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A B S T R A C T   

Background: Non-structural protein 1 (Nsp1), a virulence agent of SARS-CoV-2, has emerged as an important 
target for drug discovery. Nsp1 shuts down the host gene function by associating with the 40S ribosomal subunit. 
Methods: Molecular interactions, drug-likeness, physiochemical property predictions, and robust molecular dy-
namics (MD) simulations were employed to discover novel Nsp1 inhibitors. In this study, we evaluated a series of 
molecules based on the plant (Cedrus deodara) derived α,β,γ-Himachalenes scaffolds. 
Results: The results obtained from estimated affinity and ligand efficiency suggested that BCH10, BCH15, BCH16, 
and BCH17 could act as potential inhibitors of Nsp1. Moreover, MD simulations comprising various MD driven 
time-dependent analyses and thermodynamic free energy calculations also suggested stable protein-ligand 
complexes and strong interactions with the binding site. Furthermore, the selected molecules passed drug 
likeliness parameters and the physiochemical property analysis showed acceptable bioactivity scores. 
Conclusion: The structural parameters of dynamic simulations revealed that the reported molecules could act as 
lead compounds against SARS-CoV-2 Nsp1 protein.   

1. Introduction 

It is the third time that the 21st century is experiencing a coronavirus 
(CoV) outbreak. However, the current pandemic is most endangering in 
terms of the global economy and health [1–3]. CoV, a diversified group 
of viruses (enveloped and pleomorphic configuration) with a 100 nm 
diameter, comprises of single 30 kb of RNA 5′-capped and 3′-poly-
adenylated genome. This genome represents two broad overlapping 
open reading frames (ORF) in gene 1 (1a and 1b), as well as several 
structural and non-structural proteins at the 3′ end. After infection, the 
proteins of ORF1a and b are translated and then proteolytically cleaved 
into functional proteins. Most of these proteins have a role in viral 
replication [4]. The non-structural protein 1 (Nsp1) is expressed only in 
α (~9 kDa) and β (~20 kDa) CoVs. 

Nsp1 has crucial and conserved functions such as host mRNA 
degradation, suppressing the host antiviral signaling pathways and 
interferon expression. Due to these functions, Nsp1 is admitted as one of 
the prominent virulence factors. SARS-CoV-2 Nsp1 shares high 

structural similarity and sequence identity with SARS-CoV Nsp1; thus, 
the data of SARS-CoV Nsp1 functions could be highly informative to 
know the biological processes of SARS-CoV-2 Nsp1 [5–8]. An extension 
of β4 strand and the appearance of an extra β-strand in NSp1 of 
SARS-CoV-2 are among the remarkable differences between Nsp1 
structures of SARS-CoV and SARS-CoV-2 [9,10]. The change in amino 
acid (K to V) and (V to M) at positions 84 and 85 between SARS-CoV and 
SARS-CoV-2 Nsp1 resulted in β4 extension on the N-terminus by three 
residues [9,10]. This extension resulted in an increased number of 
hydrogen bonds between β4 and β7 strands in SARS-CoV-2 Nsp1 in 
comparison to the bonding pattern between β4 and β6 strands of 
SARS-CoV Nsp1. This extension also promoted the creation of the 
β5-strand, which was absent in Nsp1 of SARS-CoV. The β5 and β4 strands 
are part of a small β-sheet stabilizing the loop region between β5 and β6 
equivalent to β4 and β5 in SARS-CoV Nsp1 [9]. 

Nsp1 promotes the complete cessation of host protein translation 
through two strategies. First, it binds with the small ribosomal subunit 
and delays mRNA translation at several stages of initiation [6,11]. 
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Secondly, the binding of Nsp1 to the ribosome directs the endonucleo-
lytic division and host mRNA degradation [6]. Nsp1 of SARS-CoV-2 
disrupts the mRNA export machinery to inhibit host gene expression 
[12]. In addition, Nsp1 could be able to reduce cellular translation 
considerably; however, remaining ribosomes would still be able to 
translate viral mRNAs with high efficiency [5]. Besides, a new strain of 
SARS-CoV-2 was reported to lack specific amino acids from Nsp1. The 
lack of these specific amino acids indicated profound genomic changes 
in SARS-CoV-2 [13]. The complex of Nsp1 bound to the human 40S ri-
bosomal subunit showed that Nsp1 blocked the messenger RNA entry 
tunnel [6]. The cessation of the essential innate immune response may 
promote immune evasion and an increased rate of viral replication [14]. 
The prominent role of Nsp1 of SARS-CoV-2 in reducing the antiviral 
immune response makes it a potential therapeutic target [5,6]. There are 
three vaccines approved at the moment and an emergency drug 

