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1  |  INTRODUC TION

1.1  |  Aging and disease

Aging is a complex degenerative process that fundamentally modi-
fies risk for disease across all human organ systems (Kennedy 
et al., 2014), which mainly occurs post- growth and reproduction. 
It is the predominant risk factor for numerous debilitating and life- 
threatening conditions that afflict older adults, including cardiovas-
cular disease, cancer, and neurodegeneration (Niccoli & Partridge, 
2012). To date, a majority of research has focused on the pathogen-
esis and mechanisms of these individual diseases of aging. However, 
with the discovery of biological “hallmarks of aging,” fundamental 

processes which are associated with aging and contribute to its reg-
ulation (López- Otín et al., 2013), there has been increased interest 
in understanding and targeting the biology of aging itself. Several 
of the hallmarks of aging, including genomic instability, epigenetic 
changes, loss of proteostasis, and altered nutrient sensing, contrib-
ute to the aging process via accumulation of disruptions; if left un-
corrected, these changes eventually perturb cellular homeostasis. 
Thus, persistent investment in processes that favor growth over 
repair may result in accelerated accumulation of hallmarks that are 
associated with aging. This concept mirrors the evolutionary theory 
of antagonistic pleiotropy, which suggests that aging may emerge 
from favoring certain processes beneficial in youth but harmful in 
older age (Williams, 1957). The disposable soma theory, a specific 
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Abstract
While	 insulin-	like	 growth	 factor-	1	 (IGF-	1)	 is	 a	 well-	established	modulator	 of	 aging	
and longevity in model organisms, its role in humans has been controversial. In this 
study, we used the UK Biobank (n =	440,185)	to	resolve	previous	ambiguities	in	the	
relationship	between	serum	IGF-	1	levels	and	clinical	disease.	We	examined	prospec-
tive	 associations	of	 serum	 IGF-	1	with	mortality,	 dementia,	 vascular	 disease,	 diabe-
tes,	osteoporosis,	and	cancer,	finding	two	generalized	patterns:	First,	IGF-	1	interacts	
with age to modify risk in a manner consistent with antagonistic pleiotropy; younger 
individuals	with	high	IGF-	1	are	protected	from	disease,	while	older	 individuals	with	
high	IGF-	1	are	at	increased	risk	for	incident	disease	or	death.	Second,	the	association	
between	IGF-	1	and	risk	is	generally	U-	shaped,	indicating	that	both	high	and	low	levels	
of	IGF-	1	may	be	detrimental.	With	the	exception	of	a	more	uniformly	positive	rela-
tionship	between	IGF-	1	and	cancer,	these	effects	were	remarkably	consistent	across	
a wide range of conditions, providing evidence for a unifying pathway that determines 
risk	for	most	age-	associated	diseases.	These	data	suggest	that	IGF-	1	signaling	could	
be harmful in older adults, who may actually benefit from the attenuation of biological 
growth pathways.
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refinement of this idea, argues that the key process involved is en-
ergy investment (Kirkwood, 1977): A focus on growth and reproduc-
tion might lead to underinvestment in repair and maintenance.

1.2  |  The role of IGF- 1 in aging

As a key mediator of the growth hormone pathway, insulin- like 
growth	factor	1	(IGF-	1)	plays	a	crucial	role	in	growth	and	energy	in-
vestment. It has been shown to modulate aging in a wide variety of 
model organisms, including the nematode C. elegans (Kenyon et al., 
1993), fruit flies (Broughton et al., 2005), and rodents (Brown- Borg 
et	 al.,	 1996).	 In	 genetically	 modified	 knock-	down	 and	 knock-	out	
models,	attenuated	growth	hormone	(GH)/IGF-	1	signaling	generally	
improves the health of mice, delaying age- associated pathologies 
such as sarcopenia, immunosenescence, and cancer (Ikeno et al., 
2009;	Selman	et	al.,	2008;	Spadaro	et	al.,	2016).	However,	sufficient	
IGF-	1	 is	 also	 required	 for	 normal	 development	 and	 function,	 par-
ticularly in the central nervous system, where it promotes astrocyte 
activity	(Logan	et	al.,	2018)	and	vascularization	(Lopez-	Lopez	et	al.,	
2004), and protects against some forms of neurocognitive decline 
(Farias	Quipildor	et	al.,	2019;	Gubbi	et	al.,	2018).	Given	the	complex	
physiologic	role	of	IGF-	1,	 it	 is	not	surprising	that	human	studies	of	
circulating	IGF-	1	in	aging	and	age-	associated	disease	have	produced	
inconsistent results.

