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Abstract

The ability to identify biomarkers of psychosis risk is essential in defining effective

preventive measures to potentially circumvent the transition to psychosis. Using sam-

ples of people at clinical high risk for psychosis (CHR) and Healthy controls (HC) who

were administered a task fMRI paradigm, we used a framework for labelling time win-

dows of fMRI scans as ‘integrated’ FC networks to provide a granular representation

of functional connectivity (FC). Periods of integration were defined using the ‘carto-

graphic profile’ of time windows and k-means clustering, and sub-network discovery

was carried out using Network Based Statistics (NBS). There were no network differ-

ences between CHR and HC groups. Within the CHR group, using integrated FC net-

works, we identified a sub-network negatively associated with longitudinal changes

in the severity of psychotic symptoms. This sub-network comprised brain areas
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implicated in bottom-up sensory processing and in integration with motor control,

suggesting it may be related to the demands of the fMRI task. These data suggest

that extracting integrated FC networks may be useful in the investigation of bio-

markers of psychosis risk.
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cartographic profile, clinical high-risk for psychosis, network analysis, network based statistics,

network integration, task fMRI

1 | INTRODUCTION

A key challenge in the clinical management of people at clinical high

risk (CHR) for psychosis is that it is difficult to predict whether their

presenting symptoms will improve, persist, or progress to a frank psy-

chotic disorder, and if their overall level of functioning will improve or

deteriorate (Fusar-Poli et al., 2012; Simon et al., 2013). This has led to

a search for biological measures that might help clinicians to predict

clinical outcomes in this group (Gifford et al., 2017). The present study

aimed to achieve this by exploring the association of novel functional

connectivity (FC) based biomarkers with longitudinal changes in psy-

chosis symptoms and functioning.

The CHR state is associated with subjective impairments in cogni-

tive function, which are often described as Basic Symptoms (Huber &

Gross, 1989). These include difficulties in dividing attention between

sensory modalities, and focusing attention on non-salient visual stim-

uli (Schultze-Lutter, Klosterkötter, Picker, Steinmeyer, &

Ruhrmann, 2007). Neuropsychological assessments in CHR subjects

indicate that this state is also associated with objective cognitive

impairments across multiple domains (Fusar-Poli et al., 2012), includ-

ing attention and vigilance (Zheng et al., 2018).

Neuroimaging studies have shown a range of alterations in func-

tional connectivity (FC) in CHR participants (Allen et al., 2010;

Crossley et al., 2009; Schmidt et al., 2014; Winton-Brown

et al., 2017). Such studies have shown alterations in ‘static’ FC by

modelling connectivity profiles over the entirety of a scan. It has been

suggested that in healthy individuals however, that the brain switches

between periods of network integration and segregation, and that the

state of network integration is associated with periods of attention

(Shine, Koyejo, & Poldrack, 2016) and task performance (Shine,

Bissett, et al., 2016). Recent work has exhibited intermittent alter-

ations in FC in CHR subjects (Du et al., 2018), raising the possibility

that switching between network segregation to integration may be

perturbed in this group. Such a deficit might underlie the deficits in

attention and sensory processing in CHR subjects described above.

The present study aimed to address this issue by using fMRI to exam-

ine FC in CHR subjects within periods of integration (acting as a proxy

for periods of high attention/vigilance) whilst they were performing a

cognitive task.

We computed the ‘cartographic profile’ (CP) (Guimera, R., &

Amaral, L. A. N., 2005; Shine, Bissett, et al., 2016; Shine, Koyejo, &

Poldrack, 2016) during a novelty salience fMRI paradigm, which is a

method that can be used to mark integrated and segregated ‘met-

astates’ during a scan. Network Based Statistics (NBS) (Zalesky, For-

nito, & Bullmore, 2010) were then used to search for network

differences during integrated metastates between groups of CHR

subjects and controls. The CHR samples were then followed up clini-

cally to determine their clinical and functional outcomes. This

allowed us to investigate whether the disruption of FC networks

derived from integrated metastates is related to subsequent out-

comes in CHR participants. Our first hypothesis was that FC net-

works derived from integrated metastates would be altered in CHR

subjects relative to controls. We then tested the hypothesis that this

would be associated with clinical and functional outcomes in these

subjects at follow-up.

2 | METHODS

2.1 | Participants

One hundred and sixteen participants consented to the present study.

Four CHR participants were excluded from analysis because they did

not fully complete the three task fMRI runs, and one was excluded

because a macroscopic abnormality was detected on MRI scanning. A

further 30 participants (23 CHR/7 HC) were removed from the analy-

sis due to the stringent motion criteria (see pre-processing

section and Supplementary Material Section 2), leaving 81 participants

(24 HC/57 CHR).

All participants were studied using fMRI at the Centre for Neuro-

imaging Studies, King's College London. The study received ethical

approval from the National Health Service UK Research Ethics Com-

mittee and all participants gave written informed consent. CHR partic-

ipants were scanned when they presented to one of four specialist

clinical services: Outreach and Support in South London (OASIS)

(South London and Maudsley NHS Trust), the West London Early

Intervention Service, Cambridge Early Onset (CAMEO) (Cambridge

and Peterborough NHS Trust), and the Coventry and Warwick War-

wickshire Partnership NHS Trust. HC participants were recruited from

the same geographical areas as the CHR sample through local

advertisements.

All participants were between 18 and 35 years of age. General

recruitment exclusion criteria included any MRI contraindications

(e.g., pregnancy, claustrophobia) or history of neurological illness,
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substance dependency, or diagnosis of psychotic disorders, according

to DSM 4 criteria (Bell, 1994). HC participants were excluded if they

had a personal or familial history of psychiatric/neurological illness. All

participants reported no illicit substance use in the past week and no

alcohol use in the 24 hour period before scanning.

Participant demographic information is shown in Table 1. There

were significant group differences in age, and in treatment with anti-

psychotic and antidepressant medications. Age and medication use

were therefore controlled for in group comparisons. Past and present

medication use were merged into two binary variables (one variable

for antidepressant use and one for antipsychotic use) to be used as a

covariate (1 = past or present medication use, 0 = no past or present

medication use).

A proportion of the CHR sample underwent follow up assess-

ments at a median of 458 days (N = 46, IQR = 376). Follow-up time

was highly positively skewed. The GAF and PANSS were used to

assess the level of functioning and psychotic symptom severity at

follow-up, in 31 and 27 subjects, respectively. Transition to psycho-

sis and persistence of the CHR state was assessed using the Com-

prehensive Assessment of At-Risk Mental States (CAARMS; Yung

et al., 2002). Eight CHR participants had developed a psychotic dis-

order during follow-up, whilst 8 were in remission from the CHR

state. Because the number of transitions and remissions were lim-

ited, only functional and symptom level outcomes were investigated

in the analyses. Continuous symptom and functioning scores were

used to maximise statistical power. Demographics of the sub-

samples with follow-up data are shown in Table 1. Loss to follow-up

did not appear to bias the follow-up cohorts in any measure

(Table 1).

2.2 | Clinical scales

The CHR state was diagnosed using the CAARMS. Pre-morbid IQ was

measured using the National Adult Reading Test (Nelson &

Willison, 1991), variation in functioning was measured the functional

subscale from the Global Assessment of Functioning scale (Karterud,

Pedersen, Løvdahl, & Friis, 1998), and psychotic symptoms were

assessed using the positive and negative syndrome scale (PANSS)

(Kay, Flszbein, & Opfer, 1987).

