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Abstract

Due to datasets have continuously grown, efforts have been performed in the attempt to

solve the problem related to the large amount of unlabeled data in disproportion to the scar-

city of labeled data. Another important issue is related to the trade-off between the difficulty

in obtaining annotations provided by a specialist and the need for a significant amount of

annotated data to obtain a robust classifier. In this context, active learning techniques jointly

with semi-supervised learning are interesting. A smaller number of more informative sam-

ples previously selected (by the active learning strategy) and labeled by a specialist can

propagate the labels to a set of unlabeled data (through the semi-supervised one). However,

most of the literature works neglect the need for interactive response times that can be

required by certain real applications. We propose a more effective and efficient active semi-

supervised learning framework, including a new active learning method. An extensive

experimental evaluation was performed in the biological context (using the ALL-AML,

Escherichia coli and PlantLeaves II datasets), comparing our proposals with state-of-the-art

literature works and different supervised (SVM, RF, OPF) and semi-supervised (YATSI-

SVM, YATSI-RF and YATSI-OPF) classifiers. From the obtained results, we can observe

the benefits of our framework, which allows the classifier to achieve higher accuracies more

quickly with a reduced number of annotated samples. Moreover, the selection criterion

adopted by our active learning method, based on diversity and uncertainty, enables the pri-

oritization of the most informative boundary samples for the learning process. We obtained

a gain of up to 20% against other learning techniques. The active semi-supervised learning

approaches presented a better trade-off (accuracies and competitive and viable computa-

tional times) when compared with the active supervised learning ones.

Introduction

The amount of information available has been increasing, due to new means of acquisition,

increased storage capacity and speed of communication, producing large datasets. In this sce-

nario, urgent solutions are needed for the processing, classification and organization of this

data, for further manipulation of the dataset. To do so, textual information can be used to
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annotate these datasets. Although, it has certain practicality and simplicity, manual annotation

has several limitations. One of them refers to the impossibility of making complete manual

annotations in each sample of the dataset, considering a large application. In addition, the par-

ticipation of multiple specialists may be required in order to avoid annotation errors. Besides,

different individuals can provide different descriptions for the same sample (i.e. the provided

information is subjective, generating inconsistencies and unsatisfactory results).

However, the description of the semantic content of the samples by one or more keywords

(labels) is still the most efficient and direct form of access to information. In this context,

efforts have been made investigating automatic sample annotation techniques [1–6]. These

annotation techniques usually require a standard classifier—or collection of classifiers [7, 8]—

trained from a dataset that is fully or partially labeled. In the latter case, the semi-supervised
learning approach can be used [3, 9–16], where the labeled samples (which are almost always

scarce in the datasets) can propagate their labels to unlabeled samples (which represent the

vast majority of them in the datasets). In the literature, it can be seen that the semi-supervised

approach produces considerable improvements in the accuracy of the classifier [17–21]. How-

ever, as the datasets are increasing [22], there are two fundamental problems to be solved. One

of them is the reduction of the dataset in a treatable number of representative samples for the

learning. Another one is related to the selection of a smaller number of those (from the reduced

set) most important for manual annotation and pattern classifier training. Both problems have

been successfully addressed using active learning techniques [23–32].

In the active learning, the classifier learns at the same time that it selects the training sam-

ples and suggests their labels. A specialist participates in its learning process, only correcting

or accepting the labels provided by the classifier. The learning process is iterative, until the

obtained results are satisfactory. The goal is to minimize specialist involvement without losing

control over the classifier learning process. By combining active learning (AL) and semi-super-

vised learning (SSL) techniques, it would be possible to select the most significant samples

from the dataset. They enable to compose the labeled training set and propagate their labels to

the unlabeled training set, constructing a more robust classifier. Then, the classifier can be

used for automatic annotation of unlabeled samples from other datasets.

Some works have applied the integration of AL and SSL on biological datasets. [33]

explored semi-supervised and active learning based on gaussian mixture models for microal-

gae classification. [34] proposed a logistic regression model combining SSL and AL. They used

the unlabeled samples with least cost in an attempt to improve the disease classification. How-

ever, their approach requires a previous labeled dataset. Besides that, in their experiments, the

authors presented comparisons between only logistic approaches. Another work [35] employs

a self-training method in which the entropy of unlabeled samples is used in the active learning

process, while the semi-supervised learning uses the probability distribution of all possible

labels for the samples. Other combinations of active learning and semi-supervised techniques

have been proposed in the literature and somewhat successful when applied to distinct con-

texts, such as: face recognition [36], diagnosis of intestinal parasites in humans [30], extraction

of protein interaction sentences [37], unknown and label-scarce classes [38], sound classifica-

tion [39], intrusion detection system [40, 41] and textual classification [42].

However, most of them have focused on unfeasible solutions for real-world applications,

which may require interactive response times and human intervention, since they neglect the

computational cost of the techniques used, and do not consider the selection of the most infor-

mative samples for the learning process. Moreover, most works in the literature propose active

learning strategies, which perform the classification of all samples of the dataset, followed by

the organization and selection of the most informative ones at each learning iteration. When
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working with real datasets, this process becomes inefficient or impractical to be performed

computationally.