remdesivir has been authorized for emergency use against COVID-19 by 
FDA [15]. Although, no specific FDA-approved drug is present for the 
treatment of COVID-19 patients. The requisite demand for developing 
efficient drugs against SARS-CoV-2 necessitates the use of computa-
tional tools for the fast screening of potential drug-like molecules. 

The primary goal of the present study is to identify potential Nsp1 
inhibitors by applying structure-based drug design strategies, MD sim-
ulations, and thermodynamic binding free energy evaluations. Medi-
cines from the natural origin are deemed to exert fewer side effects than 
synthetic drugs. Natural and novel molecules as inhibitors of SARS-CoV- 
2 are also being examined by practicing in-silico approaches [16–23]. In 
earlier studies, Himachalenes scaffolds were recognized for their 
anti-inflammatory and antiviral activities [24–26]. A polymer-stabilized 
Pd(0) nanoparticle-catalyzed Suzuki-Miyaura crosscoupling reaction of 
amino vinyl bromide substituted benzosuberenes were used for 

Fig. 1. 2d structures of 17 selected aminoarylbenzosuberene molecules.  
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aminoarylbenzosuberenes (AABs) synthesis [27]. The semi-synthetically 
derived AAB from Himachalenes (isomeric mixture of sesquiterpenes 
found in Cedrus deodara oil) [27] were used in this study (Fig. 1) for 
elucidating their therapeutic potential against COVID-19. The amino-
aryl functionality of these molecules is rare and provides a great op-
portunity to outspread binding capacity with the target receptors. 

2. Material and methods 

2.1. Datasets 

Iterative Threading ASSEmbly Refinement server (I-TASSER) used to 
model the SARS-CoV-2 Nsp1 protein of 180 amino acid residues. 17 
aminoarylbenzosuberene (AAB) molecules were employed in computa-
tional analysis from in-house database, as depicted in Fig. 1 [27]. The 
structure of the protein was prepared through the Discovery studio 
software by making the use of its “prepare protein” methodology [28]. 
The optimization of Ligand geometry of all molecule was performed by 
the energy minimization protocols of Gaussian16 (with DFT) [29]. The 
“Find unoccupied pocket” function of SeeSAR was adopted to create the 
binding sites on the Nsp1 protein. Pocket containing C-terminal residues 
was selected for docking with AABs molecules. 

2.2. Modeling and molecular docking 

Since, the only available x-ray diffraction crystal structure of Nsp1 
from SARS-CoV-2 (PDB ID:7K3N) [9] was incomplete due to missing 
residues 117–180, so our foremost step was to build a complete, robust, 
and validated modeled structure. The C-terminal region is important for 
inhibition of Nsp1. Hence, we used the SWISS-MODEL that uses ho-
mology modeling to render protein model by taking recently submitted 
Nsp1 structure (PDB ID: 7K3N) as a template. However, the structure 
generated by SWISS-MODEL was not a complete structure. Thus, 
modeling was performed through I-TASSER which uses a hierarchical 
path to predict the protein structure [30]. For this step the NMR struc-
ture of Nsp1 (PDB ID: 2GDT) was used as a template. The FASTA 
sequence of SARS-CoV-2 Nsp1 with NCBI sequence reference: 
YP_009725297.1 submitted in I-TASSER to built the protein model. 
Multiple threading method LOMETS is used to identify the structural 
templates from the protein data bank. Iterative template-based fragment 
modeling simulations assembled the optimized atomic model of the 
Nsp1 sequence. Protein function database (BIOLIP) was used to thread 
the 3D models and determine the targets function insights. The best 
model was selected on the basis of C- score. 