In humans, acromegaly and Laron dwarfism provide informative 
examples	of	extreme	excess	or	insufficiency	of	IGF-	1,	respectively.	
In	acromegaly,	excess	growth	hormone	and	resultant	excess	IGF-	1	
cause a variety of detrimental effects, including hypertension, dia-
betes, cardiac dysfunction, and respiratory disorders (Colao et al., 
2004).	 Laron	 dwarves,	 who	 have	 attenuated	 IGF-	1	 signaling	 due	
to a defective GH receptor, have been shown to have lower rates 
of cancer, stroke, and diabetes (Guevara- Aguirre et al., 2011), but 
may also suffer from obesity, auditory defects, and cognitive defi-
cits	(Laron	&	Kauli,	2016).	Taken	together,	these	examples	provide	
some	 evidence	 that	 extremely	 high	 IGF-	1	 may	 be	 detrimental,	
while	extremely	low	IGF-	1	is	associated	with	a	mix	of	benefits	and	
detriments.

By contrast, epidemiological studies of the naturally occur-
ring	variation	in	circulating	IGF-	1	have	shown	null	or	mixed	results	
(Milman	et	al.,	2016).	Some	studies,	 including	those	from	our	 lon-
gevity cohorts, have shown a positive association between high 
IGF-	1	and	adverse	outcomes	(Milman	et	al.,	2014;	Spoel	et	al.,	2015;	
Zhang et al., 2020). Others, often from somewhat younger popula-
tions,	have	shown	the	opposite:	higher	IGF-	1	being	associated	with	
protection	from	disease	and	death	(Bourron	et	al.,	2015;	Friedrich	
et al., 2009). Perhaps most interestingly, a few studies have also 
reported	a	more	complex	U-	shaped	relationship	between	IGF-	1	and	
all- cause (Andreassen et al., 2009), cardiovascular (Burgers et al., 
2011), and cancer mortality (Svensson et al., 2012), in which indi-
viduals	with	 the	 highest	 and	 lowest	 levels	 of	 IGF-	1	 tend	 to	 have	
worse outcomes.

The inconsistencies in previous epidemiological studies of 
IGF-	1	may	be	due	to	insufficient	sample	size	and	variations	in	study	
population characteristics such as baseline age. To overcome these 
limitations, we take advantage of the scale of the UK Biobank to 
probe	interactions	between	age	and	serum	IGF-	1	explicitly,	and	to	
more	 definitively	 understand	 the	 relationship	 between	 IGF-	1	 and	
diseases associated with aging.

2  |  RESULTS

2.1  |  Characteristics of the study cohort

This	study	included	440,185	individuals	of	European	ancestry	(54.3%	
female), who were followed for over 10 years for morbidity and mor-
tality. The baseline characteristics and incident clinical events of the 
participants	are	summarized	 in	Table	1.	As	seen	 in	Figure	1,	mean	
serum	IGF-	1	levels	decline	with	age	(p < 10− 13). However, the rela-
tively	high	variability	of	IGF-	1	at	any	given	age	results	in	a	consider-
able	overlap	 in	 IGF-	1	 ranges,	even	between	 the	youngest	5%	and	
the	oldest	5%	of	the	cohort.	The	distribution	of	IGF-	1	is	also	similar	
for	men	(Figure	S1)	and	women	(Figure	S2)	across	ages.