Contributions

This paper proposes a more effective and efficient learning approach to cope with: i) a higher

proportion of unlabeled data; ii) scarcity of labeled data; iii) the need for a significant amount

of data labeled by a specialist to obtain high accuracies by the classifiers; iv) difficulty in obtain-

ing annotations made by a specialist; v) the need for interactive response times for the learning

process. Therefore, the main contributions of this paper includes an active semi-supervised

learning framework (FASSL) jointly with a new active learning method, named as Root Dis-

tance based Boundary Sampling—RDBS. We accomplished an extensive experimental evalua-

tion in the biological context and the obtained results, comparing with state-of-the-art works,

testify the benefits of our RDBS method and our active semi-supervised approach. Through

our active semi-supervised learning framework we can significantly improve the learning of

the classifier. It is possible to achieve higher accuracies faster by using smaller amounts of sam-

ples, learning iterations and interactions with the specialist. The selection criteria adopted by

RDBS, based on diversity and uncertainty, allow the prioritization of the most informative

boundary samples. Therefore, a smaller number of more informative samples previously

selected (by our active learning strategy) and labeled by the specialist can more effectively

(i.e. with fewer errors) propagate the labels to a set of unlabeled data (through the semi-super-

vised strategy). Hence, we do not need that the specialist spends time and effort to label a large

dataset.

1 Background

1.1 Active semi-supervised learning paradigm

In the active semi-supervised learning (ASSL), the training set consists of unlabeled and

labeled samples. As aforementioned, since the cost associated with the sample annotation pro-

cess is high (and it can require the opinion of one or more specialists), the smallest possible set

of samples should be labeled. Moreover, it is important that this set contains the most signifi-

cant samples for the classifier training.

Therefore, active learning strategies can be used to select the most informative samples,

which will comprise the labeled part of the training set and then propagate the labels to the

samples of the unlabeled part. This is an iterative learning process, in which the classifier par-

ticipates actively in their learning process along with the adopted selection criteria, helping to

choose the most informative (more diverse and more uncertain) samples to be classified. After

selection, such samples are displayed to a specialist, who confirms or corrects the labels pro-

vided by the classifier. Subsequently, after the confirmation/correction of the labels, these

labeled samples are inserted into the training set along with unlabeled samples and a new

instance of the semi-supervised classifier can be generated.

Fig 1 describes the ASSL paradigm, as well as the main differences between the traditional

(Fig 1a) and the adopted (Fig 1b) paradigm. In the traditional paradigm (Fig 1a), it is per-

formed the classification and organization of the whole large unlabeled dataset, at each learn-

ing cycle. Next, a subset of more informative samples is selected, according to the selection

criterion adopted, and analyzed by a specialist. Then, the classifier is obtained from labeled

and unlabeled training samples.

Considering real applications and their response time constraints, the use of this ASSL para-

digm (Fig 1a) becomes unfeasible, due to the computational times required by the classification,
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organization and selection processes, considering all the samples of the dataset at each learning

iteration.

To solve the unnecessary processing (classification, organization and selection) of the entire

dataset throughout the learning iterations, we adopted a more efficient ASSL paradigm (Fig

1b) proposed by [30]. The main difference from the traditional paradigm is that the processes

of reduction and organization are performed only once. At each learning iteration, a subset of

preorganized samples are selected. Thus, the learning cycle becomes faster, as the reduction

and organization processes are performed previously. In addition, the classification process

does not involve all samples of the learning set, as in the traditional paradigm. The classifica-

tion and selection processes are performed alternately, until the desired number of samples is

obtained.

In this context, in the selection process, different strategies can be explored to select the

most informative samples. Section 1.2 describes the selection strategies considered in our

experiments in order to validate our proposed selection strategy (presented in Section 2).

Besides that, to the best of our knowledge, these selection strategies were not applied consider-

ing the semi-supervised approach and they were not analyzed considering the datasets

explored in the present work.

1.2 Active learning strategies

Several strategies can be used to select a small set of samples, which must be annotated by a

specialist, constituting the labeled part of the training set. We can simply randomly select a

number of samples from the learning set and add to the training set, through a randomized
(Rand) method. However, it is important to select the most informative (diverse and

Fig 1. Workflow of the active semi-supervised learning. (a) traditional paradigm. (b) adopted paradigm.

https://doi.org/10.1371/journal.pone.0237428.g001
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uncertain) samples to obtain a robust classifier more quickly. Some works have used clustering

techniques to improve the selection [43–45]. Different clustering techniques can be applied. In

our experiments, we considered the k-means technique for all methods that require the clus-

tering of the learning samples. In [43] is proposed the Cluster Rand (Clu) method, in which

the learning samples are grouped into k distinct clusters, where k is the number of classes. At

each iteration, samples are randomly selected from each cluster, trying to get (diverse) samples

from different classes.

