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Introduced species often benefit from escaping their enemies when they are
transported to a new range, an idea commonly expressed as the enemy release
hypothesis. However, species might shed mutualists as well as enemies when
they colonize a new range. Loss ofmutualistsmight reduce the success of intro-
duced populations, or even cause failure to establish. We provide the first
quantitative synthesis testing this natural but often overlooked parallel of the
enemy release hypothesis, which is known as the missed mutualist hypothesis.
Meta-analysis showed that plants interactwith 1.9 timesmoremutualist species,
andhave 2.3 timesmore interactionswithmutualists perunit time in their native
range than in their introduced range. Speciesmaymitigate thenegative effects of
missed mutualists. For instance, selection arising frommissedmutualists could
cause introduced species to evolve either to facilitate interactions with a new
suite of species or to exist without mutualisms. Just as enemy release can
allow introduced populations to redirect energy fromdefence to growth, poten-
tially evolving increased competitive ability, species that shift to strategies
without mutualists may be able to reallocate energy from mutualism toward
increased competitive ability or seed production. Themissedmutualist hypoth-
esis advances understanding of the selective forces and filters that act on plant
species in the early stages of introduction and establishment and thus could
inform the management of introduced species.
1. Introduction
The enemy release hypothesis is among the most prominent explanations for the
success of introduced species [1]. This hypothesis predicts that species escape
from some of their natural enemies during transport to and establishment in a
new range, and the reduced effects of enemies allow introduced species to increase
in abundance and distribution [2–4]. Many field studies have demonstrated that
introduced populations suffer lower herbivore damage, seed predation or parasit-
ism than (a) populations of the samespecies in theirnative range, or (b)populations
of native plants in the introduced range [3,5–7]. This reduction in biotic pressure
has direct consequences for population growth rate, and can also allow introduced
species to allocate more energy to growth and reproduction, thus boosting their
competitive ability and facilitating spread to further new territory [8,9].
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The same filters that cause species to become separated
from their enemies following introduction could also cause
species to become separated from their mutualists [10]. That
is, when a species is introduced to a new range, it may leave
behind pollinators, seed dispersers, cleaners, defensive part-
ners or beneficial microbes. Previous work has shown that a
reduction in mutualistic interactions such as seed dispersal
and pollination can lead to reduced fitness [11,12]. That is,
loss of mutualisms could reduce the success of introduced
species. Several authors have noted that introduced species
may become separated from their mutualists [10,13–17], and
this has been labelled the missed mutualist hypothesis [13].
However, the vast majority of attention on biotic interactions
in invasion biology has been focused on introduced species
being released from antagonistic interactions [3,18], or on
the development of novel mutualisms between introduced
species and co-occurring species that facilitate invasion of a
new range [16,17,19,20]. A search of the ISI Web of Science
(6/5/22) revealed only three papers that mentioned the
missed mutualist hypothesis (containing the phrase ‘miss*
mutualis*’), compared to 1084 papers containing the phrase
‘enemy release’. Clearly, there is significant bias within the
existing literature on ecological invasions: we have paid a dis-
proportionate amount of attention to the factors that promote
biological invasions, with far less research effort going into
studies of how losing mutualists results in the failure, or at
least reduced reproductive success, of invasive taxa. However,
if we want to understand the forces shaping the establishment
success and evolutionary trajectory of introduced species, we
need to understand both the positive and the negative selective
pressures they face [10,13,19].

In this paper, we explore when species might become
separated from their mutualists, then review the existing
evidence for the missed mutualist hypothesis in seed disper-
sers, pollinators, soil microbes and endophytes, and the
limited available evidence for the fitness effects of missed
mutualists. We use meta-analysis to formally synthesize the
available data on standardized interaction frequency for
species in their native versus introduced ranges. We discuss
ways introduced species can mitigate the effects of missed
mutualisms through formation of new partnerships and/or
through evolutionary change. Finally, we outline the practical
implications of missed mutualisms, and discuss how this
might guide policy and action on introduced species.

It is worth bearing in mind that data comparing inter-
action strength for species in native and introduced ranges
can only exist for species that have successfully established
in a new range. That is, our study necessarily excludes
those species that failed to establish viable populations in
their new range because they were not able to persist without
their mutualists. Thus, this paper provides a conservative
estimate of the true importance of missed mutualists.
2. When might species become separated from
their mutualists?