Subsequently, the software SeeSAR v9.2 was utilized to dock the 
modeled SARS-CoV-2 Nsp1 protein with the selected molecules. The 
parameter settings were kept default in SeeSAR software. The scoring 
feature (equation (1)) of hydrogen dehydration (HYDE) was used in 
SeeSAR to test the estimated affinity of docking [31]. The estimated 
affinity in SeeSAR has been reflected in mM < pM order. The top mol-
ecules were picked based on their estimated affinity, Ligand Efficiency 
(LE), and Torsion participation toward protein-ligand binding. 

ΔGHyde = 
∑

atom  i 
[
ΔGidehydration+ΔGiH  −  bonds

]
(1) 

In equation (1), ΔGdehydration represents the change in dehydration 
energy, whereas ΔGH-bonds represents the change in hydrogen bond (H- 
bond) energy for each atom i in the protein–ligand complex. 

HYDE’s scoring function is determined in terms of desolvation and 
hydration that have been conventionally linked with Octanol-water 
Partition Coefficients of molecules. The ligand molecule is completely 
dehydrated during the binding process. Even the H-bonds linking pro-
tein/ligand and water molecules are broken during the process, 
prompting a disfavored enthalpic augmentation, although the mass 
release of water atoms [32]. To cover the energy loss, new H-bonds are 
produced between protein-ligand. Moreover, the protein-ligand 

hydrophobic interactions in the water molecules region begin to crack 
the water H-bond formation and present adverse energy. The removal of 
these water molecules from the hydrophobic surfaces and their 
discharge into the bulk water causes an expansion in energy heading to a 
hydrophobic impact phenomenon. To ascertain the estimated affinity of 
a ligand in agreement with the amount of non-hydrogen atoms was 
presented by Kuntz et al. (1999) [33]. Extension of their fundamental 
approach of LE numerically expressed as the quotient of ΔG and the 
amount of non-hydrogen atoms of the molecule. The interaction analysis 
was assuredly done by the Protein-Ligand Interaction profiler (PLIP) 
server [34]. 

2.3. MD simulations, MM-PBSA, and Gibbs free energy 

The best technique for gaining protein-ligand equilibrium is the 
Molecular Dynamics (MD) Simulation. It is established upon the law of 
molecular motions by Newton (equation (2)). 

Fi=miai=
δV(rN)

δri
(2) 

Fi = force exerted on particle i, mi = mass of particle i, and ai =
acceleration of particle i. V = potential energy of the system. r = posi-
tion. δ = change in velocity. Fi shows the force working on i given by the 
partial spatial derivative of V, which depends upon the positions rN (r1, 
r2, …., rN) of all N particles in the system [35]. We have produced four 
systems of the Nsp1 complex with molecules BCH10, BCH15, BCH16, 
and BCH17 for 250 ns MD simulation in Gromacs 4.6.7 [36–38]. The 
GROMOS 43a1 forcefield was adopted for protein topology creation, 
while the PRODRG 2.0 server was used to create ligand topology [39]. 
The systems neutralization was done by adding 98888 water and 5Cl- 

ions. The cubic box of 24.33 nm3 volume was used in systems solvation. 
Next, to eliminate the steric clashes during the energy minimization 
conjugant gradient and the steepest descent approach was adopted. 
After that, NPT and NVT simulation of 1 ns was performed to fix the 
systems temperature and pressure. The LINCS algorithm exercised to 
constrain the bond’s length and the PME method to estimate absolute 
electrostatics [40,41]. The thermostat (V-rescale) method was applied to 
maintain the 300 K temperature [42]. The MD trajectories were kept for 
several structural interpretations like RMSD, RMSF, and H-bonds 
analysis. 

The g_mmpbsa tool was utilized to determine binding free energy 
applying molecular mechanics Poisson-Boltzmann surface area (MM- 
PBSA) approach. The binding free energy gives the three dynamic terms. 
First is the standard molecular mechanics energy. Second is the entropic 
supplement to solvation and free energy in a vacuum [43]. The 
low-energy state of selected complexes captured via free energy land-
scape analysis (FEL). The g_sham module was used for FEL calculations. 