Recently, more efficient works have been proposed, according to the paradigm aforemen-

tioned and presented in Fig 1b. In [44] is proposed the Increasing Boundary Edges (IBE)

method, which reduces and organizes the learning samples previously. Initially, the learning

samples are grouped, obtaining a reduced set formed by samples that represent the roots of the

clusters and samples that constitute boundary between distinct clusters. Then, this reduced set

is also organized previously. The organization criterion consists in calculating the distances

between pairs (edges) of boundary samples followed by ordering them in increasing order of

distances. During the learning cycle, samples in the ordered list of edges are analyzed. One

edge at a time is obtained and the samples that constitute it are labeled by the current instance

of the classifier. If the classifier predicts distinct labels for each sample, they will be selected to

be displayed in the next iteration. Otherwise, the next edge in the list is obtained and labeled

by the classifier. This process continues until the desired number of samples is obtained. By

selecting only the roots and the boundary samples for the learning process, it is expected that

the classifier can learn faster compared to the methods that use the entire dataset. The reason

for analyzing the boundary samples that are closest to each other is that although these samples

belong to distinct clusters, they have a high degree of similarity, due to their smallest distances.

Therefore, such samples are the most difficult (uncertain) to be labeled by the classifier and

consequently, the most informative ones for its learning.

On the other hand, in [45] is proposed the Root Distance-based Sampling (RDS) method,

using both diversity and uncertainty criteria to select the most informative samples. The learn-

ing samples are also grouped into k distinct clusters Ci, i = Â 1, 2, . . ., k. Next, k lists are cre-

ated, where each list Li comprises samples belonging to the corresponding cluster Ci. Each

sample s from the list Li is organized in increasing order of distances, according to the distance

between the sample s and the root sample r that represents the corresponding list Li. The selec-

tion criterion consists of obtaining a set of (diverse) samples from each list Li and prioritizing

those more informative (uncertain) samples. Then, the selection is done on each Li, so that the

classifier predicts a label on the sample s under analysis and compares it with the label of the

root sample r. If the labels are distinct, the sample s is selected; otherwise, the analysis is done

with the next sample from the list Li. If all samples in the list Li are analyzed and the adopted

criterion (of different labels) is not satisfied, the sample, referring to the greater distances

between it and the root sample r that represents the corresponding list Li, is prioritized and

selected.

2 Proposed framework and implementation

In this work, we propose an active semi-supervised learning framework (FASSL) https://

github.com/btguilherme/FASSL, jointly with a new active learning method, named Root Dis-

tance Boundary Sampling (RDBS). The idea consists of a smaller number of more informative

samples, previously selected (by the active learning strategy) and labeled by the specialist, can

propagate the labels to a set of unlabeled data (through the semi-supervised strategy). The

RDBS method (Fig 2) presents a better form of reduction and organization, selecting more rel-

evant samples in relation to those selected by the literature strategies.
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Our strategy proposes a reduction process before the organization of the learning samples.

RDBS preorganizes the samples and prioritizes the selection of diverse and uncertain samples

for the training. Initially, the learning samples (Z2) are grouped (Step 1) by the clustering tech-

nique in k clusters Ci, i = 1, 2, . . ., k, and then k distinct lists Li are created. Each list Li is com-

posed of boundary samples belonging to the cluster Ci, instead of all the samples from the

cluster Ci.
After the reduction process, which obtains the sets of roots R and boundary samples B from

the clustering, the distances between the root and the boundary samples of the same cluster

are calculated (Step 2). Then, the boundary samples are previously organized based on increas-

ing order of these distances (Step 3). At each iteration, samples are selected from each of the

lists, in order to obtain diverse samples, from different classes. In addition, each sample

obtained from each of the lists is selected only if it presents a label (provided by the current

instance of the classifier) different from the label of the corresponding cluster root (in an

attempt to select uncertain samples).

By selecting only the boundary samples and the roots in the learning process, it is expected

that the classifier will learn faster compared to the techniques that use the entire dataset, since

such samples show to be more informative to the classifier learning. The computational pro-

cessing will be also reduced, because the set of boundary samples is a subset of samples from

the learning set (B� Z2), and generally, B� Z2. Fig 3 illustrates the behavior of the frame-

work, which performs the following processes:

• Dataset split: the division is performed from the dataset Z into two subsets, Z2 and Z3, repre-

senting the learning and test sets, respectively. After the first division of Z into Z2 and Z3,

there is a subdivision of Z2 into Z0
2

and Z@
2
, which represent the learning sets, wherein sam-

ples will be selected to compose the labeled and unlabeled training sets, respectively, required

by the semi-supervised learning process.