There are at least three ways in which a species could
become separated from a mutualistic partner species when it
is introduced to a new range:

(1) The two speciesmay not both be introduced to the same place. This
is quite likely, as biosecurity laws inmost countries limit the
import of species, and have provisions that reduce the like-
lihood that intentionally imported species are carrying
individuals or propagules of other taxa [21,22].

(2) The mutualist species may not be able to tolerate the biotic and
abiotic conditions in the new range. This is also likely, as
introduced species often establish in areas in which abio-
tic conditions differ from those in their home range [23]
so differences in the fundamental niche space of the
introduced species and their mutualists may preclude
co-occurrence in the new range. Different biotic pressures
in the new range may also prevent a species’ establish-
ment in a new range. For example, the interacting
species might be unable to sustain a viable population
in the presence of novel predators or pathogens in the
new range, or they may fail to establish because they
are separated from another species with which they
have crucial mutualistic interactions.

(3) The interacting partner species might fail to establish a viable
population in the new range due to stochastic effects.
Again, this is relatively likely as populations are highly
vulnerable to stochastic effects in the early stages of
establishment in a new range [24], and only a small
fraction of introductions succeed [25].
We can think of two situations in which introduced species
would not lose their coevolved mutualists. First, mutualists
may be successfully introduced (either deliberately or acciden-
tally) with their interaction partner (co-introduced associations
sensu [26], e.g. some fig trees (Ficus spp.) and their specialist
pollinators [27,28]), or introduced to a regionwhere amutualist
has already been introduced [16] (e.g. many plants introduced
to Europe are pollinated by introduced bumblebees (Bombus
spp.) [29]). Second, some mutualists may have a distribution
that already spans the partner’s native and introduced ranges
(familiar associations, sensu [26], e.g. the hawkmoth pollinator
of Lilium formosanum [30] and the mycorrhizal partner of the
orchid Oeceoclades maculata [31]). However, while there are
examples of both of these situations, it seems likely that
these are the exceptions rather than the rule. First, most species
have restricted ranges rather than cosmopolitan distributions
[32]. Second, while generalist mutualists might already be
established in a new range prior to a species’ arrival, this is
less likely to apply to more specialized interaction partners
[3]. Finally, import of both partners may be restricted, as
biosecurity risk assessments (e.g. in Australia and the USA
[33,34]) consider risks associatedwithmutualismswhen asses-
sing the likelihood of invasion success. For example, when a
given plant species for introduction is dependent on specialist
pollinators for reproduction, it is regarded as a lower riskwhen
introduced without its pollinators. Similarly, nitrogen-fixing
plants are thought under both Australian and USA systems
to have an elevated risk of becoming weedy because of their
ability to form association with rhizobia bacteria to overcome
edaphic abiotic limitations in the invaded range [33,34].

About half of introduced species experience reduced
damage from enemies in their new ranges [2,3,6]. As most
filters on the introduction of interacting species to new ranges
seem equally apply to enemies as to mutualists, we might
expect missing mutualists to affect a similar proportion of intro-
duced species as enemy release. However, neither the relative
extent nor the impact of enemy versus missed mutualisms has
been quantitatively explored at the cross-species level.
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3. Evidence for the missed mutualist hypothesis
Under the missed mutualist hypothesis, we predict that intro-
duced species will: (a) interact with fewer species of
mutualists in their introduced range than in their native
range; and (b) interact with mutualists at a lower frequency
in the introduced range than in their native range. We have
focused on interactions between plants and their seed disper-
sers, pollinators, soil microbes and endophytes, as these are
known to influence plant species fitness by impacting survi-
val, growth and reproduction. There are many excellent
studies of interactions between introduced species and
other native and introduced organisms in the novel range
[16]. For example, there are several cases in which the flowers
of introduced species attract native pollinators and decrease
the pollination success of native plants [17]. However, such
studies cannot tell us whether a species experiences fewer
interactions with mutualists in their introduced range than
in their native range, as they are done entirely in the intro-
duced range. Thus, our focus here is on studies that present
quantitative data for interactions with mutualists in both
the native and the introduced range.