2.4. Physiochemical properties prediction 

Molinspiration, an automatic server, was utilized for the molecular 
property prediction that divines both pharmacological and physi-
ochemical attributes such as LogP, molecular size, rotatable bonds, and 
hydrogen bonding features (https://www.molinspiration.com). The 
molecules were converted into SMILE format using OpenBabel server to 
analyze the molecular properties [44]. 

3. Results 

3.1. Molecular modeling 

Recently, a crystallographic structure of Nsp1 was submitted to the 
PDB database. However, the structure was missing the residues of the C- 
terminal domain. Hence, we adopted the molecular modeling approach 
to built the full length structure of Nsp1. Molecular modeling includes 
tactics (conceptual/computational) to reproduce a structure comparable 
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to the original three-dimensional (3D) crystal structure. We first 
employed the SWISS-MODEL to build a full length protein model by 
providing Nsp1 structure (PDB ID: 7K3N) as a template. However, 
SWISS-MODEL was not able to generate a full length model of Nsp1 
protein. Further, we employed the I-TASSER server that uses a hierar-
chical path to predict the protein structure. The full length 3D model of 
SARS-CoV-2 Nsp1 was developed, as displayed in Fig. S1a. The predicted 
structure was submitted to Github (https://github.com/Rahulbioi 
nfo/Structural-Bionformatics-Lab.git). The predicted model showed a 
− 2.53 C-score with a 0.42 ± 0.14 estimated TM-align score. The struc-
ture validation was done on the basis of Ramachandran plot analysis. 
The Ramachandran plot of the modeled protein confirmed that 92.5% 
and 96.4% of all residues were in the favored and allowed areas 
respectively (Fig. S1b). These results recommended that the predicted 
protein model was of high-quality and appropriate for further in-silico 
studies. 

3.2. Binding mode and intermolecular interactions 

The predicted full length model of Nsp1 was subjected to molecular 
docking. The “Find unoccupied pocket” of SeeSAR was used to define the 
binding site of Nsp1. A total of five binding pockets were produced using 
“Find unoccupied pocket” function of SeeSAR. The second binding 
pocket containing 21 residues of the C-terminal region was considered 
for docking, while other pockets were found away from the C-terminal 
area. 

Molecular docking is a method that predicts the stable interaction 
profiles between a ligand and a protein. The AABs analogues were 
docked with SARS-CoV-2 Nsp1 to estimate the characteristics of protein- 
ligand binding, including the binding affinity, LE, and Torsion 
(Table S1). Based on these characteristics, BCH10 (N-((-6,7-dihydro- 
3,5,5-trimethyl-8phenyl5Hbenzo [7] annulen-9-yl)methyl)(phenyl) 
methan amine), BCH15 (1-Phenyl-N-((3,5,5-trimethyl-8-phenyl-6,7- 
dihydro-5H-benzo [7]annulen-9-yl)methyl)ethan amine), BCH16 (2- 
Methyl-N-((3,5,5-trimethyl-8-phenyl-6,7-dihydro-5H-benzo [7]annulen 
-9-yl)methyl)propan-2-amine), and BCH17 (N-((3,5,5-trimethyl-8- 
phenyl-6,7-dihydro-5H-benzo [7]annulen-9-yl)methyl)propan-2-ami 
ne) molecules were selected from seventeen AAB molecules. Molecular 
docking results were presented in Table 1. The docking poses were 
produced from the PLIP server. In complex with Nsp1 molecules, 
BCH10, BCH15, BCH16, and BCH17 showed hydrophobic interactions 
with key residues Phe143, Phe157, and Gln158 of C-terminal domain. 
Other residues involved in hydrophobic interactions were Val35, Glu36, 
Leu39, Val89, and Tyr97. H-bonds bonds were observed only in Nsp1- 
BCH17 complex. The residues involved in H-bonds were Asp156 and 
Phe157 (Fig. 2). 