• Clustering: the clustering is performed from Z0
2

and it is generated k clusters. There are no

restrictions, any clustering technique can be applied. Besides, in general, the number of

clusters (k) is equal to the number of classes (nc). However, the number of clusters to be

Fig 2. Stages of the RDBS active learning method consisting of the steps: 1) clustering, where root and boundary samples are identified, 2) distances between root

and boundary samples from each cluster are calculated and 3) samples are organized into distinct lists in increasing order of distance. Pentagons represent samples

before clustering, cracked samples represent root samples and gray samples represent boundary samples.

https://doi.org/10.1371/journal.pone.0237428.g002
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generated may vary, depending on the need and the application. We can generate a larger

number of clusters when compared with the number of classes (i.e k> nc) to select represen-

tative samples that cover all/most classes, since the first learning iteration.

• Reduction: the learning samples are previously reduced. From the clustering, it is possible to

find the samples that are at the boundary between different clusters. These samples are con-

sidered boundary samples if we analyze their k-nearest neighbors and there is at least one

nearest neighbor that is in a distinct cluster.

Fig 3. General flowchart of the proposed framework.

https://doi.org/10.1371/journal.pone.0237428.g003
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• Organization: after the reduction process, the obtained boundary samples are also previously

organized. k distinct lists Li are created, i = 1, 2, . . ., k. Each list Li is composed of boundary

samples belonging to the corresponding cluster Ci. These boundary samples are organized

based on increasing order of distances between the root and the boundary samples of the

same cluster calculated.

• Selection: the adopted criteria are based on diversity and uncertainty. At each learning itera-

tion, samples are selected from each of the lists Li, in order to obtain diverse samples. Such

samples from distinct lists are expected to be samples of distinct classes. Although, there is

already a pre-organization of the samples in each of the lists, the classifier participates in its

learning process, as it assists in the selection of the most informative (most uncertain) sam-

ples. To select the most informative subset of samples from each list, one sample at a time is

selected only if it presents a label (provided by the current instance of the classifier) different

from the label of the corresponding cluster root. Our strategy does not require the classifica-

tion of all learning samples at each iteration.

• Semi-supervised classifier construction: in the first iteration, the root samples of each cluster

are selected and displayed to the specialist, who will annotate them. Next, to compose the

labeled set of the semi-supervised learning, the annotated root samples are added to the

training set Z1. In the subsequent iterations, boundary samples are selected according to the

adopted selection criteria and displayed to the specialist, who will confirm or correct the

labels provided by the current classifier. Then, these samples are added to the training set Z1,

jointly with the unlabeled sample set (randomly selected from Z@
2
), composing the training

set Z1 for the semi-supervised learning.

• Classifier testing: at each new iteration, the constructed classifier can be applied to Z3, to

evaluate its performance in an unknown dataset during its learning process. The learning

cycle is repeated until the stop criteria is not satisfied, i.e. all boundary samples are consid-

ered or the specialist is satisfied with the classification accuracy obtained.

3 Experiments

To validate our framework jointly with our proposed selection strategy, we performed an

experimental evaluation considering three public datasets (Section 3.1) and different scenarios

(Section 3.2).

3.1 Datasets

The ALL-AML [46] dataset consist of data from 72 patients presenting distinct types of leuke-

mia. There are 47 patients with acute lymphoblastic leukemia (ALL), characterized by the

malignant production of immature lymphocytes in the bone marrow. Also, there are another

25 patients with acute myeloid leukemia (AML), characterized by the rapid proliferation of

abnormal and malignant cells—the blasts—that do not mature, do not play their role, and still

accumulate in the bone marrow, interfering with the normal production of other blood cells.

Each of the 72 patients had bone marrow samples obtained at the time of diagnosis. Further-

more, the observations have been assayed with Affymetrix Hgu6800 chips, resulting in 7, 129

gene expressions (Affymetrix probes) and their composition.

The Escherichia coli (or E.coli) [47] dataset is public and describes regions of cellular locali-

zation of proteins. This dataset is represented by 336 samples, 8 classes and 8 attributes, where

each sequence is categorized by its localization site.
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The Pl@antLeaves II [48] dataset is a subset of the ImageCLEF2012 [49] dataset, which con-

tains different types of leaves from trees of the Mediterranean region of France. The subset

considered in our experiments is composed by 3, 655 scan-like samples from 53 classes (spe-

cies). To describe these samples, we extract 423 features based on shape, texture and color,

where the feature vector consists of: [1–5] scatter measures as a function of signature, [6–13]

chain code histogram, [14–139] Fourier descriptors, [140–179] quantified change histogram,

[180–231] Haralick descriptors, [232–359] edge and interior histograms generated by BIC

descriptor, [360–423] accumulated histogram by CGCH descriptor. The values in brackets

represent, respectively, the initial and final positions of a given feature descriptor.

3.2 Scenarios

Initially, experiments were performed to evaluate and compare the performance of each super-

vised and semi-supervised classification strategies using each dataset (ALL-AML, E.coli and

Pl@antLeaves II). For the supervised classification, we considered the classifiers: Random For-
est—RF [50], Support Vector Machine—SVM [51] and Optimum-Path Forests—OPF [52]. For

the semi-supervised classification, we explored the classifier Yet Another Two Stage Idea—
YATSI [53], which is used jointly with a supervised classifier. Then, we used YATSI with the

supervised classifiers RF, SVM and OPF, which were named as YATSI-RF, YATSI-SVM and

YATSI-OPF, respectively.