(a) Seed dispersal
We know that seed dispersal can be important in facilitating
invasions and that some successful invaders are dispersed by
native and introduced animals (evidence reviewed in [16]).
However, surprisingly few studies have quantified seed
dispersal rates or disperser diversity in both native and intro-
duced ranges. Acacia dealbata has 1.4 times, and A. longifolia
has 1.5 times as many species of seed dispersers in their
native range (Australia) as in their introduced range (Portu-
gal) [35]. There was also a decreased interaction frequency
in the introduced range: A. dealbata has 8.6 times and
A. longifolia has 13.9 times as many interactions per minute
with seed dispersers in Australia as in Portugal [35].
Similarly, A. dealbata, A. baileyana and A. pravissima all show
higher rates of removal (1.2, 3.8 and 1.4 times greater respect-
ively) by invertebrate dispersers in Australia (native range)
than in New Zealand (introduced range) [36]. Thus, while
quantitative data are scarce, the available data are consistent
with the missed mutualist hypothesis.

(b) Pollination
The idea that introduced species are most likely to be success-
ful if they do not rely on specialist pollinators has a long
history in invasion biology [16,17,37]. There is also evidence
that some (but not all) introduced populations experience
pollen limitation [16]. The quantitative evidence for differ-
ences in plant–pollinator interactions between species’
native and introduced ranges is mixed, but tends to support
the missed mutualist hypothesis. Emer et al. [38] assessed the
ecological roles of species of pollinators and plants in net-
works where they were native compared to where they
were introduced, finding that seven species had fewer inter-
action partners in the introduced range, five species had a
greater number of partners, and four species had approxi-
mately the same number of partners. Double the flower
visitation rate and almost twice as many pollinating species
have been recorded for Rhododendron ponticum in native Iber-
ian populations than in its introduced range in Ireland [39].
Average pollinator richness in native populations of Nicotiana
glauca in SouthAmerica is twice that of introduced populations
in South Africa although there are no differences in visitation
rates [40,41]. Visitation rates to Hedysarum coronarium are
more than five times greater in its native range, where pollina-
tor diversity is about 30%higher [42]. Visitation rates to flowers
of introduced populations of Solanum elaeagnifolium are 1.6
times higher on average than to native populations, however,
no pollinators were observed for many introduced popu-
lations, and average pollinator diversity was more than five
times higher in the native range [43]. Datura stramonium popu-
lations in the native range have 25% fewer pollinator species,
although the average visitation rate is three times higher [44].
Finally, in an example of highly specialized, co-evolved mutu-
alist pollinator loss, the diversity of fig wasps pollinating Ficus
rubiginosa has dropped from five in its nativeAustralia to one in
non-native populations in the northern hemisphere [27].

(c) Soil microbes
Evidence from legume–rhizobacteria interactions tends to
support the predictions of the missed mutualist hypothesis.
Experimental studies in clover species (Trifolium spp.) have
shown that colonization by Rhizobia spp. was generally
higher in soils of the native range compared to the introduced
range [45]. These legume species are likely to losemutualists in
the event of being translocated from their native range. The
evidence for this from other legumes (Acacia spp., Mimosa
spp.) indicates that most species are promiscuous in having
broader acceptability of rhizobacterial mutualists [46–48].
However, even within these genera some species have high
fidelity to specific rhizobacteria (e.g. M. hamata [46]), which
could limit their success outside of their native range. Some
introducedAcacia spp. rely on the co-introduction of their sym-
bionts, rather than on novel mutualisms in their introduced
ranges [49].

The obligate interactions of plants with mycorrhizae
present another opportunity for the loss of key mutualists
in the translocations of such plants. For example, different
orchids exhibit obligate and facultative mycorrhizal associ-
ations and these relationships, at least in part, explain their
distribution, abundance and invasiveness [50].