3.3. Structural dynamics of protein-ligand complexes 

The protein-ligand interactions are static poses and their binding 
pattern tends to alter with physiological conditions and time. To get an 
insight into the correct dynamic status and estimation of different bond 
formations between protein and ligand, the selected protein-ligand 

complexes were subjected to long term MD simulations. To analyze 
the structural stability of the four selected protein-ligand complexes, we 
measured the root mean square deviation (RMSD) of backbone C- 
α-atoms. RMSD analysis of the Nsp1 in complex with BCH10, BCH15, 
BCH16, and BCH17 revealed that all the complexes achieved stability 
around ~100 ns, and afterwards, the RMSD trajectories were stable till 
the end of simulations. During the entire simulation, selected complexes 
had an average RMSD value between 0.5 and 0.69 nm, except for 
BCH15. BCH15 showed an average RMSD value between 0.8 and 0.9 nm 
(Fig. 3a). Further, the fluctuations at a local level were analyzed through 
Root Mean Square Fluctuation (RMSF) calculations. The average fluc-
tuations of all four complexes were low and comparable to each other 
(Fig. 3b). Moreover, we also measured other structural parameters, 
including the Radius of Gyration (Rg), Cluster analysis, and calculated 
the number of Inter-molecular H-bonds based on the fundamental dy-
namics strategy. The average Rg value was estimated to lie between 1.6 
and 1.68 nm for all the four complexes (Fig. 3c). The rate of fluctuations 
and minute variations in the intermediate Rg and RMSD values steered 
to conversion of trajectories. Additionally, our MD simulations inter-
pretation recorded an average of two H-bonds for all the selected com-
plexes (Fig. 3d). These results demonstrated that all the complexes were 
fully equilibrated and structurally stable. 

The MD simulations can be used to observe protein-ligand in-
teractions at different time intervals throughout the simulation run. We 
extracted the scripts of the top four complexes (BCH10, 15, 16, and 17) 
at different time intervals (50 ns, 100 ns, 150 ns, 200 ns, and 250 ns) to 
perceive the stability of the interactions between the ligand and protein. 
The results revealed that the interactions with C-terminal residues 
(mainly Phe143, Phe157, and Gln158) and other residues were present 
throughout the simulation run. The residues Phe143, Phe157, and 
Gln158 showed hydrophobic interactions throughout the simulation in 
each complexes, while Asp156 and Asn162 involved in both hydrogen 
and hydrophobic interactions (Fig. S2). 

3.4. Thermodynamic binding energy and free energy landscape analysis 

Besides, we estimated the end-state binding free energies for Nsp1 
protein complexes to assess their binding affinities in a dynamic envi-
ronment. The binding free energy results were presented in Fig. 4. MD 
scripts from 100 to 250 ns time frame of the selected complexes were 
extracted to measure the binding free energies. The summary of binding 
free energy results showed that ΔE binding (kJ/mol) was − 477.981 for 
BCH10, -524.819 for BCH15, -504.165 for BCH16, and -490.889 for 
BCH17. Molecules BCH16 and BCH15 proffered higher binding free 
energy among four selected molecules. The electrostatic energy contri-
bution was the pre-eminent factor in total binding free energy, the VdW 
energy was another significant donor. However, the SASA energy 
participated with a small contribution to binding free energy. In 
contrast, the polar solvation energy was not contributing favorably to 
the binding free energy. Moreover, the two-time repetition of MM-PBSA 
calculations was carried out for the top two Nsp1 complexes at the time 
interval of 0–100 ns (Table S2, Fig. S3). BCH15 complex showed 
− 537.468 in 1st run and − 549.833 in 2nd run. BCH16 complex showed 
− 510.643 in 1st run and − 456.137 in 2nd run. The results were 
consistent with our first run of MM-PBSA analysis where BCH15 
exhibited − 524.819, while BCH16 showed − 504.165, thereby vali-
dating our adapted protocol to calculate binding free energies. 