After that, we evaluate the performance of the classifiers (supervised and semi-supervised),

with the use of active learning strategies, performing comparisons between the selection strate-

gies (Rand, Clu, IBE, RDS) described in Section 1.2 and our proposed RDBS selection strategy

(see Section 2).

We also present comparisons between the traditional (supervised/semi-supervised)

approaches and the active (supervised/semi-supervised) approaches to highlight the advan-

tages of the proposed approach. Active supervised/active semi-supervised approaches can

obtain high accuracies quickly and with fewer annotated samples.

For all active learning strategies that require the clustering of the learning samples, we con-

sidered the k-means technique. Other clustering techniques could potentially be employed,

however this analysis is not the focus of this work. Then, we define k = 2 × nc (i.e. the number

of clusters is 2 times the number of classes), in an attempt to obtain representative samples

that cover all/most classes. If the classifier presents knowledge of all classes since the first itera-

tions, the following iterations are benefited by such information, considering that the classifier

cooperates in selecting samples for its own learning.

In our experiments, we compared the performance of each method measuring the accuracy

on an unseen test set and the computational time for the training and the classification pro-

cesses. We also considered the computational time for selecting the most representative sam-

ples throughout the learning.

The results reported in Section 2 were compiled from the average of experiments run 10

times, with randomly generated sets of samples for the learning and test sets, for accuracy mea-

sures. We chose 80% of the available samples for learning and 20% for testing. To conduct fair

comparisons between the learning techniques, we consider the same (10) training and test sets

for each of them.

Then, each learning and test sets was applied to the supervised classifiers. For the full opera-

tion of semi-supervised classifiers, labeled and unlabeled data sets are required to compose the

training set. Therefore, the learning set was subdivided into two subsets, being 50% of the sam-

ples for one subset and 50% for another, in which samples will be selected to constitute the

labeled and the unlabeled training sets, respectively, as required by the semi-supervised
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learning process. For fair comparisons, in this case, we also consider the same division and

samples for all learning techniques.

To attain unbiased analysis, we considered the size of the selected set of each iteration as

being the same for all (supervised and semi-supervised) strategies. Considering the semi-

supervised learning, for selection of the labeled part of the training set, we established the num-

ber of samples per iteration as 2 times the number of classes. This number of samples is the

same number of clusters generated by the clustering technique. To compose the unlabeled

sample set, we select half of the size of the labeled sample set.

4 Results and discussion

Initially, Fig 4 shows the average accuracy obtained by each baseline approach without consid-

ering sample selection strategies for each dataset (ALL-AMl, E.coli, and Pl@ntLeaves II) and

classifier (SVM, YATSI-SVM, RF, YATSI-RF, OPF, and YATSI-OPF).

Considering the supervised classifiers, SVM had the highest accuracies. Related to the semi-

supervised ones, YATSI-SVM and YATSI-OPF presented the best results. We also compared

the performance obtained by the supervised and semi-supervised classifiers. It can be observed

that the semi-supervised classifiers presented significant results in relation to the supervised

ones, considering that through a semi-supervised approach a small number of annotated sam-

ples can propagate the labels to a set of unlabeled samples, reducing the time and effort of the

specialist in the annotation process. The semi-supervised classifiers can achieve accuracies

similar to those obtained by the supervised ones and with less annotated samples. Note that

the semi-supervised approach uses only 50% of annotated samples and 50% of non-annotated

samples for training the classifiers.

Fig 4. Average accuracies obtained by baselines approaches without considering sample selection strategies, using

the ALL-AML,E.coli, and Pl@ntLeaves II datasets and the classifiers (SVM, YATSI-SVM, RF, YATSI-RF, OPF, and

YATSI-OPF).

https://doi.org/10.1371/journal.pone.0237428.g004
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In Figs 5–7, we illustrate the average accuracy per iteration achieved by the learning tech-

niques for the ALL-AML, E.coli and Pl@antLeaves II datasets, respectively. Each learning tech-

nique were evaluated considering the supervised (Figs a, c and e) and the semi-supervised

(Figs b, d and f) classifiers. To better present the results, each AL technique is represented

by a triple, containing the clustering technique, the selection strategy, and the classifier. For

instance, k-means_RDBS_SVM. The random technique is represented by a pair, which repre-

sents the randomized selection and the classifier (e.g. rand_SVM).

Comparing the results of the experiments with the application of AL techniques in relation

to those obtained by the random technique (i.e. without adopting criteria for selection of more

informative samples), it is possible to observe (Figs 5–7) that, AL techniques reach a higher

average accuracy in the majority of cases. For instance, analyzing the results of Fig 5b, AL tech-

niques presented a gain of up to 20.97% already on the first iteration, against the random tech-

nique rand_YATSI-SVM.