(d) Endophytes
In the case of endophyte–plant interactions, evidence for the
effect of losing specialist mutualisms in introduced ranges is
strongest for grasses. For example, the loss of vertically trans-
mitted mutualists in Poa–Neophytidium interactions can be
detrimental to successful establishment of grasses in novel
ranges [15]. Evidence for specialist endophytic mutualisms in
eudicots is less definitive than for grasses, but there is a reduction
in endophyte diversity in Theobroma spp. from the native range
(South America) to introduced cultivated contexts [51,52]. The
relatively higher susceptibility to disease of cultivated plants
indicates a possible cost to the loss of endophyte diversity [53],
in line with the predictions of the missed mutualist hypothesis.

(e) Quantitative support for the missed mutualist
hypothesis

We provided the first cross-species, quantitative test of the
predictions of the missed mutualist hypothesis using meta-
analysis of data from studies in which a species’ interactions
with mutualists had been quantified in the same way in both
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their native and introduced ranges (see electronic supplemen-
tary material, appendix 1 for methods and electronic
supplementary material, appendix 2 for raw data). Data
were compiled using systematic literature searches for polli-
nation and seed dispersal, the only interaction types for
which field-based quantitative data were available. Unfortu-
nately, relatively few such studies are available at present.
Despite this, analysis showed that species interact with 1.9
times fewer species in their introduced range than in their
native range (overall effect size [log response ratio] = 0.63,
n = 8 species, p = 0.008; figure 1a). Plants also have signifi-
cantly lower interaction frequencies in their introduced
ranges (overall effect size = 0.81, n = 9 species, p = 0.026;
figure 1b). That is, plants have 2.3 times more interactions
with mutualists per unit time in their native range than in
their introduced range. These findings are in stark contrast
to previous suggestions that introduced species readily
acquire new mutualists in their new range [16].

The available data are too sparse to do a meaningful com-
parison of the proportion of species experiencing enemy
release versus the proportion of species experiencing missing
mutualisms. However, with seven out of the eight species for
which quantitative data are available interacting with more
species in their native range than in their introduced range,
and seven out of nine species having a higher frequency of
interactions in their native range than in their introduced
range (figure 1), it seems possible that missed mutualisms
may actually be as common, or even more common than
enemy release. There will also be many cases in which both
enemy release and missed mutualisms affect fitness, and in
these cases, quantifying the relative magnitude of the effects
is an important direction for the future. On balance, given the
success of introduced species, it seems likely that the positive
effects of shedding biotic interactions might outweigh the
negative. Another interesting direction for future research is
to quantify the trajectory of missed mutualists through the
invasion process. One possibility is that the effect is strongest
soon after introduction when the number of individuals of
the introduced species is very low [54].
Themeta-analysis provides relatively strong support for the
two predictions of the missed mutualist hypothesis (figure 1).
However, data comparing interaction strength for species in
native and introduced ranges can only exist for species that
have successfully established in a new range, and so our
analysis only captures some of the effect of missedmutualisms.
4. Evidence for fitness effects of missed
mutualists

The reduced number of interacting species, and particularly the
lower frequency of interactions experienced by species in their
introduced range could have immediate demographic effects
(figure 2). For instance, missed interactions with symbiotic
soil microbes could limit resource capture and thus decrease
growth and reproduction [55]. Diminished pollination could
limit seed set [56], and reduced seed dispersal could result in
offspring remaining near their maternal plants and thus experi-
encing distance and density-dependent mortality caused by
higher competition, predation or pathogen attack [57].

There is some evidence for introduced populations
suffering decreased fitness as a result of a lack of microbial
mutualists. For example, the absence of Ensifer medicae, a rhizo-
bial mutualist, was associated with a dramatic decline in shoot
mass ofMedicago polymorpha [58]. Similarly, a study of the effect
of soil microbes on Pinus contorta (a highly invasive member of
the genus Pinus, which is an ectomycorrhizal clade) found that
seedlings grown in sterile soil gained twice as much biomass
when inoculated with soil from the native range than when
inoculated with soil from the introduced range [59]. However,
not all the evidence is in line with the missed mutualist hypoth-
esis. A study of introduced Pinus ponderosa in Argentina found
evidence for decreasing ectomycorrhizal colonization of roots
with increasing distances from plantations, but no significant
effect on seedling growth or survival [60].