2.3 | Code sharing

The present study used Matlab scripts made available for modelling

Cartographic Profiles (Shine, Koyejo, & Poldrack, 2016) Multiplica-

tion of Temporal Derivatives (Shine et al., 2015) and multilayer com-

munity structure (Jutla, Jeub, & Mucha, 2011; Mucha, Richardson,

Macon, Porter, & Onnela, 2010). NBS was performed using the

available software (Zalesky et al., 2010). Post hoc tests and statistics

were performed using tailor-made scripts in R 3.5.1 and

Python 3.6.8.

2.4 | Task fMRI paradigm

Each participant was administered a novelty salience task derived

from that described by Bunzeck and Düzel (2006). Each block con-

sisted of 80 standard images, 10 neutral oddballs, 10 novel oddballs,

and 10 target images. Participants were asked to respond to target

images with a button press. Images were presented for 100 ms

followed by a fixation cross, with an inter-image interval of 2,700 ms.

Each run lasted for 6 min (179 volumes, TR 2 s). Reaction time and

error rate from this task indicates performance on target button pres-

ses and not instances of novelty stimulus presentation. Data from the

present study using this task has previously been published using

Dynamic Causal Modelling (Modinos et al., 2020).

2.5 | Pre-processing

Functional MRI scans were pre-processed using a standard fMRIPREP

pipeline (Esteban et al., 2019). A full description of the pre-processing

used is given in the Supplementary Materials Section 1. A high pass

cut off of 128 s was included in this pipeline (discrete cosine basis

during CompCor extraction) (Behzadi, Restom, Liau, & Liu, 2007),

which is equivalent to bandpass filtering that had been used in previ-

ous research using the same task paradigm (Bunzeck & Düzel, 2006;

Modinos et al., 2020).

Head motion has a problematic effect on FC-derived network

measures (Satterthwaite et al., 2012; Van Dijk, Sabuncu, &

Buckner, 2012). In the present study, participants were excluded from

analysis if more than 25% of volumes contained a framewise displace-

ment (FD) > 0.25 mm or DVARS >4%, or they had a mean FD > 0.2.

This was done in addition to an ICA-based removal of motion arte-

facts (Pruim et al., 2015). In the final cohort mean FC remained signifi-

cantly different between the two groups (mean FD (SD): HC = 0.10

(0.03), CHR = 0.11 (0.03); t (47.68) = 2.05, p = .046) and so mean FD

was controlled for in group comparisons and in associations with

changes in functioning/symptom scores. As we were using dynamic

FC methods, volume censoring was not performed, in order to pre-

serve the temporal structure of scans. A full description of motion cor-

rection procedures is given in the Supplementary Materials Section 2.

2.6 | Region of interest definition

Time-series were averaged within cortical/subcortical regions of inter-

est using 5 mm spheres centred at 264 coordinate locations (cortical

and subcortical) from Power et al. (2011). To negate the effects of

inflated connectivity due to task events, HRF-convolved task event

data were regressed out of the time-series, the same process used in

another study using the cartographic profile with task fMRI data

(Shine, Bissett, et al., 2016). Nodes with high signal drop out were

removed from the analysis, leaving 204 of the original 264 regions. An

area of signal drop out was defined as an area with a mean time-series
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TABLE 1 Demographics including N, median age, sex, ethnicity, handedness, mean years in education, mean IQ, medication, mean GAF
symptom and function scores at baseline, mean PANSS positive and negative symptom scores at baseline

Baseline group comparison sample Follow up PANSS sample
Follow up GAF function
sample

HC CHR
Significance
test

Significance
test

Significance
test

N 24.00 57.00 27.00 31.00

Median age (IQR) 25.58

(4.28)

22.82

(3.75)

p = .005 23.00 (5.50) p = .780 22.00 (4.50) p = .854

Male N (%) 11.00

(45.83%)

36.00

(63.16%)

p = .232 17.00

(62.96)

p = 1.000 18.00

(58.06)

p = .811

Right handed N (%) 22

(91.67%)

48

(84.21%)

p = .492 24.00

(88.89%)

p = .743 27.00

(87.10%)

p = 1.000

Years in education (SD) 16.13

(3.32)

14.72

(2.31)

p = .073 14.59 (2.59) p = .834 14.38 (2.29) p = .527

IQ (SD) 105.19

(11.36)

105.57

(11.17)

p = .896 109.60

(9.43)

p = .102 106.45

(11.02)

p = .733

Medication N (%)

Past antipsychotic use 0.00

(0.00%)

3.00

(5.26%)

p < .001 6.00

(22.22%)

p = .767 5.00

(16.13%)

p = 1.000

Past antidepressant use 0.00

(0.00%)

9.00

(15.79%)

p < .001 11.00

(40.74%)

p = .818 12.00

(38.71%)

p = .659

Antipsychotic at time of MRI 0.00

(0.00%)

10.00

(17.54%)

p = .029 4.00

(14.81%)

p = 1.000 3.00

(9.68%)

p = 1.000

Antidepressant at time of MRI 1.00

(4.17%)

25.00

(43.86%)

p < .001 p = 1.000 11.00

(35.48%)

p = 1.000

Antipsychotic at follow up 4.00

(14.81%)

p = .460 3 (9.68%) p = 1.000

Antidepressant at follow up 10.00

(37.04%)

p = .110 9 (29.03%) p = .589

Mean GAF function (SD) 91.00

(7.50)

60.00

(19.00)

57.11

(10.32)

p = .325 56.81

(11.10)

p = .270

Mean PANSS total 55.87

(14.67)

56.96

(13.43)

p = .740 56.87

(14.97)

p = .769

Mean PANSS positive (SD) 14.00

(5.00)

13.70 (3.72) p = .961 13.93 (4.14) p = .767

Mean PANSS negative (SD) 11.00

(6.00)

12.67 (4.46) p = .857 12.50 (4.20) p = .978

Median days to follow up (IQR) 511.03

(299.95)

527.26

(310.84)

Mean change in PANSS total

scores (SD)

5.70 (21.20) 4.83 (21.44)

Mean change in PANSS positive

scores (SD)

0.30 (5.55) 0.13 (5.90)

Mean change in PANSS negative

scores (SD)

1.37 (5.67) 0.96 (5.52)

Mean change in GAF Disability

score (SD)

3.00 (20.94) 2.74 (20.35)

Note: For follow-up cohorts mean change in PANSS total, positive, and negative symptoms scores, GAF functioning scores, and median number of days to

follow-up are shown. Significance tests show difference between HC and CHR groups for baseline comparisons, and difference between CHR baseline and

follow-up samples (those with follow up PANSS/GAF scores). Significance test used for Age: Mann–Whitney U, Sex: Chi-squared, Handedness: Fischer's

Exact test, Years in Education: T test, IQ: T test., Medication: Fischer's Exact Test, GAF Function: T test, PANSS total/negative/positive: T test.

Abbreviations: SD, standard deviation, IQR, inter quartile range.
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signal intensity z score (across nodes) less than or equal to −1.64 in

any subject, corresponding to outliers <5th percentile.

2.7 | Multiplication of temporal derivatives

In order to provide an estimate of FC that is robust against task-based

inflation of connectivity between regions, multiplication of temporal

derivatives (MTD) was used (Shine et al., 2015). To calculate the first

temporal derivative for node i at time-point t (dtit) of a time series (ts),

the bold intensity at time point t − 1 was subtracted from that at time

point t (dtit = tsit − tsit − 1). Each node was given a vector of dts across

the time series (t − 1), which were then normalised by the SD across

that vector (σ). A node x node MTD matrix for each time point was

calculated by multiplying each dt for each pair of nodes ij (Shine

et al., 2015). We used non-overlapping windows of 15 TR (30s), which

produced a total of 33 windows (11 windows including 15 volumes in

each of 3 runs).