Fig 5. Average accuracies per iteration obtained by each selection strategy (RDBS, RDS, IBE, Clu, and rand),

using the ALL-AML dataset and the classifiers: (a) SVM, (b) YATSI-SVM, (c) RF, (d) YATSI-RF, (e) OPF, and (f)

YATSI-OPF.

https://doi.org/10.1371/journal.pone.0237428.g005
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Our proposed active learning method RDBS achieved gains in relation to the random tech-

niques for all datasets and (supervised and semi-supervised) classifiers. It is possible to observe

that RDBS, in overall, overcomes the other active learning techniques (RDS, IBE, Clu). For

instance, our proposed active learning technique, k-means_RDBS_SVM, also reached gains of

up to 7.63%, 6.64% and 5.17%, when compared with the other active learning techniques (k-
means_RDS_SVM, k-means_Clu_SVM and k-means_IBE_SVM, respectively).

For all datasets (Figs 5–7), comparing both supervised (Figs a, c and e) and semi-supervised

(Figs b, d and f) approaches, we can note that the semi-supervised presented notable results.

Considering the ALL-AML dataset, using the RF classifier, we achieved gains of up to 19.35%

with the semi-supervised approach (Fig 5d) in comparison with the supervised one (Fig 5c).

The same behavior can be observed for the other datasets and classifiers. For instance, for

the E.coli dataset, considering the SVM classifier (Fig 6a and 6b), the AL semi-supervised tech-

niques presented better results in all iterations, reaching a gain of up to 16.51% against the AL

Fig 6. Average accuracies per iteration obtained by each selection strategy (RDBS, RDS, IBE, Clu, and rand),

using the E.coli dataset and the classifiers: (a) SVM, (b) YATSI-SVM, (c) RF, (d) YATSI-RF, (e) OPF, and (f)

YATSI-OPF.

https://doi.org/10.1371/journal.pone.0237428.g006
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supervised ones. For the Pl@antLeaves II dataset, the OPF classifier achieved gains up to

23.21% with YATSI-OPF (see Fig 7e and 7f).

Thus, it is also possible to corroborate for the active learning approaches, considering the

final average accuracy, that the semi-supervised classifiers present advantages over the super-

vised ones, showing higher final average accuracies. Moreover, our new active learning

method (RDBS), in most of the scenarios, presents the best results.

We also performed a comparative study between the active learning and the traditional

learning approaches. For example, analyzing Fig 4, from the traditional learning, the semi-

supervised classifiers reached accuracies about 80% for all datasets. While, the active learning

achieved equivalent accuracy, in general, already in the second iteration (see Figs 5–7). Note

that, active semi-supervised learning approaches select, at each iteration, the number of sam-

ples as 2 times the number of classes to compose the labeled part of the training set and half of

the size of the labeled sample set to compose the unlabeled part of the training set. In this con-

text, for the ALL-AML dataset, as nc = 2, considering the active semi-supervised approach, we

Fig 7. Average accuracies per iteration obtained by each selection strategy (RDBS, RDS, IBE, Clu, and rand),

using the Pl@antLeaves II dataset and the classifiers: (a) SVM, (b) YATSI-SVM, (c) RF, (d) YATSI-RF, (e) OPF,

and (f) YATSI-OPF.

https://doi.org/10.1371/journal.pone.0237428.g007
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select at each iteration 4 samples to compose the labeled training set and 2 samples to compose

the unlabeled training set. It results in 12 samples selected for annotation and to compose the

training set in the 2nd iteration. For the traditional learning, it was necessary to annotate all

training samples of the dataset. Therefore, we not only reached equivalent accuracies, but also

obtained a reduction of 80% of labeled samples used in the learning process. To achieve the

accuracies presented in Fig 4, the classifiers used all the samples (i.e. 80% available for training)

from the dataset (Table 1), and all of them had to be labeled. On the other hand, active learning

approaches aim to achieving higher accuracies faster by using smaller amounts of samples,

learning iterations and interactions with the specialist.

In addition to the classification accuracies, another important quality measure is related to

the time costs. We present the average computational times in the first three iterations of the

training and testing processes, presented by the supervised and semi-supervised classifiers,

respectively, for the ALL-AML (Tables 2 and 3), E.coli (Tables 4 and 5) and Pl@antLeaves II

datasets (Tables 6 and 7).

Comparing the supervised classifiers, we can note that OPF presented the best results,

regarding the training process, for all datasets (see Tables 2, 4 and 6). For instance, OPF is 7.54

and 213.52 times faster than SVM and RF, respectively (Table 2). Analyzing the test process,

RF also presented good results. It is about 3.09 and 2.02 times faster than SVM and OPF,

Table 1. Description of the datasets, including number of samples, classes and features.