Having fewer pollinators may not always result in
decreased fitness in introduced populations, as pollination
efficacy can vary. For example, pollinators in the invasive
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range may be more effective at transferring pollen [61]. The
invasive, pollinator-dependent, annual plant Himalayan
balsam (Impatiens glandulifera) is a potentially interesting
case study in this regard. This species has a very high rate
of nectar production such that it attracts pollinators away
from native plants, reducing their seed set [62]. A separate
study in Britain showed that the mean number of seeds per
fruit and the mean number of fruit per plant can vary by
an order of magnitude depending on the population [63].
Despite attracting many pollinators in Europe, I. glandulifera
populations are clearly not always performing at their
optimum reproductive output. There are of course other
possible explanations for the low seed production, but if it
is due to the recruitment of fewer, sub-optimum pollinators,
this could be a significant potential barrier to establishment,
in line with the missed mutualist hypothesis.

The fitness effects of missed seed dispersers or pollinators
canbedifficult todisentangle fromother processes. For instance,
although introduced populations often experience pollen
limitation (invasive species experience significantly less pollen
limitation than do related native species or non-invasive
introduced species [64]), invasive plants can maintain high
reproductive success through a high number of flowers per
plant [64]. Similarly, introduced plant populations tend to
have greater seed production than native populations [65],
but these data aggregate the effects of enemy release (reduced
damage from herbivores, seed predators and pathogens and
potential for decreased investment in defences, leaving more
energy for seed production), and missed mutualists (less
pollination and thus potentially decreased seed set).

As with evidence for the abundance or diversity of
mutualists in the new range, the observable fitness effects
of missed mutualisms do not capture the most extreme
cases. Species with obligate mutualisms that arrive in a new
range without their mutualists will simply fail to establish
[60]. A worthwhile direction for future research is to try to
estimate what proportion of invasions fail because of a lack
of mutualists. An intriguing possibility is that this proportion
may have decreased through the last few hundred years, as
the number of introduced species present worldwide
increased [66].
5. Evolutionary implications of missed mutualists
We know relatively little about the evolutionary responses of
plants to the loss of mutualists in their new ranges. By con-
trast, the evolutionary implications of enemy release have
been explored through the evolution of increased competitive
ability (EICA) hypothesis. EICA predicts that reduced herbi-
vore pressure allows plants to decrease resource allocation to
defence and increase resource allocation to growth, resulting
in increased competitive ability relative to native plants [8].
Mutualisms also require an investment in resources, e.g. in
scent components and nectar for attracting and rewarding
pollinators; or in maintaining mutualistic microbes within
plant tissues. Thus there may also be evolutionary impli-
cations for the missed mutualist hypothesis. However,
in missing mutualists, the reduced costs of investment in
resources may be balanced by a loss of fitness due to the
absence of the mutualist. For example, pollen limitation is
frequently observed in introduced species in their new
range [64,67,68]. Likewise, loss of seed dispersers [12] and
pollinators [69] has been implicated in the declines of several
species (consistent with the idea that there will also be
selective pressures associated with missed mutualists). Popu-
lations that successfully establish in a new range but suffer
missed mutualisms seem likely to either evolve so that they
can survive without their mutualists or evolve to facilitate
relationships with alternative mutualists [26,58] (figure 2).

(a) Evolving to survive without mutualists
Introduced species may shift from biotically mediated
reproduction to abiotically- or self-mediated reproduction.
Evidence for this expectation in seed dispersal generally
appears lacking. By contrast, evolutionary shifts in plant
mating systems to promote self-fertilization following their
shifts into new ranges are frequently observed [70], such
as instances of shifts from biotic to abiotic mediated pollina-
tion (e.g. where self-pollination is facilitated by rainfall)
[71,72]. For instance, wind pollination tends to increase at
range edges where population density is low [73]. Similarly,
plants at the edges of their range or in expanding range
fronts can shift mating systems toward self-fertilization [74]
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or clonal reproduction [75]. Nicotiana glauca, for example, is a
hummingbird pollinated in its native range, and introduced
populations in regions with no specialized bird pollinators
have switched to selfing [40,41]. Evolutionary modelling indi-
cates that self-fertilization should be selected over outcrossing
as long as the offspring of selfers are at least half as fit as the
offspring of outcrossers [76,77]. Thus, solutions to the loss
of pollination (and/or dispersal) interactions may rapidly
evolve and fix in introduced populations rapidly given that
being unsuccessful in reproduction has an ultimate fitness
cost and threatens the population with extinction [78].