2.8 | Cartographic profile

To define whether time windows represented integrated or segre-

gated metastates, a procedure for defining the ‘cartographic profile’

(CP) was used (Guimera et al., 2005; Shine, Bissett, et al., 2016). The

CP is a 2D histogram of the frequency distribution of two graph met-

rics, the Participation Coefficient (PC) and the Module Degree Z-score

(MDZ). Both the PC and MDZ rely on a network being segregated into

distinct communities, as the PC is a measure of between-community

connectivity, whilst the MDZ a measure of within-community connec-

tivity (for formula see Guimera et al., 2005). The PC and MDZ were

determined using the Brain Connectivity Toolbox (http://www.brain-

connectivity-toolbox.net/). To find the community structure of all

time windows, a multilayer modularity maximisation algorithm was

used (γ/ɷ = 1) (Jutla et al., 2011; Mucha et al., 2010). Once this had

been found for each time window, the frequency distributions of node

wise PC and MDZ were used to create one CP for each time window.

A study of how methodological choices affected the distribution of

the CP in this study is described in the Supplementary Materials

Section 3. In addition, an exploration of the effects of window-length,

window offset, and CP resolution was performed, which supported

the parameters used in the current study in the context of extracting

periods of highly integrated FC (Supplementary Materials Section 5).

Such methodological choices may not apply to other forms of dynamic

functional connectivity analysis where, for instance, higher temporal

resolution may be beneficial.

2.9 | Creating one integrated network for each
participant

We aimed to create one integrated network for each participant, to

use in within- and between-group comparisons. This involved taking

the CP of each time window, using a k-means clustering algorithm to

label time-windowed CPs as integrated/segregated (within partici-

pant), then using these labels to create an average integrated FC net-

work for each participant. Participant integrated FC networks were

then used in within- and between-group comparisons. This procedure

is illustrated in Figure 1.

A deviation in our methodology from that in previous studies

(Shine, Bissett, et al., 2016; Shine, Koyejo, & Poldrack, 2016) is that

instead of using CPs with a dimensionality of 100 × 100, we used CP

dimensions of 10 × 10. This was done to reduce the dimensionality of

the feature space in the clustering procedure, and because it appeared

to give more distinct CP distributions between integrated/segregated

metastates (see Supplementary Materials Section 3). In addition,

because of the non-deterministic behaviour of the multilayer commu-

nity detection algorithm, the procedure for finding an integrated FC

network was repeated 100 times. Because the study included three

runs, the integrated FC network used for within- and between-group

comparisons were computed as the mean across the three runs and

100 repetitions. The CP procedure uses K means clustering with

K = 2. Validation of the choice of clusters is shown in Supplementary

Materials Section 4.

2.10 | Between/within group comparisons:
Network Based Statistics

Network Based Statistics (NBS; Zalesky et al., 2010) were used to

identify sub-networks that differed in terms of connectivity strength

between CHR and HC groups, and that were associated with longitu-

dinal changes in GAF and PANSS scores in the CHR group

(change = follow up score — baseline score). This was done firstly

using integrated FC networks and secondly, as a point of reference,

using ‘static’ FC networks, computed as an average of all time window

FC matrices for each participant.

NBS works firstly by applying a test statistic threshold to pro-

vide a set of above threshold sub-networks and then performing a

permutation test on the maximum sub-network size expected to

give the significance of these sub-networks (Zalesky et al., 2010).

For between group comparisons (HC vs. CHR) test statistic thresh-

olds were defined using a one-way ANCOVA with group status as

the independent variable and with the following covariates: age,

mean FD, history of antipsychotic use, and history of antidepressant

use. For within CHR group associations with change in GAF and

PANSS scores, a multiple linear regression was used, with the

covariates of sex, age, mean FD, history of antipsychotic use, history

of antidepressant use, and the number of days between the baseline

scan and follow up visit.

It is typical to test the NBS procedure across a range of initial

thresholds (Nelson, Bassett, Camchong, Bullmore, & Lim, 2017;

Zalesky et al., 2010). In the present study, a range of F threshold from

6 to 28 was used. For any sub-networks found to be significantly

associated with change in symptom/functioning scores, we also

tested whether baseline scores would yield similar results, to confirm
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that results were specific to a change in scores. In addition, we tested

whether excluding participants taking antipsychotic medication at the

time of the MRI scan or at follow up would result in similar findings.

3 | RESULTS

3.1 | Task performance

There was no difference between the two groups in hit rate (percent-

age of correct target hits) (median (IQR): HC = 100 (0), CHR = 100

(3.33), U = 625, p = .446) or reaction time (ms) (means (SD):

HC = 556.83 (83.31), CHR = 566.35 (104.08), t (53.65) = 0.43,

p = .666). Because the majority of participants had a hit accuracy of

100% (suggesting a ceiling effect), only reaction time was used as a

measure of task performance.

3.2 | Cartographic profile: Group differences

There were no significant group differences in the median number of

communities in each run (U = 536.50, p = .128), or the mean time

spent in an integrated metastate (t [49.72] = 1.15, p = .255). The mean

number of metastate switches was significantly higher in the HC

group (t [52.51] = −2.26, p = .028) (Table 2), however not if taking into

account multiple comparisons correction.

Across the whole sample (CHR and HC) metastate switching was

not correlated with reaction time (Rs = −0.18, p = .100), or with time

(a) (b)

(d)(c)

(e)

F IGURE 1 The analysis pipeline involved the following steps: (a) A sliding time window (STW) was used to extract a sequence of functional
connectivity (FC) matrices. (b) Multilayer community detection was used to find the time resolved community structure of FC matrices. (c) The
cartographic profile (CP) of each FC matrix was found using graph metrics (module degree z-score/participation coefficient) derived from the time
resolved community structure. (d) K means clustering was used to cluster CPs into two states (Integrated/Segregated). (e) FC matrices labelled as
Integrated States were averaged to create one mean Integrated State FC matrix for each participant to use in NBS within/between group
comparisons
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spent in an integrated metastate (Rs = 0.21, p = .060). However, ‘flexi-

bility’, a measure based on the proportion of times nodes switch alle-

giance between multilayer communities (Bassett et al., 2011), was

negatively correlated with reaction time (Rs = −0.44, p < .001),

suggesting it was a better reflection of brain dynamics in relation to

task performance. Flexibility was not significantly different between

the two groups (Mean [SD]: CHR = 0.30 [1.17], HC = 0.37 [1.01],

t [44.09] = −1.33, p = .192).

3.3 | Between/within group comparisons (NBS)

There were no significant group differences in sub-networks found

using either static or integrated connectivity matrices (one-way analy-

sis of variance [ANCOVA]; FWE p ≤ .025; 5,000 permutations).

Within the CHR group, when longitudinal changes in PANSS posi-

tive scores were analysed using integrated FC matrices, one sub-

network was found to be significant (F thresholds 19–27 at FWE

p ≤ .025). A similar sub-network was found to be associated with the

change in PANSS positive scores when excluding those taking anti-

psychotic medication at the time of MRI and at follow up, though only

at p ≤ .05 (Supplementary Materials Section 6).

An arbitrary NBS statistic threshold (F = 19, p = .023) was chosen

for interpretation (Zalesky et al., 2010). The sub-network mainly

included occipital-frontal and cerebellar-frontal connections, including

highly connected nodes in the right V area of the cerebellum (MNI

XYZ: 1, −62, −18) and the intercalcarine cortex (MNI XYZ: 20, 66, 2).