Samples Classes Features

ALL-AML 72 2 7,129

E.coli 336 8 8

Pl@antLeaves II 3,655 53 423

https://doi.org/10.1371/journal.pone.0237428.t001

Table 2. Average computational times and standard deviations (in milliseconds) per iteration for the training and testing processes, using the supervised classifiers

for the ALL-AML dataset. The best results (shorter times) are highlighted in bold.

Iteration (#) Classifier

SVM RF OPF

Train 1 0.996 ± 0.812 31.476 ± 2.115 0.016 ± 0.004

2 1.032 ± 0.519 33.376 ± 3.370 0.062 ± 0.008

3 1.191 ± 0.260 33.736 ± 3.063 0.158 ± 0.010

Test 1 0.308 ± 0.248 0.066 ± 0.038 0.061 ± 0.013

2 0.209 ± 0.031 0.065 ± 0.025 0.118 ± 0.026

3 0.201 ± 0.021 0.061 ± 0.010 0.131 ± 0.022

https://doi.org/10.1371/journal.pone.0237428.t002

Table 3. Average computational times and standard deviations (in milliseconds) per iteration for the training and testing processes, using the semi-supervised clas-

sifiers for the ALL-AML dataset. The best results (shorter times) are highlighted in bold.

Iteration (#) Classifier

YATSI-SVM YATSI-RF YATSI-OPF

Train 1 2.747 ± 1.765 32.985 ± 2.587 2.400 ± 0.814

2 3.296 ± 1.476 34.066 ± 1.884 4.514 ± 1.144

3 4.065 ± 1.342 34.718 ± 2.558 7.535 ± 0.981

Test 1 0.430 ± 0.360 0.113 ± 0.150 1.178 ± 0.285

2 0.424 ± 0.137 0.192 ± 0.042 2.495 ± 0.512

3 0.562 ± 0.140 0.198 ± 0.019 4.420 ± 0.651

https://doi.org/10.1371/journal.pone.0237428.t003
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Table 4. Average computational times and standard deviations (in milliseconds) per iteration for the training and testing processes, using the supervised classifiers

for the E.coli dataset. The best results (shorter times) are highlighted in bold.

Iteration (#) Classifier

SVM RF OPF

Train 1 6.128 ± 1.307 0.679 ± 0.427 0.007 ± 0.002

2 7.262 ± 1.347 0.993 ± 0.132 0.021 ± 0.005

3 7.890 ± 1.372 1.321 ± 0.199 0.040 ± 0.002

Test 1 0.024 ± 0.005 0.197 ± 0.183 0.017 ± 0.004

2 0.025 ± 0.005 0.231 ± 0.098 0.030 ± 0.004

3 0.029 ± 0.016 0.200 ± 0.026 0.044 ± 0.004

https://doi.org/10.1371/journal.pone.0237428.t004

Table 5. Average computational times and standard deviations (in milliseconds) per iteration for the training and testing processes, using the semi-supervised clas-

sifiers for the E.coli dataset. The best results (shorter times) are highlighted in bold.

Iteration (#) Classifier

YATSI-SVM YATSI-RF YATSI-OPF

Train 1 5.982 ± 1.593 1.427 ± 1.553 0.265 ± 0.451

2 8.162 ± 1.704 1.356 ± 0.485 0.194 ± 0.118

3 9.264 ± 2.101 1.705 ± 0.445 0.334 ± 0.285

Test 1 0.083 ± 0.161 0.253 ± 0.216 0.107 ± 0.198

2 0.043 ± 0.036 0.245 ± 0.069 0.073 ± 0.048

3 0.052 ± 0.038 0.287 ± 0.055 0.110 ± 0.055

https://doi.org/10.1371/journal.pone.0237428.t005

Table 6. Average computational times and standard deviations (in milliseconds) per iteration for the training and testing processes, using the supervised classifiers

for the Pl@antLeaves II dataset. The best results (shorter times) are highlighted in bold.

Iteration (#) Classifier

SVM RF OPF

Train 1 397.203 ± 25.948 20.748 ± 2.059 0.247 ± 0.035

2 449.096 ± 11.862 39.960 ± 0.686 0.942 ± 0.130

3 461.495 ± 7.905 60.156 ± 0.529 2.090 ± 0.155

Test 1 16.672 ± 1.072 4.829 ± 0.792 2.194 ± 0.117

2 17.605 ± 0.566 4.805 ± 0.396 3.952 ± 0.095

3 17.485 ± 0.392 5.023 ± 0.319 5.722 ± 0.069

https://doi.org/10.1371/journal.pone.0237428.t006

Table 7. Average computational times and standard deviations (in milliseconds) per iteration for the training and testing processes, using the semi-supervised clas-

sifiers for the Pl@antLeaves II dataset. The best results (shorter times) are highlighted in bold.