2.2  |  IGF- 1- associated hazard is U- shaped

To	 examine	 the	 relationship	 between	 IGF-	1	 and	 clinical	 disease,	
we divided the overall cohort into seven groups based on serum 
IGF-	1	levels.	Relative	hazards	of	a	clinical	event	occurring	for	groups	
1– 3 and 5– 7 were assessed relative to the middle group, group 4.

We found a strong concurrence between the results for mortal-
ity,	 dementia,	 diabetes,	 vascular	 disease,	 and	osteoporosis.	 For	 all	
five	of	these	clinical	events,	the	relationship	between	IGF-	1	serum	
levels and hazard was U- shaped; elevated hazards occurred at both 
high	and	 low	IGF-	1	 levels	 (Figure	2).	A	quadratic	term	significantly	
improved the fit over a linear model for most outcomes (dementia 
p = 0.001; diabetes p < 0.001; vascular disease p < 0.001; osteopo-
rosis p < 10− 5; mortality p = 0.001).	Notably,	a	quadratic	model	did	
not significantly improve the fit for cancer hazard (p = 0.09). When 
controlled for BMI, the U- shaped effect remained significant for all 
conditions, with the exception of cancer, for which it remained non- 
significant	(Figure	S3).

To explore sex- specific effects, we conducted a stratified analy-
sis	for	men	and	women	(Figures	S4	and	S5).	While	minor	differences	
in the shape of the fit existed, the U- shape effect tended to apply 
similarly to both men (dementia p = 0.03; diabetes p < 10− 4; vascular 
disease p = 0.001; osteoporosis p = 0.007; mortality p = 0.002) and 
women (dementia p = 0.001; diabetes p = 0.004; vascular disease 
p < 0.001; osteoporosis p < 10− 4; mortality p = 0.001). Cancer was 
again the exceptional case without a significant U- shape effect in 
either sex (men p = 0.0505; women p = 0.13).
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2.3  |  IGF- 1 interacts with age to modify hazard for 
death and disease

To	 determine	 whether	 the	 risk	 associated	 with	 IGF-	1	 is	 uniform	
across all ages, we stratified the overall cohort into seven groups 
based	on	age	and	assessed	the	hazard	associated	with	IGF-	1	within	
each age group, adjusted for residual age differences and sex.

Again, the clinical outcomes of mortality, dementia, diabetes, 
osteoporosis, and vascular disease all showed strikingly concordant 
results.	When	analyzed	across	 the	entire	 spectrum	of	 IGF-	1	varia-
tion,	IGF-	1	overall	appears	to	be	associated	with	protection	against	
clinical	 events	 (Figure	 3,	 left	 column).	 However,	 this	 protection	
is not uniform at all ages, but is more pronounced in the young. In 
younger	 individuals,	 higher	 IGF-	1	 appeared	 to	 be	 associated	 with	
a lower hazard for clinical events. However, for older groups of in-
dividuals,	 IGF-	1	 showed	 less	 protection	 from	 incident	 disease.	 For	
example,	the	hazard	ratio	for	mortality	associated	with	IGF-	1	is	0.83	
(95%	 CI	 0.76–	0.90)	 for	 the	 youngest	 age	 group	 and	 0.97	 (95%	 CI	
0.93– 1.01) for the oldest age group. Moreover, significant positive 
correlations were noted between the hazard associated with high 
IGF-	1	and	age	for	dementia	(p = 0.02), diabetes (p = 0.001), vascular 
disease (p = 0.002), osteoporosis (p = 0.02), and mortality (p = 0.005

All Male Female

n 440,185	(100.0%) 201,258	(45.7%) 238,927	(54.3%)

Deaths 18,027	(4.1%) 10,887	(5.4%) 7140	(3.0%)

Baseline Dementia 199 (<0.05%) 108	(0.1%) 91 (<0.05%)

Baseline Vascular Disease 15,886	(3.6%) 11,286	(5.6%) 4600	(1.9%)

Baseline Osteoporosis 2462	(0.6%) 730	(0.4%) 1732	(0.7%)