Nodes mostly included frontal and parietal areas of the default mode

network, and sensory (visual, auditory, sensory-somatomotor) and

cingulo-opercular task control networks. T values from identical multi-

ple linear regressions used in the NBS procedure, but computed on

single connections, suggested that all connections reflected a negative

association with change in PANSS positive scores. T values here were

used post hoc to infer the direction of the relationship, and were not

indicated as being individually significant from the NBS procedure.

Using identical multiple regression models it was also possible to find

the mean Cohen's f2 to indicate the effect size of models with the

response variable (PANSS positive symptom scores). This was done

across all brain network edges (upper triangular of the matrix) giving a

mean Cohen's f2 of 0.46 (SD = 0.30). Restricting this to edges of the

sub-network found in the NBS procedure resulted in a mean Cohen's

f2 of 1.84 (SD = .59). Additionally, we examined the correlation

between the mean FC of the whole sub-network and changes in

PANSS positive scores, in order to test whether the results were due

to participants who became more or less symptomatic in terms of the

positive relationship with FC. This indicated that the CHR sample

included both subjects who became more symptomatic and subjects

who became less symptomatic, and that both contributed to the nega-

tive relationship with FC in the significant sub-network. Results are

shown in Figure 2 and Table 3.

We also tested whether using the baseline PANSS positive symptom

scores (as opposed to the change in these scores) as the dependent

variable would produce similar results. No significant sub-networks

were found, suggesting the findings were specific to longitudinal

changes in symptomatology. In addition, the procedure was repeated

excluding those who were taking antipsychotic medication at the time

of MRI, which suggested the found association with PANSS positive

symptom scores to be independent of current antipsychotic medica-

tion use.

There were no sub-networks associated with longitudinal changes in

GAF or PANSS negative scores, using either static or highly integrated

connectivity matrices (multiple linear regression; FWE p ≤ .025; 5,000

permutations). When changes in PANSS positive symptom scores

were analysed using static connectivity matrices there were no signifi-

cant sub-networks.

A supplementary analysis was performed in order to also explore

regional variation in integration and segregation (Supplementary

Materials Section 7). This was done using the Recruitment (Ri) and

Integration Coefficients (Ii) (Mattar, Cole, Thompson-Schill, &

Bassett, 2015). Whilst there were no regional integration/segregation

values (Ii/Ri) found to be significantly different between groups, or

associated with change in positive symptom scores in CHR partici-

pants, there was a whole brain trend for higher Ii in the CHR group.

Notably, using the CP procedure CHR participants spent more time in

an integrated metastate (Table 2) and whole brain Ii across the whole

sample was strongly correlated with time spent in an integrated met-

astate (R = .76).

4 | DISCUSSION

The present study has demonstrated how a process for extracting

periods of high brain network integration from an fMRI scan can be

used to search for novel network biomarkers in a CHR population.

The main finding was that a sub-network identified using this

approach was negatively associated with changes in PANSS positive

TABLE 2 Significance tests, medians/means, and SD/interquartile range (IQR) for the proportion (%) of time spent in an integrated metastate,
and the number of metastate switches

HC CHR Significance test p

Median number of communities per run (IQR) 3.10 0.51 3.04 0.61 U = 536.50 .128

Mean % time in an integrated metastate (SD) 61.05 9.23 63.76 10.68 T (49.72) = 1.15 .255

Mean number of metastate switches (IQR) 3.25 0.60 2.89 0.73 T (52.51) = −2.26 .028
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symptom scores. In contrast, analyses using static FC networks did

not yield significant results.

4.1 | Dynamic functional connectivity network
organisation

CHR participants were suggested to have less frequent switching

between integrated and segregated metastates, though not when

controlling for multiple comparisons. Less switching between inte-

grated and segregated metastates in the CHR group could reflect rela-

tively less dynamic functional brain organisation in the CHR group.

However, metastate switching was not related to mean RT, whereas

flexibility, a measure that has been related to task performance in

multiple studies (Bassett et al., 2011; Braun et al., 2015; Pedersen,

Zalesky, Omidvarnia, & Jackson, 2018; Telesford et al., 2016), did not

differ between groups and was negatively correlated with mean RT,

suggesting it was a better index of dynamic brain organisation related

to task performance. In addition, several studies of flexibility have

suggested that schizophrenia is associated with higher, not lower,

dynamic network switching (Braun et al., 2016; Gifford et al., 2020).

We summarise that this study does not suggest less dynamic func-

tional brain organisation in CHR populations.

Time spent in an integrated state was also not correlated with

any measures of task performance, in contrast to data from a previous

study (Shine, Bissett, et al., 2016). However, levels of integration and

segregation are dependent on task demands (Shine, Bissett,

et al., 2016), and the network dynamics in the present study may be

specific to the cognitive demands of the task we used. The high accu-

racy rate for most participants in the present study suggests the task

used required low cognitive effort. Similar to Shine, Bissett,

et al. (2016), we found that participants spent more time in an inte-

grated metastate, suggesting some validity of the present

methodology.

4.2 | Discovery of psychosis-related sub-networks

A sub-network was found to be negatively associated with changes in

PANSS positive scores, although only when using FC matrices derived

from integrated (as opposed to static) metastates. This suggests FC

patterns during periods of network integration may provide a useful

(a)

(b) (c)

F IGURE 2 (a) Nodes and edges of a sub-network found to be significantly associated with changes in PANSS positive symptom scores in a
sample of CHR participants. T values and edge colour from equivalent multiple linear regressions. Edges are shown in grayscale with the lighter
greys corresponding to more extreme T values. Node size represents nodal degree. (b) Scatter-plot and simple regression line (Pearson's
R = −0.42) for mean connectivity of the whole NBS significant sub-network with change in PANSS positive symptom score. Regression line
shown in black. Dashed line shows no change in PANSS positive symptom scores. (c) Distribution of change in PANSS positive symptom scores in
the sub-sample of CHR participants used in within group comparisons. C-O TC, cingulo-opercular task control; F-P TC, fronto-parietal task
control; SSM, somatosensory-motor
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framework for identifying biomarkers of symptomatic outcome. We

suggest that using the framework of separating FC profiles into inte-

grated and segregated metastates may produce a more granular signal

than those found using an entire scan.

The present study attempted to use task fMRI data in a manner

that disregarded all task events, whilst evaluating underlying func-

tional activity. However, the sub-network associated with change in

PANSS positive symptom scores could be related to task demands,

specifically the integration of bottom-up sensory processing with

required task motor behaviour. A central node in this network covered

the right V area of the cerebellum. This area is implicated in task-

related hand movements (King, Hernandez-Castillo, Poldrack, Ivry, &

Diedrichsen, 2019; Stoodley & Schmahmann, 2009, 2010). Moreover,

another central node was found in the intracalcarine cortex, which

plays a key role in processing visual information and is thought to be

involved in a bottom-up process of attributing salience to visual infor-

mation (Koene & Zhaoping, 2007; Li, 2002; Zhang & Li, 2012). Fur-

thermore, connections between visual areas and the parietal lobe

could be interpreted as part of the ‘dorsal visual stream’, which is

involved in planning action based on visual information (Galletti &

Fattori, 2018; Rizzolatti & Matelli, 2003). In addition, default mode

nodes within this sub-network included the precuneus, a centrally

important node in the default mode network (Fransson &

Marrelec, 2008), and implicated in visuomotor learning (Kawashima,

TABLE 3 Regions, MNI Coordinates (X, Y, Z), resting state network affiliation (Power et al., 2011), and degree (within sub-network) of nodes
in a sub-network found to be significantly associated with longitudinal change in PANSS positive scores in CHR participants, using an NBS
procedure (multiple linear regression; FWE p ≤ .025; 5,000 permutations) on FC matrices derived from integrated metastates