We also conducted the FEL interpretation for all the complexes to 
examine the minima basins (low-energy) obtained during the simula-
tions. FEL analysis showed that the complexes attained a minimum 
energy structure during the simulation period with 0.5 ± 0.07 RMSD 
and 1.6 ± 0.05 nm Rg values, as shown in Fig. 5. BCH10 showed three 
different broad and deep valleys, while BCH15 showed one consistent 
energy minima. BCH16 revealed a cluster and one energy basins adja-
cent to each other. BCH17 exhibited two energy basins with broad 
valleys. Every protein-ligand complex had a distinct pattern for the FEL. 

Table 1 
Complexes selected based on Estimated Affinity, LE, and Torsion.  

Complexes Estimated Affinity (Ki) LE Torsion 

Nsp1-BCH10 8.81 mM-88.67 μM 0.26 

Nsp1-BCH15 0.22mM-2.24 μM 0.30 

Nsp1-BCH16 0.95mM-9.62 μM 0.29 

Nsp1-BCH17 0.90mM-9.07 μM 0.30 

# Below 0.20 LE is low. 
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Additionally, the protein-ligand complexes were extracted from the 
minima states for geometrical shape analysis of the binding cavity. The 
initial structure (before docking) showed 421.105 cavity volume while 
the structures at minima state extracted structures showed 323.846, 
370.219, 272.554, 401.161 for BCH10, BCH17, BCH16, and BCH15 

respectively. These geometrical shape analysis outcomes acknowledged 
the decreased cavity space volume in minima structures compared to the 
initial structure. 

Fig. 2. The 3D interaction poses of the Nsp1 binding site. (a) BCH10, (b) BCH15, (c)BCH16, and (d) BCH17.  

Fig. 3. (a) The RMSDs of backbone C-α-atoms are shown as a function of time of the Nsp1 complexes. (b) Graphical representation of RMSF for the backbone C- 
α-atoms of Nsp1 complexes. (c) Change in Rg of the Nsp1 protein complexes. (d) The analysis of Hydrogen bonds formed between protein-ligand during the 
simulation. The symbol coding scheme is as follows: BCH10 (red color), BCH15 (green color), BCH16 (yellow color), and BCH17 (violet color). 
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3.5. Physiochemical properties 

Measuring the molecular properties is meaningful in discovering 
excellent drug candidates, and it is an essential hallmark in drug design 
and development. Usually, molecules contain functional groups that 
have specific features which are comparable to known drugs. In this 
context, the pharmaceutical and physiochemical attributes such as 
water/octanol value (LogP), H-bond acceptors/donor, molecular 
weight, and the number of rotatable bonds for seventeen molecules were 
examined. The physiochemical property analysis of selected molecules 
showed ample number of rotatable bonds and bioactivity scores of 0.27, 
0.15, 0.19, and 0.24 for BCH10, BCH15, BCH16, and BCH17 respec-
tively (Table S3). 

4. Discussion 

The Nsp1 of SARS-CoV-2 has emerged as an attractive target for drug 
development due to its involvement in viral factors that determine the 
virulence and pathogenesis of CoVs [5,6]. Nsp1 is primarily involved in 
the down-regulation of host innate immune responses to CoV infections 
[5,6]. A library of in-house synthesized AABs analogues was screened for 
its potential to interact with the binding site of Nsp1 protein. We fol-
lowed a robust computational approach to select and rank these ana-
logues based on their capacity to effectively bind with Nsp1 of 
SARS-CoV-2. 

A fully resolved model of Nsp1 is not yet available, so we predicted a 

full length model of Nsp1 by I-TASSER server that showed 92.5% and 
96.4% of all residues in the favored and allowed regions, respectively. 
The models with more than 88% of amino acids in the allowed region of 
Ramachandran plot are considered for computational studies. Addi-
tionally, we also validated our predicted model by superimposing it with 
the newly deposited Nsp1 structure of SARS-CoV-2 and template struc-
ture (Nsp1 of SARS-Co-V) as depicted in Fig. S4. The superimposition 
outcome showed 0.3 Å RMSD between all the compared structures. The 
low RMSD values reaffirmed that the predicted structure was robust and 
not producing any discrepancy. 