Baseline Diabetes 21,336	(4.8%) 13,566	(6.7%) 7770	(3.3%)

Baseline Cancer 23,681	(5.4%) 8771	(4.4%) 14,910	(6.2%)

Incident Dementia 2168	(0.5%) 1200	(0.6%) 968	(0.4%)

Incident Vascular Disease 12,002	(2.7%) 7916	(3.9%) 4086	(1.7%)

Incident Osteoporosis 7130	(1.6%) 1162	(0.6%) 5968	(2.5%)

Incident Diabetes 9597	(2.2%) 5531	(2.7%) 4066	(1.7%)

Incident Cancer 26,176	(5.9%) 13,643	(6.8%) 12,533	(5.2%)

Mortality	Follow-	up	(years) 11.0 ± 1.5 10.9 ± 1.7 11.1 ± 1.4

Morbidity	Follow-	up	(years) 10.5 ± 1.7 10.5 ±	1.8 10.6	± 1.5

Age (years) 57.3 ±	8.0 57.5 ±	8.1 57.1 ± 7.9

Age	Quartile	1 37.4– 50.7 37.4– 50.7 39.7– 50.5

Age	Quartile	2 50.5–	58.7 50.7–	58.7 50.5–	58.0

Age	Quartile	3 58.0–	64.1 58.7–	64.1 58.0–	63.4

Age	Quartile	4 63.4–	73.7 64.1–	73.7 63.4–	71.1

IGF-	1	(ng/ml) 163.6	± 43.4 167.7	± 42.4 160.2	± 44.0

IGF-	1	Quintile	1 11.1–	132.8 14.6–	132.8 11.1– 122.5

IGF-	1	Quintile	2 122.6–	156.7 132.8–	156.7 122.6–	147.4

IGF-	1	Quintile	3 147.5–	176.3 156.7–	176.3 147.5–	169.3

IGF-	1	Quintile	4 169.3–	199.4 176.3–	199.4 169.3–	194.6

IGF-	1	Quintile	5 194.6–	969.6 199.4–	969.6 194.6–	956.9

TA B L E  1 Population	characteristics,	
baseline disease prevalence, and incident 
morbidity and mortality

F I G U R E  1 Serum	IGF-	1	levels	decline	with	age.	Each	large	dot	
represents	the	mean	age	and	serum	IGF-	1	level	of	an	age	ventile	
(1/20th of the overall cohort studied, stratified by baseline age). 
Smaller colored dots indicate 500 randomly selected individuals 
from each group. The error bars here indicate standard deviations 
of	serum	IGF-	1	level	within	each	age	group.	The	r2 and p- value 
reported here are for a linear fit to the group averages (large dots)
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).	Notably,	cancer	exhibited	unique	behavior	compared	to	the	other	
conditions;	 higher	 IGF-	1	 was	 generally	 associated	 with	 increased	
hazard for incident cancer, with no significant trend across different 
ages (p = 0.54). When controlled for body mass index (BMI), these 
effects	all	remained	significant	(Figure	S6).

To explore sex- specific effects, we conducted stratified anal-
yses	 for	men	and	women	 (Figures	S7	and	S8).	The	age-	interaction	
effect was significant across both sexes for diabetes (men p < 10− 4

, women p = 0.005), vascular disease (men p = 0.003, women 
p = 0.002), osteoporosis (men p = 0.04, women p = 0.04), and mor-
tality (men p = 0.008, women p = 0.01). Trends for dementia reached 
significance in women (p = 0.04) but not in men (p = 0.06). As in the 
overall analysis, no significant age- interaction effect was noted for 
cancer in either sex (men p = 0.33; women p = 0.69).