The loss of mutualists could result in selection for changes
in energy allocation. For example, Acacia elaiosomes (lipid-
rich seed appendages which encourage dispersal by ants)
are of less importance in their introduced range than in the
native range despite ants remaining the dispersal vector
[35], and over time introduced Acacia populations may be
reducing their investment in elaiosomes [79,80]. The redirec-
tion of this investment to greater seed numbers or increased
seed provisioning could potentially increase the colonization
success or competitiveness of introduced populations. That is,
release from enemies is not the only mechanism for the EICA.
(b) Evolving to facilitate interactions with new partners
It is common for species to undergo substantial and rapid phe-
notypic and genetic changes after being introduced to new
ranges [81–85]. The missed mutualist hypothesis provides
insights into the type of selective pressures experienced by
species in the early stages of biological invasions [58]. As the
mutualisms involved with pollination, seed dispersal and
nitrogen fixation can be both highly specialized and critical
to a plants’ fitness, selection on traits associated with these
mutualisms could be extremely strong. This selection might
lead to substantial morphological or genetic changes over
short periods andmay contribute to the development of repro-
ductive isolation between native and introduced populations
(such as that recorded by [86]).

We used the Pollinators of the Apocynaceae Database [87]
to quantify how often species change their pollination system
when they are introduced to a new range (electronic supple-
mentary material, figure S1). In over a quarter of the examples
(11/42), species switched pollination systems. Four species
switched frombeing pollinated bya limited set of related species
in the native range to being more ecologically generalized
and using diverse pollinators in the introduced range. Con-
versely, three species that were generalists in their native range
have become more functionally specialized after introduction
because they left behind some types of mutualists. The mixed
pattern of species that are conservative and those that are more
flexible in their pollination systems in electronic supplementary
material, figure S1 is not confined to Apocynaceae; the literature
abounds with examples of species switching [88–92] or main-
taining their pollinator type in a new range [40,41]. The
switches in pollinators shown here could be either plasticity or
evolution. However, interacting with different pollinators
seems likely to induce evolution over the longer term.

Pollinators can impose strong selection on floral traits
such as flower size, colour, odour and nectar characteristics,
as well as phenological traits such as the timing of flowering
[93,94]. Thus, switches to new types of pollinators in an intro-
duced range could result in the evolution of changes in
reproductive characters that enhance such interactions. This
idea is supported by observed changes in the size [95],
width [96], floral tube shape and length [93] and nectar chem-
istry [97] of flowers of introduced populations in response to
the pollinating species in their new range. A particularly nice
example comes from Digitalis purpurea, which is pollinated by
bumblebees in its native range, and by both bees and hum-
mingbirds in the neotropics (where it was introduced in the
approx. 1850s). Consistent with this change in pollinator,
D. purpurea populations in the neotropics have evolved
longer proximal corolla tubes [98].
6. Practical implications of missed mutualists
About 60% of species fail to transition from introduction
to establishment in a new range [99]. Some of these failed inva-
sionsmight be explained by separation from obligatemutualists
[13,26]. For example, the invasion of Pinaceae in Argentina is
hindered by the absence of ectomycorrhizal fungi [18]. Plants
that are obligately reliant on their mutualist pollinators may
be restricted from establishing successful introduced popu-
lations: species with lower or no selfing ability are less likely
to become naturalized or invasive outside their native range
than their sympatric selfing congeners [100]. Further evidence
to support the idea that the loss of mutualists could impose a
strong filter on colonization of new areas comes from taxa that
have not become established as introduced species despite
significant opportunities for them to do so. For example, anemo-
nefishes (Amphiprion spp. and Premnas biaculeatus) have an
obligate association with sea anemones (Actinaria) that are
restricted to the Indo-Pacific region [101]. The success of the
movie Finding Nemo led to anemonefish becoming more
common in aquaria. Despite this, populations have not estab-
lished around the Caribbean or Mediterranean Seas, where
unwanted fish are frequently released into the ocean [102,103].

