mechanisms through which
serotonin exerts its effects on affect, cognition and behaviour is of
importance for clinical treatment of MDD.
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