Although	 we	 identified	 an	 interaction	 between	 age	 and	 IGF-	
1, these models do not account for the earlier finding of a U- shape 
relationship	between	clinical	outcomes	and	 IGF-	1.	To	clarify	 the	 re-
lationship	 between	 the	 highest	 and	 lowest	 IGF-	1	 levels	 and	 clinical	

hazard, we conducted age- interaction analyses explicitly focusing on 
the	lowest	(Figure	3,	middle	column)	and	highest	(Figure	3,	right	col-
umn)	quintiles	of	IGF-	1	when	compared	to	the	middle	quintile.	These	
analyses showed that the overall age- interaction effect can be decom-
posed	into	two	components:	(a)	The	lowest	IGF-	1,	which	is	associated	
with the greatest hazard in younger individuals, becomes less harm-
ful	in	older	individuals	(Figure	3,	middle	column);	and	(b)	The	highest	
IGF-	1	levels	tend	to	be	associated	with	relative	protection	in	younger	
individuals,	and	become	more	harmful	 in	older	 individuals	 (Figure	3,	
right column). These findings highlight the importance of considering 
both	nonlinear	relationships	and	age	interactions	in	analyses	of	IGF-	1.

2.4  |  Age- interaction and U- shaped hazard 
represent independent effects

To better illustrate the relationship between the U- shape and age 
interaction effects, we stratified our cohort into 20 groups based on 

F I G U R E  2 Clinical	hazard	is	increased	for	both	high	and	low	IGF-	1	levels,	but	not	for	cancer.	Each	dot	represents	the	hazard	for	
incident	disease	or	mortality	of	a	subcohort	of	individuals	grouped	by	IGF-	1	levels,	relative to the central group, whose hazard is set at 1 by 
convention.	The	area	of	each	dot	is	proportional	to	the	number	of	individuals	it	represents,	and	error	bars	indicate	95%	confidence	intervals	
for hazard ratios. Reported p- values are for an F-	test	for	a	quadratic	fit	to	the	hazard	data,	excluding	the	linear	fit	component	(additional	
details are available in the methods section). The clinical events evaluated were (a) mortality, (b) dementia, (c) diabetes, (d) vascular disease, 
(e) osteoporosis, and (f) cancer

(a) (b) (c)

(d) (e) (f)

F I G U R E  3 Clinical	hazard	associated	with	IGF-	1	increases	with	age,	but	not	for	cancer.	In	the	left	column,	each	dot	represents	the	hazard	
ratio	for	incident	disease	or	mortality	associated	with	one	standard	deviation	higher	serum	IGF-	1	within an age group, controlled for sex and 
residual age differences. In the middle and right columns, each dot represents the hazard ratio for incident disease or mortality associated 
with	membership	in	the	lowest	or	highest	IGF-	1	quintiles,	respectively,	relative	to	the	middle	IGF-	1	quintile.	For	all	subfigures,	the	area	of	
each	dot	is	proportional	to	the	number	of	individuals	it	represents.	Error	bars	indicate	95%	confidence	intervals	for	the	hazard	ratio.	The	
reported p- values are for an F- test for linear regression among the groups, and the reported r2 values are for a Pearson association between 
the linear fit line (dotted red line) and the hazard ratios. The clinical events evaluated were (a– c) mortality, (d– f) dementia, (g– i) diabetes, (j– l) 
vascular disease, (m– o) osteoporosis, and (p– r) cancer
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

(p) (q) (r)
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F I G U R E  4 The	U-	shape	and	age-	interaction	effects	are	independent.	After	stratifying	the	population	into	sex-	specific	age	quartiles	and	
IGF-	1	quintiles,	each	group's	hazard	relative	to	the	age-	matched	IGF-	1	quintile	3	is	shown	for	(a)	mortality,	(b)	dementia,	(c)	diabetes,	(d)	
vascular disease, (e) osteoporosis, and (f) cancer. The area of each dot is proportional to the number of individuals it represents, and error 
bars	indicate	95%	confidence	intervals	for	hazard	ratios

(a) (b) (c)

(d) (e) (f)

F I G U R E  5 The	U-	shape	and	age-	
interaction effects are consistent across 
varied conditions in a combined Cox 
model.	The	(IGF-	1)2 term represents the 
U-	shape	effect,	while	the	Age*IGF-	1	term	
represents the age- interaction effect. A 
linear	IGF-	1	term,	age,	and	sex	are	also	
included as covariates
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both	IGF-	1	quintiles	and	age	quartiles.	Within	each	age	quartile,	we	
estimated	the	hazard	ratio	of	each	IGF-	1	quintile	relative	to	the	third	
IGF-	1	quintile,	using	Cox	proportional	hazards	models	(Figure	4	and	
Tables	S1-	S6).