Region X Y Z Resting state network Degree

Precentral gyrus 0 −15 47 Sensory-somatomotor 1

Precentral gyrus −7 −21 65 Sensory-somatomotor 1

Precentral gyrus 44 −8 57 Sensory-somatomotor 1

Superior parietal lobule −29 −43 61 Sensory-somatomotor 4

Superior parietal lobule 22 −42 69 Sensory-somatomotor 1

Postcentral gyrus −21 −31 61 Sensory-somatomotor 1

Anterior supramarginal gyrus 54 −28 34 Cingulo-opercular task control 1

Superior frontal gyrus −16 −5 71 Cingulo-opercular task control 1

Juxtapositional lobule 7 8 51 Cingulo-opercular task control 1

Anterior cingulate gyrus −5 18 34 Cingulo-opercular task control 1

Posterior superior temporal gyrus 65 −33 20 Auditory 1

Parietal operculum cortex −38 −33 17 Auditory 1

Superior lateral occipital cortex −39 −75 44 Default mode 6

Precuneous cortex −11 −56 16 Default mode 1

Precuneous cortex 15 −63 26 Default mode 1

Posterior cingulate gyrus −2 −37 44 Default mode 1

Superior frontal gyrus 23 33 48 Default mode 2

Superior frontal gyrus −10 39 52 Default mode 1

Superior frontal gyrus −35 20 51 Default mode 2

Frontal pole −10 55 39 Default mode 1

Frontal pole −20 45 39 Default mode 2

Paracingulate gyrus 8 42 −5 Default mode 2

Anterior cingulate gyrus 12 36 20 Default mode 1

Lateral occipital cortex −28 −79 19 Visual 1

Intercalcarine cortex 20 −66 2 Visual 11

Intracalcarine cortex −18 −68 5 Visual 1

Intracalcarine cortex 6 −81 6 Visual 3

Precentral gyrus −44 2 46 Fronto-parietal task control 1

Frontal pole −28 52 21 Salience 1

Putamen 23 10 1 Subcortical 1

Planum temporale −55 −40 14 Ventral attention 1

Cerebellum (right V) 1 −62 −18 Cerebellar 15
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Roland, & O'Sullivan, 1995; Wenderoth, Debaere, Sunaert, &

Swinnen, 2005). Finally, the sub-network included several areas of the

cingulo-opercular task control network, thought to be involved in

goal-directed behaviour that remains stable across task sets

(Dosenbach et al., 2007).

A relationship of the findings to task demands does not necessar-

ily mean that they are not relevant to psychotic symptoms. For exam-

ple, the severity of positive psychotic symptoms has previously been

associated with dysfunction in visual motion integration (Carter

et al., 2017) and ‘soft’ neurological signs (Buchanan & Heinrichs,

1989), which are thought to reflect sensory integration abnormalities,

are more frequent in CHR subjects (Lawrie et al., 2001) and patients

with psychosis (Dazzan & Murray, 2002) than controls. A previous

study in CHR participants also associated longitudinal changes in posi-

tive symptoms with dynamic FC (computed as the SD of FC) of the

superior temporal gyrus, visual cortex, and somatosensory cortex

(Pelletier-Baldelli, Andrews-Hanna, & Mittal, 2018).

The stronger FC of the sub-network negatively associated with

positive symptoms might reflect compensatory effort in visual sensory

motor integration, which was protective against the later develop-

ment of positive symptoms. This would be consistent with the notion

that network integration reflects periods of high cost brain activation,

as shown by associations with attention/vigilance (Shine, Bissett,

et al., 2016). The sub-network associated with positive symptoms

involved highly spatially distributed connections, suggesting a high

wiring cost, though alternatively could reflect less efficient brain

circuitry.

4.3 | Strengths and limitations

Strengths of the present study include the use of a relatively large

sample of CHR subjects for an fMRI study, combined with the pres-

ence of longitudinal outcome data. The logistical difficulties of rec-

ruiting, scanning, and following up very large samples would require

multi-site collaboration, which would introduce the confound of site

effects (Gifford et al., 2017). Most of the CHR sample (83.87%) were

naïve to antipsychotic medication at the time of scanning. Moreover,

we controlled for medication exposure by entering it as a covariate in

the analyses. Excluding those taking antipsychotic medication at the

time of MRI or at follow up also resulted in similar results. Therefore,

although antipsychotic medication might influence FC (Bolding

et al., 2012; Dandash et al., 2014; Fornito et al., 2013; Nejad, Ebdrup,

Glenthøj, & Siebner, 2012), the results from the present study are not

suggested to reflect the effects of antipsychotic medication. A caveat

however, is that the amount and duration of medication use between

time-points was not available to account for historical medication use

between visits. Though medication use at the time of assessment was

accounted for, medication use between visits may have influenced

results.

A key limitation in the present study is that the negative relation-

ship between positive psychotic symptoms and the identified sub-

network appeared to be related both to participant increase and

decrease in symptoms. Whilst the findings may suggest possible neu-

robiology protective of psychosis development, it therefore presents

no clinical usage. Additionally, the use of task-based fMRI data adds

complexity to the replication and interpretation of the sub-network

we found to be associated with changes in psychotic symptoms. The

cartographic profile has previously been compared across resting state

and various task paradigms, showing increased integration in inte-

grated states with more cognitively demanding tasks (Shine, Bissett,

et al., 2016). This suggests there may be a benefit in using a task para-

digm to extract highly integrated brain states. Future studies may wish

to use more cognitively demanding tasks to extract periods of high

integration in exploring psychosis risk.

The results of the present study may be dependent on multiple

hyper-parameters (Supplementary Materials Section 2), as well as the

tuning of the NBS procedure according to the statistical threshold for

suprathreshold links (Zalesky et al., 2010). A high number of impactful

methodological choices is a barrier to reliability (Simmons, Nelson, &

Simonsohn, 2011; Wicherts et al., 2016). It should be noted that

choice of the statistic threshold in NBS does not affect the family wise

error rate, rather the sensitivity to sub-network discovery (Zalesky

et al., 2010).

Classifying windows based on global cartographic profiles may

not take into account regional variation in integration/segregation. A

supplementary analysis explored dynamic regional variation in integra-

tion/segregation (Supplementary Materials Section 7), suggesting no

localised dynamic integration/segregation signals to significantly asso-

ciate with CHR status or change in symptom scores. As such, we may

suggest the whole brain CP procedure to be preferable in searching

for clinically relevant neural substrates such as those associated with

changes in positive psychosis symptoms in the current study, as com-

pared with mass-univariate testing of regional signals.

An assumption of this study is that the brain switches between

whole brain epochs of integration and segregation. Although a k = 2

solution was suggested to be appropriate in the current study

(Supplementary Materials Section 4) and in previous similar studies

(Fukushima et al., 2018; Shine, Bissett, et al., 2016; Shine et al., 2015;

Shine, Koyejo, & Poldrack, 2016), it is important to highlight that other

methodological approaches have resulted in higher numbers of dis-

tinct intermittent brain states when clustering time windowed FC pro-

files (Allen et al., 2014; Damaraju et al., 2014).

5 | CONCLUSIONS

The use of methods for defining intermittent states of integration and

segregation (Guimera et al., 2005; Shine, Bissett, et al., 2016; Shine,

Koyejo, & Poldrack, 2016) may provide a useful framework for future

fMRI studies searching for biomarkers in psychosis.