Many introduced species experience a lag phase—a gap
between the initial establishment of the population and the
onset of rapid population increase [104]. The loss of mutual-
ists is one of several factors that could contribute to these lag
phases [13,19,26,59]. For instance, a lag phase could result
from the gap between the arrival of an introduced species
and the arrival of mutualists from its home range. Alterna-
tively, a lag phase might result from the time taken for the
introduced species to undergo rapid evolution of traits to
facilitate successful interactions with species that are already
present in the novel range.

The overall fitness implications of establishing in a new
range will depend on the balance of the positive effects of
enemy release and the negative effects of missed mutualists,
in addition to the species’ ability to tolerate the abiotic
conditions [10,13,59]. The long-term success of biological inva-
sions will also depend on how fast introduced species
accumulate new enemies or mutualists [13,16]. If new enemies
accumulate faster than new mutualists, then the success of
invasions may be limited even under circumstances where
new mutualisms can evolve.

(a) Managing risks of introduced species in the context
of missed mutualists

The enemy release hypothesis has provided a useful concep-
tual framework for developing management tools for
introduced species. For example, where release from
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specialist antagonists is an important factor in the success of
an invader, biological control approaches using specialist
natural enemies in the invaded range can have value
[3,81,105]. The missed mutualist hypothesis could potentially
offer similar guidance on anticipating and managing
risks posed by introduced species that are separated from
their mutualists.

Introduced species in obligate or specialized mutualistic
interactions in their native range are less likely to become
invasive than those that are not reliant on such specialized
interactions [16–18]. Prospective biosecurity risk assessment
tools (e.g. Australian Weed Risk Assessment [34]) therefore
are more tolerant of introductions of invaders that have
been separated from their mutualists (e.g. specialist pollina-
tors). To enhance such risk assessments, it would be
valuable to consider whether there are analogues to the lost
mutualists in the invaded range of the introduced species,
and the likelihood for acquisition of new mutualists or the
subsequent arrival of old mutualists. For instance, the
spread of introduced Pinaceae can be limited by a lack of
associated ectomycorrhizal fungi [18]. However, mycorrhizal
inoculum is used globally, almost totally unchecked, to support
the establishment of successful plantations of Pinaceae [106],
which has the potential to disrupt current range expansion bar-
riers for some pines [18,107,108]. The impacts of agricultural or
forestry practices which could overcome barriers to invasion
associated with missed mutualists should be explored.
Another biosecurity risk assessment strategy could identify
those species for which missing mutualists are less likely to
encumber successful establishment. For instance, examining
the plasticity in breeding systems and the relative impor-
tance/frequency of self- versus cross-pollination in the native
range may shed light on the likelihood for plants to become
invasive despite the absence of their mutualists in the new
range [109,110]. Finally, in cases where invaders and their
mutualists were co-introduced, we could use understanding
of the importance of mutualists in introduced populations to
identify introduced species that might become locally extinct
if their mutualist were removed.

For introduced species that acquire new mutualists in
the introduced range and consequently become invasive, man-
agement tactics may need to be developed that disrupt novel
interactions. For example,managing populations of introduced
legumes that are promiscuous (i.e. do not need specialized rhi-
zobialmutualists and can acquire and use local rhizobacteria in
the invaded range), may require disruption of the forma-
tion efficiency of such symbiotic associations (e.g. periodic
manipulation of soil pH [111]). As is the case for manage-
ment applications based on the enemy release hypothesis,
the off-target/undesirable effects of any such management
manipulations need to be carefully considered [112].
7. Conclusion
The effect of missed mutualisms on introduced species
can vary from a complete failure of invasion to a temporary
setback that can be overcome through formation of new
mutualisms, evolution of a strategy that does not require
mutualists, or a change in energy allocation (figure 2). We
hope this paper will stimulate invasion biologists to further
develop ideas about the implications of the full suite of
biotic interactions in determining the success or failure
of species introductions, and to explore the ecological and
evolutionary consequences of disrupted mutualisms in
introduced species. Given the rising economic and environ-
mental costs of invasive species worldwide [113], new
avenues for improved mitigation and prevention of invasion
are valuable. Much in the way that the enemy release
hypothesis has been useful to biocontrol and management
of introduced species, we hope that the missed mutualist
hypothesis will be applied to help manage species introduc-
tions in the future.
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