Iteration (#) Classifier

YATSI-SVM YATSI-RF YATSI-OPF

Train 1 419.558 ± 32.081 29.019 ± 5.909 12.596 ± 1.564

2 470.855 ± 18.487 49.872 ± 3.763 27.583 ± 2.151

3 486.337 ± 10.488 72.289 ± 3.256 48.141 ± 2.903

Test 1 17.747 ± 1.640 5.109 ± 1.135 9.876 ± 1.894

2 21.127 ± 0.693 6.230 ± 0.672 19.885 ± 1.342

3 24.924 ± 0.677 7.262 ± 1.195 33.864 ± 1.430

https://doi.org/10.1371/journal.pone.0237428.t007
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respectively, for the ALL-AML dataset. However, it is possible to note that the OPF classifier,

which obtained best performance in the training process, also reached good results for the test

time (considering all datasets).

Regarding the semi-supervised classifiers (Tables 3, 5 and 7), the same behavior was veri-

fied. For instance, in the E.coli dataset (Table 5), YATSI-OPF is 12.6 and 4.3 times better than

YATSI-SVM and YATSI-RF, respectively, in the training process. Considering the testing

costs, in general (for the ALL-AML and Pl@antLeaves II datasets), YATSI-RF presented the

best results (e.g. 14.10 and 2.87 times faster than YATSI-SVM and YATSI-OPF, respectively,

for the Pl@antLeaves II dataset, Table 7). For the E.coli dataset, YATSI-RF and YATSI-OPF

presented equivalent results (see Table 5).

Analyzing the time costs between the supervised (Tables 2, 4 and 6) and the semi-super-

vised (Tables 3, 5 and 7) approaches, in some cases, they are statistically equivalents or the

supervised approaches are faster than the semi-supervised ones. Despite these results, we can

notice that the semi-supervised approaches present a better cost benefit. For instance, they

reached an accuracy gain of 25% against the supervised approaches (see Fig 7e and 7f).

It is also important to analyze the time costs presented by the AL techniques in the selection

process. Table 8 summarizes the average accuracies and computational times (for the training,

testing and selection processes) obtained by each selection strategy in the 3rd iteration, using

the YATSI-OPF classifier for all datasets. We can see that RDBS provides a better tradeoff, i.e.

besides the best accuracies, in general, RDBS also presented the best time costs for all three

datasets.

In order to validate our proposed framework, we also present comparisons with a recent

state-of-the-art active semi-supervised framework [35], considering the RF classifier for other

biological datasets, such as Haberman, Heart Statlog and Lymphograph [54] (see Table 9). Our

framework achieves higher accuracies and requires fewer (much less than 10% of the dataset

of) labeled training samples compared to the state of the art one, considering all datasets and

active learning strategies. Such results constitute a valuable contribution as it speeds up the

learning process and minimizes the interaction of the specialist in the annotation process.

Thus, the experiments testify that the proposed framework achieved significant gains, not

only regarding accuracy, but also w.r.t. computational time costs and specialist’s efforts. It

leads to a better effectiveness and efficiency, opening new ways of improvement of the classifi-

cation process in different contexts.

Table 8. Average accuracies and computational times (in milliseconds) for the training, testing and selection processes obtained by each selection strategy in the 3rd

iteration, using the YATSI-OPF classifier for all datasets.

Datasets Strategies Accuracies Train Test Selection

ALL-AML RDBS 85.385 0.075 0.042 0.07851

RDS 80.769 0.072 0.042 1.83808

IBE 84.615 0.079 0.047 0.00003

Clu 84.615 0.076 0.045 1.28907

E.coli RDBS 80.351 0.005 0.001 0.00720

RDS 84.561 0.002 0.001 0.03395

IBE 87.105 0.005 0.002 0.00003

Clu 86.667 0.002 0.001 0.02442

Pl@ntLeaves II RDBS 72.073 0.472 0.351 3.64425

RDS 65.566 0.475 0.319 21.88268

IBE 63.810 0.528 0.373 0.00011

Clu 64.798 0.450 0.312 13.59324

https://doi.org/10.1371/journal.pone.0237428.t008
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5 Conclusion

In the present paper, we proposed a more effective and efficient learning framework (FASSL),

and a new active learning method (RDBS). To validate them, an extensive study and experi-

mental evaluation were carried out taking biological context as focus, presenting comparisons

between our proposals and other state-of-the-art learning strategies.

Experiments were performed with the ALL-AML, E.coli and Pl@antLeaves II datasets.

Through the obtained results, it can be seen that with our RDBS AL method, the classifier

achieves higher accuracies with a reduced number of labeled samples. The adopted selection

criteria, based on diversity and uncertainty, allows the prioritization of the most informative

boundary samples, reducing the learning iterations and the specialist annotation effort.

Besides, AL techniques using semi-supervised classifiers achieved excellent results. They

obtained better accuracies, since the first learning iterations of the classifier, when compared

to a randomized method (without AL) using the same classifiers. This same behavior was

noted using the supervised classifiers.

Then, although semi-supervised classifiers require more (computational time) processing

to the training and testing processes in comparison with the supervised ones, active semi-

supervised learning approaches present a better trade-off (competitive and viable times) than

active supervised ones.

It is also important to note that our framework can be straightforwardly applied to different

contexts, and it is easily extended.
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