ACKNOWLEDGMENTS

This work was supported by a Wellcome Trust Programme Grant

(grant number 091667, 2011). George Gifford is supported by the

National Institute for Health Research (NIHR) Collaboration for

448 GIFFORD ET AL.



Leadership in Applied Heath Research and Care South London at

King's College Hospital NHS Foundation Trust. The views expressed

are those of the authors and not necessarily those of the NHS, the

NIHR, or the Department of Health. GM is supported by a Sir Henry

Dale Fellowship jointly funded by the Wellcome Trust and the Royal

Society (grant number 202397/Z/16/Z). We thank the study volun-

teers for their participation and the members of OASIS, CAMEO,

West London Early Intervention Service, and Warwick & Coventry

clinical teams for enabling this research.

CONFLICT OF INTERESTS

O. D. H. has received investigator-initiated research funding from

and/or participated in advisory/speaker meetings organised by Astra-

Zeneca, Autifony, BMS, Eli Lilly, Heptares, Jansenn, Lundbeck, Lyden-

Delta, Otsuka, Servier, Sunovion, Rand and Roche. AAG receives con-

sulting fees from Johnson & Johnson, Lundbeck, Pfizer, Takeda,

Alkermes, Otsuka, Lilly, Roche, Asubio. The other authors declare no

competing financial interests.

DATA AVAILABILITY STATEMENT

At the time the data was collected it was not routine for participants

to be asked for their consent to share data publicly, so this permission

was not obtained. Whilst we are in favour of data being open access,

no supporting data is available for this study.

ORCID

George Gifford https://orcid.org/0000-0002-3133-1019

Gemma Modinos https://orcid.org/0000-0002-7870-066X

Paul Allen https://orcid.org/0000-0001-8510-878X

REFERENCES

Allen, E. A., Damaraju, E., Plis, S. M., Erhardt, E. B., Eichele, T., &

Calhoun, V. D. (2014). Tracking whole-brain connectivity dynamics in

the resting state. Cerebral Cortex, 24(3), 663–676 https://doi.org/10.

1093/cercor/bhs352

Allen, P., Stephan, K. E., Mechelli, A., Day, F., Ward, N., Dalton, J., …
McGuire, P. (2010). Cingulate activity and fronto-temporal connectiv-

ity in people with prodromal signs of psychosis. NeuroImage, 49(1),

947–955.
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., &

Grafton, S. T. (2011). Dynamic reconfiguration of human brain net-

works during learning. Proceedings of the National Academy of Sciences,

108(18), 7641–7646.
Behzadi, Y., Restom, K., Liau, J., & Liu, T. T. (2007). A component based

noise correction method (CompCor) for BOLD and perfusion based

fMRI. NeuroImage, 37(1), 90–101.
Bell, C. C. (1994). DSM-IV: Diagnostic and statistical manual of mental dis-

orders. JAMA, 272(10), 828–829 https://doi.org/10.1001/jama.1994.

03520100096046

Bolding, M. S., White, D. M., Hadley, J. A., Weiler, M., Holcomb, H. H., &

Lahti, A. C. (2012). Antipsychotic drugs Alter functional connectivity

between the medial frontal cortex, hippocampus, and nucleus

accumbens as measured by H215O PET. Frontiers in Psychiatry, 3, 105.

https://doi.org/10.3389/fpsyt.2012.00105

Braun, U., Schäfer, A., Bassett, D. S., Rausch, F., Schweiger, J. I., Bilek, E., …
Geiger, L. S. (2016). Dynamic brain network reconfiguration as a

potential schizophrenia genetic risk mechanism modulated by NMDA

receptor function. Proceedings of the National Academy of Sciences, 113

(44), 12568–12573.
Braun, U., Schäfer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N.,

Haddad, L., … Tost, H. (2015). Dynamic reconfiguration of frontal brain

networks during executive cognition in humans. Proceedings of the

National Academy of Sciences, 112(37), 11678–11683.
Buchanan, R. W., & Heinrichs, D. W. (1989). The neurological evaluation

scale (NES): A structured instrument for the assessment of neurologi-

cal signs in schizophrenia. Psychiatry Research, 27(3), 335–350.
Bunzeck, N., & Düzel, E. (2006). Absolute coding of stimulus novelty in the

human substantia nigra/VTA. Neuron, 51(3), 369–379.
Carter, O., Bennett, D., Nash, T., Arnold, S., Brown, L., Cai, R. Y., …

Sundram, S. (2017). Sensory integration deficits support a dimensional

view of psychosis and are not limited to schizophrenia. Translational

Psychiatry, 7(5), e1118 https://doi.org/10.1038/tp.2017.69

Crossley, N. A., Mechelli, A., Fusar-Poli, P., Broome, M. R., Matthiasson, P.,

Johns, L. C., … McGuire, P. K. (2009). Superior temporal lobe dysfunc-

tion and frontotemporal dysconnectivity in subjects at risk of psycho-

sis and in first-episode psychosis. Human Brain Mapping, 30(12),

4129–4137.
Damaraju, E., Allen, E. A., Belger, A., Ford, J. M., McEwen, S.,

Mathalon, D. H., … Calhoun, V. D. (2014). Dynamic functional connec-

tivity analysis reveals transient states of dysconnectivity in schizophre-

nia. NeuroImage: Clinical, 5, 298–308 https://doi.org/10.1016/j.nicl.

2014.07.003

Dandash, O., Fornito, A., Lee, J., Keefe, R. S. E., Chee, M. W. L.,

Adcock, R. A., … Harrison, B. J. (2014). Altered striatal functional con-

nectivity in subjects with an at-risk mental state for psychosis. Schizo-

phrenia Bulletin, 40(4), 904–913.
Dazzan, P., & Murray, R. M. (2002). Neurological soft signs in first-episode

psychosis: A systematic review. The British Journal of Psychiatry, 181

(S43), s50–s57. https://doi.org/10.1192/bjp.181.43.s50
Dosenbach, N. U. F., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K.,

Dosenbach, R. A. T., … Petersen, S. E. (2007). Distinct brain networks

for adaptive and stable task control in humans. Proceedings of the

National Academy of Sciences, 104(26), 11073–11078 https://doi.org/

10.1073/pnas.0704320104

Du, Y., Fryer, S. L., Fu, Z., Lin, D., Sui, J., Chen, J., … Calhoun, V. D. (2018).

Dynamic functional connectivity impairments in early schizophrenia

and clinical high-risk for psychosis. Brain Connectivity Dynamics, 180,

632–645 https://doi.org/10.1016/j.neuroimage.2017.10.022

Esteban, O., Markiewicz, C. J., Blair, R. W., Moodie, C. A., Isik, A. I.,

Erramuzpe, A., … Snyder, M. (2019). fMRIPrep: A robust preprocessing

pipeline for functional MRI. Nature Methods, 16(1), 111.

Fornito, A., Harrison, B. J., Goodby, E., Dean, A., Ooi, C., Nathan, P. J., …
Bullmore, E. T. (2013). Functional dysconnectivity of corticostriatal cir-

cuitry as a risk phenotype for psychosis. JAMA Psychiatry, 70(11),

1143–1151 https://doi.org/10.1001/jamapsychiatry.2013.1976

Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate

cortex plays a pivotal role in the default mode network: Evidence from

a partial correlation network analysis. NeuroImage, 42(3), 1178–1184
https://doi.org/10.1016/j.neuroimage.2008.05.059

Fukushima, M., Betzel, R. F., He, Y., van den Heuvel, M. P., Zuo, X. -N., &

Sporns, O. (2018). Structure–function relationships during segregated

and integrated network states of human brain functional connectivity.