Already published studies in well reputed journals proclaimed that 
the C-terminal region of SARS-CoV-2 Nsp1 containing 143–180 residues 
perform an essential role in the inhibition of host protein synthesis [5,6, 
45]. Hence, we adopted a similar binding site (C-terminal region) for 
docking predicted by the “Find unoccupied pocket” of SeeSAR. The 
“Find unoccupied pocket” is made on a heuristic prototype that utilizes 
the Gaussian variations on a 3-D grid to search the probability of 
administering with a pocket pattern. Furthermore, other notable pa-
rameters, such as the global H-bond features, lipophilic nature, and the 
hypothetical pockets solvent accessible surface area, were also 
acknowledged. Moreover, the prediction was additionally improved 
with local actions such as ranges between sets of functional group atoms. 
Thus, the binding site similarity between existing literature and our 
predicted site strengthened our proposed approach. 

From molecular docking, best four docked complexes were selected 
based on LE, Estimated affinity, and torsion (Table 1). LE is described as 

Fig. 4. (a) Graphical representation of binding free energy in kJ/mol, (b) MM-PBSA calculations of all constituents of binding free energy for all the selected 
Nsp1 complexes. 
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evaluation of per atom participation in binding affinity of a protein- 
ligand complex [46,47] Interaction analysis of top four selected mole-
cules (BCH10, 15, 16 and 17) exhibited interactions with C-terminal 
residues of Nsp1 of SARS-CoV-2. Most of the interactions observed were 
hydrophobic interactions. These interactions are essential in protein 
folding, stability and biological activity. Our docking results suggested 
that the selected molecules could be developed to target Nsp1 of 
SARS-CoV-2. A molecular docking study reported five phytochemical 
molecules (Austrocortilutein A, Austrocortirubin, Ganomycin A, Glab-
ridin, and Neogrifolin) against Nsp1 of SARS-CoV-2 [48]. Apart from it, 
another study reported molecules Glycyrrhizic acid, Garcinolic acid, 
Lobaric acid, and Tirilazad as potential Nsp1 inhibitors. These molecules 
were also of natural origin screened by preliminary computational 
studies [49]. 

The selected protein-ligand complexes from docking results were 
subjected to MD simulations and binding free energy calculations. RMSD 
computations can probe the conformational changes and the stability of 
a protein at a global level. RMSD furnishes a quantitative degree of 
similarity of concerned systems by defining the deviations in backbone 

C-ɑ-atoms of the proteins [50]. Our results showed that the RMSD tra-
jectories of all the selected complexes were stable and well-equilibrated. 
These results reported that all the simulated complexes were equivalent 
to experimental structures and were fit for further computational ex-
plorations. The protein-ligand complexes containing potential mole-
cules suggested by a recent computational study [51] showed higher 
(>2 Å) RMSD values as compared to low value (<1 Å) shown by our 
complexes. 

During the simulation, all the atoms were allowed to communicate 
with their surroundings, which allowed to measure their trajectories in 
the protein-ligand complexes. The RMSF values of every backbone atom 
in the Nsp1-BCH complexes were examined to analyze the flexibility of 
the protein backbone structure. The high RMSF value conferred flexi-
bility, whereas the lower RMSF value indicated confined drifts. All the 
complexes achieved a low level of fluctuation in the C-terminal region 
(binding site). RMSF results for the binding site region of all the com-
plexes revealed that the amino acids involved in binding of the mole-
cules were stable throughout the simulation. In previously published 
article the protein-ligand complexes bestowed higher fluctuations 

Fig. 5. The 2D and 3D free energy landscapes from MD trajectories for four Nsp1 complexes (a) BCH10, (b) BCH15, (c) BCH16, and (d) BCH17. The violet color 
region in circle shows the minimum energy conformation. 
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(1.0–~4.0 Å), while our protein-ligand complexes showed low fluctua-
tions between 0 and ~0.9 Å [51]. We also calculated the Rg values, 
which give insights into the protein overall shape and dimension [50]. 
The low average Rg values intimated that the protein was stable upon 
binding of the molecules. 