Brain Structure and Function, 223(3), 1091–1106. http://dx.doi.

org/10.1007/s00429-017-1539-3.

Fusar-Poli, P., Bonoldi, I., Yung, A. R., Borgwardt, S., Kempton, M. J.,

Valmaggia, L., … McGuire, P. (2012). Predicting psychosis: Meta-

analysis of transition outcomes in individuals at high clinical risk.

Archives of General Psychiatry, 69(3), 220–229.
Fusar-Poli, P., Deste, G., Smieskova, R., Barlati, S., Yung, A. R., Howes, O.,

… Borgwardt, S. (2012). Cognitive functioning in prodromal psychosis:

A meta-analysis. Archives of General Psychiatry, 69(6), 562–571.

GIFFORD ET AL. 449

https://orcid.org/0000-0002-3133-1019
https://orcid.org/0000-0002-3133-1019
https://orcid.org/0000-0002-7870-066X
https://orcid.org/0000-0002-7870-066X
https://orcid.org/0000-0001-8510-878X
https://orcid.org/0000-0001-8510-878X
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1093/cercor/bhs352
https://doi.org/10.1001/jama.1994.03520100096046
https://doi.org/10.1001/jama.1994.03520100096046
https://doi.org/10.3389/fpsyt.2012.00105
https://doi.org/10.1038/tp.2017.69
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1016/j.nicl.2014.07.003
https://doi.org/10.1192/bjp.181.43.s50
https://doi.org/10.1073/pnas.0704320104
https://doi.org/10.1073/pnas.0704320104
https://doi.org/10.1016/j.neuroimage.2017.10.022
https://doi.org/10.1001/jamapsychiatry.2013.1976
https://doi.org/10.1016/j.neuroimage.2008.05.059


Galletti, C., & Fattori, P. (2018). The dorsal visual stream revisited: Stable

circuits or dynamic pathways? Cortex, 98, 203–217.
Gifford, G., Crossley, N., Fusar-Poli, P., Schnack, H. G., Kahn, R. S.,

Koutsouleris, N., … McGuire, P. (2017). Using neuroimaging to help

predict the onset of psychosis. NeuroImage, 145, 209–217.
Gifford, G., Crossley, N., Kempton, M. J., Morgan, S., Dazzan, P.,

Young, J., & McGuire, P. (2020). Resting state fMRI based multilayer

network configuration in patients with schizophrenia. NeuroImage:

Clinical, 25, 102169. https://doi.org/10.1016/j.nicl.2020.102169

Guimera, R., & Amaral, L. A. N. (2005). Functional cartography of complex

metabolic networks. Nature, 433(7028), 895–900. https://doi.org/10.
1038/nature03288

Huber, G., & Gross, G. (1989). The concept of basic symptoms in schizo-

phrenic and schizoaffective psychoses. Recenti Progressi in Medicina,

80(12), 646–652.
Jutla, I. S., Jeub, L. G. S., & Mucha, P. J. (2011). A generalized Louvain

method for community detection implemented in MATLAB. URL

Http://Netwiki. Amath. Unc. Edu/GenLouvain.

Karterud, S., Pedersen, G., Løvdahl, H., & Friis, S. (1998). Global assess-

ment of functioning: Split version: Background and scoring guidelines.

In Oslo, Norway, Klinikk for Psykiatri. Ullevål: Sykehus.

Kawashima, R., Roland, P. E., & O'Sullivan, B. T. (1995). Functional anat-

omy of reaching and visuomotor learning: A positron emission tomog-

raphy study. Cerebral Cortex, 5(2), 111–122.
Kay, S. R., Flszbein, A., & Opfer, L. A. (1987). The positive and negative

syndrome scale (PANSS) for schizophrenia. Schizophrenia Bulletin, 13

(2), 261–261.
King, M., Hernandez-Castillo, C. R., Poldrack, R. A., Ivry, R. B., &

Diedrichsen, J. (2019). Functional boundaries in the human cerebellum

revealed by a multi-domain task battery. Nature Neuroscience, 22(8),

1371–1378. https://doi.org/10.1038/s41593-019-0436-x
Koene, A. R., & Zhaoping, L. (2007). Feature-specific interactions in

salience from combined feature contrasts: Evidence for a bottom–up
saliency map in V1. Journal of Vision, 7(7), 6–6.

Lawrie, S. M., Byrne, M., Miller, P., Hodges, A., Clafferty, R. A.,

Owens, D. G. C., & Johnstone, E. C. (2001). Neurodevelopmental indi-

ces and the development of psychotic symptoms in subjects at high

risk of schizophrenia. British Journal of Psychiatry, 178(6), 524–530
https://doi.org/10.1192/bjp.178.6.524

Li, Z. (2002). A saliency map in primary visual cortex. Trends in Cognitive

Sciences, 6(1), 9–16.
Mattar, M. G., Cole, M. W., Thompson-Schill, S. L., & Bassett, D. S. (2015).

A functional cartography of cognitive systems. PLoS Computational

Biology, 11(12), e1004533. https://doi.org/10.1371/journal.pcbi.

1004533

Modinos, G., Allen, P., Zugman, A., Dima, D., Azis, M., Samson, C., …
McGuire, P. (2020). Neural circuitry of novelty salience processing in

psychosis risk: Association with clinical outcome. Schizophrenia Bulle-

tin, 46(3), 670–679 https://doi.org/10.1093/schbul/sbz089

Mucha, P. J., Richardson, T., Macon, K., Porter, M. A., & Onnela, J.-P.

(2010). Community structure in time-dependent, multiscale, and multi-

plex networks. Science, 328(5980), 876–878.
Nejad, A. B., Ebdrup, B. H., Glenthøj, B. Y., & Siebner, H. R. (2012). Brain

connectivity studies in schizophrenia: Unravelling the effects of anti-

psychotics. Current Neuropharmacology, 10(3), 219–230 https://doi.

org/10.2174/157015912803217305

Nelson, B. G., Bassett, D. S., Camchong, J., Bullmore, E. T., & Lim, K. O.

(2017). Comparison of large-scale human brain functional and anatom-

ical networks in schizophrenia. NeuroImage: Clinical, 15, 439–448.
Nelson, H. E., & Willison, J. (1991). National adult reading test (NART),

Windsor, England: Nfer-Nelson Windsor.

Pedersen, M., Zalesky, A., Omidvarnia, A., & Jackson, G. D. (2018). Multi-

layer network switching rate predicts brain performance. Proceedings

of the National Academy of Sciences, 115(52), 13376–13381.

Pelletier-Baldelli, A., Andrews-Hanna, J. R., & Mittal, V. A. (2018). Resting

state connectivity dynamics in individuals at risk for psychosis. Journal

of Abnormal Psychology, 127(3), 314.

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A.,

Church, J. A., … Schlaggar, B. L. (2011). Functional network organiza-

tion of the human brain. Neuron, 72(4), 665–678.
Pruim, R. H., Mennes, M., van Rooij, D., Llera, A., Buitelaar, J. K., &

Beckmann, C. F. (2015). ICA-AROMA: A robust ICA-based strategy for

removing motion artifacts from fMRI data. NeuroImage, 112, 267–277.
Rizzolatti, G., & Matelli, M. (2003). Two different streams form the dorsal

visual system: Anatomy and functions. Experimental Brain Research,

153(2), 146–157 https://doi.org/10.1007/s00221-003-1588-0

Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliott, M. A.,

Hakonarson, H., … Gur, R. E. (2012). Impact of in-scanner head motion

on multiple measures of functional connectivity: Relevance for studies

of neurodevelopment in youth. NeuroImage, 60(1), 623–632 https://

doi.org/10.1016/j.neuroimage.2011.12.063

Schmidt, A., Smieskova, R., Simon, A., Allen, P., Fusar-Poli, P.,

McGuire, P. K., … Walter, M. (2014). Abnormal effective connectivity

and psychopathological symptoms in the psychosis high-risk state.

Journal of Psychiatry & Neuroscience: JPN, 39(4), 239.

Schultze-Lutter, F., Klosterkötter, J., Picker, H., Steinmeyer, E.-M., &

Ruhrmann, S. (2007). Predicting first-episode psychosis by basic symp-

tom criteria. Clinical Neuropsychiatry, 4(1), 11–22.
Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H.,

Gorgolewski, K. J., … Poldrack, R. A. (2016). The dynamics of functional

brain networks: Integrated network states during cognitive task per-

formance. Neuron, 92(2), 544–554.
Shine, J. M., Koyejo, O., Bell, P. T., Gorgolewski, K. J., Gilat, M., &

Poldrack, R. A. (2015). Estimation of dynamic functional connectivity

using multiplication of temporal derivatives. NeuroImage, 122,

399–407.
Shine, J. M., Koyejo, O., & Poldrack, R. A. (2016). Temporal metastates are

associated with differential patterns of time-resolved connectivity,

network topology, and attention. Proceedings of the National Academy

of Sciences, 113(35), 9888–9891.
Simmons, J. P., Nelson, L. D., & Simonsohn, U. (2011). False-positive psy-

chology: Undisclosed flexibility in data collection and analysis allows

presenting anything as significant. Psychological Science, 22(11),

1359–1366.
Simon, A. E., Borgwardt, S., Riecher-Rössler, A., Velthorst, E., de

Haan, L., & Fusar-Poli, P. (2013). Moving beyond transition outcomes:

Meta-analysis of remission rates in individuals at high clinical risk for

psychosis. Psychiatry Research, 209(3), 266–272 https://doi.org/10.

1016/j.psychres.2013.03.004

Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the

human cerebellum: A meta-analysis of neuroimaging studies.

NeuroImage, 44(2), 489–501 https://doi.org/10.1016/j.neuroimage.

2008.08.039

Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic

organization in the cerebellum of motor control versus cognitive and

affective processing. Cortex; a Journal Devoted to the Study of the Ner-

vous System and Behavior, 46(7), 831–844 https://doi.org/10.1016/j.

cortex.2009.11.008

Telesford, Q. K., Lynall, M.-E., Vettel, J., Miller, M. B., Grafton, S. T., &

Bassett, D. S. (2016). Detection of functional brain network

reconfiguration during task-driven cognitive states. NeuroImage, 142,

198–210.
Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of

head motion on intrinsic functional connectivity MRI. NeuroImage, 59

(1), 431–438.
Wenderoth, N., Debaere, F., Sunaert, S., & Swinnen, S. P. (2005). The role

of anterior cingulate cortex and precuneus in the coordination of

motor behaviour. European Journal of Neuroscience, 22(1), 235–246.

450 GIFFORD ET AL.

https://doi.org/10.1016/j.nicl.2020.102169
https://doi.org/10.1038/nature03288
https://doi.org/10.1038/nature03288
http://http//Netwiki
https://doi.org/10.1038/s41593-019-0436-x
https://doi.org/10.1192/bjp.178.6.524
https://doi.org/10.1371/journal.pcbi.1004533
https://doi.org/10.1371/journal.pcbi.1004533
https://doi.org/10.1093/schbul/sbz089
https://doi.org/10.2174/157015912803217305
https://doi.org/10.2174/157015912803217305
https://doi.org/10.1007/s00221-003-1588-0
https://doi.org/10.1016/j.neuroimage.2011.12.063
https://doi.org/10.1016/j.neuroimage.2011.12.063
https://doi.org/10.1016/j.psychres.2013.03.004
https://doi.org/10.1016/j.psychres.2013.03.004
https://doi.org/10.1016/j.neuroimage.2008.08.039
https://doi.org/10.1016/j.neuroimage.2008.08.039
https://doi.org/10.1016/j.cortex.2009.11.008
https://doi.org/10.1016/j.cortex.2009.11.008


Wicherts, J. M., Veldkamp, C. L., Augusteijn, H. E., Bakker, M., Van

Aert, R., & Van Assen, M. A. (2016). Degrees of freedom in planning,

running, analyzing, and reporting psychological studies: A checklist to

avoid p-hacking. Frontiers in Psychology, 7, 1832.

Winton-Brown, T., Schmidt, A., Roiser, J. P., Howes, O. D., Egerton, A.,

Fusar-Poli, P., … Kapur, S. (2017). Altered activation and connectivity

in a hippocampal–basal ganglia–midbrain circuit during salience

processing in subjects at ultra high risk for psychosis. Translational Psy-

chiatry, 7(10), e1245–e1245.
Yung, A. R., Phillips, L., McGorry, P., Ward, J., Donovan, K., &

Thompson, K. (2002). Comprehensive assessment of at-risk mental states

(CAARMS). Melbourne, Australia: University of Melbourne, Depart-

ment of Psychiatry, Personal Assessment and Crisis Evaluation Clinic.

Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic:

Identifying differences in brain networks. NeuroImage, 53(4),

1197–1207.
Zhang, S., & Li, C. R. (2012). Functional connectivity mapping of the human

precuneus by resting state fMRI. NeuroImage, 59(4), 3548–3562
https://doi.org/10.1016/j.neuroimage.2011.11.023

Zheng, W., Zhang, Q.-E., Cai, D.-B., Ng, C. H., Ungvari, G. S., Ning, Y.-P., &

Xiang, Y.-T. (2018). Neurocognitive dysfunction in subjects at clinical

high risk for psychosis: A meta-analysis. Journal of Psychiatric Research,

103, 38–45.

SUPPORTING INFORMATION

Additional supporting information may be found online in the

Supporting Information section at the end of this article.

How to cite this article: Gifford G, Crossley N, Morgan S, et al.

Integrated metastate functional connectivity networks predict

change in symptom severity in clinical high risk for psychosis.

Hum Brain Mapp. 2021;42:439–451. https://doi.org/10.1002/

hbm.25235

GIFFORD ET AL. 451

https://doi.org/10.1016/j.neuroimage.2011.11.023
https://doi.org/10.1002/hbm.25235
https://doi.org/10.1002/hbm.25235

	Integrated metastate functional connectivity networks predict change in symptom severity in clinical high risk for psychosis
	1  INTRODUCTION
	2  METHODS
	2.1  Participants
	2.2  Clinical scales
	2.3  Code sharing
	2.4  Task fMRI paradigm
	2.5  Pre-processing
	2.6  Region of interest definition
	2.7  Multiplication of temporal derivatives
	2.8  Cartographic profile
	2.9  Creating one integrated network for each participant
	2.10  Between/within group comparisons: Network Based Statistics

	3  RESULTS
	3.1  Task performance
	3.2  Cartographic profile: Group differences
	3.3  Between/within group comparisons (NBS)

	4  DISCUSSION
	4.1  Dynamic functional connectivity network organisation
	4.2  Discovery of psychosis-related sub-networks
	4.3  Strengths and limitations

	5  CONCLUSIONS
	ACKNOWLEDGMENTS
	  CONFLICT OF INTERESTS
	  DATA AVAILABILITY STATEMENT

	REFERENCES