Moreover, it was imperative to explore the protein-ligand in-
teractions at different intervals during the simulations. The protein- 
ligand interaction poses at different time intervals revealed that the 
interactions generated in docked poses were maintained throughout the 
simulation run. The MD simulations signified that the C-terminal resi-
dues showed stable interactions and the selected molecules remained in 
the binding pocket till the end of the simulation. 

The intermolecular H-bond interactions played a vital role in the 
stabilization of the protein-ligand complexes. The H-bond interactions 
stability between protein-ligand complexes were calculated throughout 
the 250 ns simulation period. The time-averaged results suggested that 
all the selected molecules also showed H-bonds with Nsp1. The residues 
Asp156 and Asn162 showed H-bonds at different time intervals during 
the simulation, hence, we explored their H-bond profiles. The results of 
H-bond analysis (Fig. S5) for residues Asp156 and Asn162 supported our 
time interval analysis. 

Based on the MD simulations, binding free energies were computed 
using the MM-PBSA approach to estimate the strength of interaction 
between selected ligands and Nsp1. The more precise binding affinity 
prediction can be acquired through binding free energy computations, 
which is reliant on the thermodynamically significant parameter that 
are involved in the protein-ligand interactions [52,53]. MM-PBSA re-
sults pointed out that electrostatic and VdW interactions were the 
favorable contributors in the binding free energy. To validate these re-
sults, MD scripts of the top two Nsp1 complexes (BCH15 and BCH16) at 
the time interval of 0–100 ns were extracted to monitor the robustness of 
our approach to estimate binding free energies. The binding free en-
ergies obtained from the replication studies demonstrated no artifact in 
the values of binding free energy as depicted in Table S2 and Fig. S3. 

Further, to acquire the Gibb’s free energy, 2D and 3D FEL plots were 
generated, as shown in Fig. 5. The energy range for BCH10 and BCH17 
was between 0 and 28.20 kJ/mol, while for the BCH15 and BCH16 the 
value ranges from 0 to 27.40 kJ/mol. Over higher free energy space with 
deep basins, the violet color localities symbolized the local energy 
minima and actively favored conformations (Fig. 5). The FEL approach 
revealed that all the complexes were highly stable. The protein-ligand 
poses were extracted from their respective minima states and sub-
jected to geometrical shape analysis of the binding cavity. The decrease 
in cavity space showed stable and deep attachment of molecules in the 
cavity. The geometrical shape analysis results further complemented our 
binding free energy analysis. 

The MD driven results suggested that the selected molecules could be 
developed to target the binding site of Nsp1 protein of SARS-CoV-2. 
Hence, we calculated the pharmaceutical and physiochemical proper-
ties of these molecules. These attributes were estimated on the basis of 
Lipinski’s Rule of Five that predicts the drug-likeness and recognizes the 
pharmacological action that would support the making of an excellent 
orally effective drug [54,55]. All the selected molecules passed the 
criteria of rule of five. Moreover, we also accessed the bioavailability of 
selected molecules through molinspiration server. The molinspiration 
server compares the molecules with an average number of 100000 
drug-like molecules, and the bioactivity score permits adequate sepa-
ration of inactive and active molecules. The physiochemical results 
showed that all the selected molecules were biologically active. To 
conclude, the selected top four molecules demonstrated feasible 
drug-like properties and considerable bioavailability to be developed as 
therapeutic agents. 

5. Conclusion 

The Nsp1 of SARS-CoV-2 is an attractive target for development of 

inhibitors. The Nsp1 has a functional pocket that is linked with substrate 
binding and enzymatic action. We screened 17 AAB molecules for their 
potency to inhibit Nsp1 of SARS-CoV-2 and selected top four molecules 
based on LE and Estimated Affinity. Employing robust long-term simu-
lations, we suggested four molecules BCH10, BCH15, BCH16, and 
BCH17 to possess the potential to inhibit Nsp1 of SARS-CoV-2. All the 
selected molecules passed the Lipinski’s Rule of Five. Moreover, the 
drug-likeness properties revealed a positive bioactivity score for the 
selected molecules. The top-ranked molecules warrant further experi-
mental and clinical testing against Nsp1 of SARS-CoV-2. 
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