Overall, both the U- shape and age- interaction effects were pres-
ent	across	age	and	IGF-	1	quantiles	and	diseases,	though	they	were	
more	prominent	in	the	lower	IGF-	1	quintiles.	In	general,	the	U-	shape	
effect	persists	within	each	age	quartile;	those	in	the	highest	and	the	
lowest	IGF-	1	quintiles	usually	have	higher	hazard	than	those	in	the	
third	quintile.	However,	 the	size	of	 the	effect,	which	was	most	vi-
sually pronounced for mortality hazard, varied greatly. In particular, 
individuals	in	the	lowest	IGF-	1	quintiles	tended	to	be	at	highest	risk	
compared	to	those	in	the	other	IGF-	1	quintiles,	showing	that	the	U-	
shape	effect	 is	not	 fully	 symmetric.	Further,	within	 the	 first	 IGF-	1	
quintile,	 the	 hazard	 associated	with	 IGF-	1	 decreased	over	 succes-
sively	older	age	quartiles,	demonstrating	the	age-	interaction	effect	
for	 low	 IGF-	1.	Conversely,	 the	mirrored	 effect	 for	 high	 IGF-	1	was	
most	prominent	in	IGF-	1	quintile	5	for	diabetes	and	vascular	disease:	
Within	IGF-	1	quintile	5,	younger	individuals	had	the	lowest	hazard	
for incident disease, with risk increasing for older age groups. While 
these effects differ in specific shape and relative strength across 
diseases, they broadly hold across most clinical outcomes, except 
for cancer. Sex stratification and controlling for BMI yielded largely 
similar	results	(Figures	S10,	S11,	and	S9).

Lastly, to more rigorously test the interactions between age and 
IGF-	1	without	manual	selection	of	stratification	groups,	we	built	a	
single	combined	model	with	all	the	individuals	in	our	cohort	(Figure	5	
and	Table	S7).	 In	addition	 to	a	 linear	 IGF-	1	 term,	age,	and	sex,	we	
included	(IGF-	1)2	and	Age*IGF-	1	interaction	terms	in	this	combined	
model to assess the overall significance of the U- shape and age- 
IGF-	1	 interaction	effects,	 respectively.	The	 (IGF-	1)2 term generally 
measures	the	extent	to	which	extreme	values	of	IGF-	1,	both	high	and	
low,	are	associated	with	adverse	outcomes.	Further,	the	Age*IGF-	1	
interaction term measures the extent to which the hazard associated 
with	IGF-	1	increases	with	age;	it	is	conceptually	related	to	the	slope	
of	the	fit	lines	in	Figure	3.	Consistent	with	our	stratified	analyses,	we	
found the directions of clinical event hazards associated with these 
terms to be highly significant and consistent in direction for both the 
age- interaction (mortality p < 10− 13; dementia p = 0.004; vascular 
disease p < 10− 5; osteoporosis p < 0.001; diabetes p < 10− 17) and 
U- shape effect terms (mortality p < 10− 96; dementia p < 10− 7; vas-
cular disease p < 10− 17; osteoporosis p < 10− 23; diabetes p < 10− 165

). Interestingly, the combined analysis also showed weaker but still 
significant effects for cancer as well (age- interaction p = 0.004; U- 
shape p = 0.001).

The	results	were	also	similar	when	stratified	by	sex	(Figures	S13	
and S14), with some associations becoming only nominally signifi-
cant. In women, the age- interaction term for dementia and both the 
(IGF-	1)2 term and age- interaction term for cancer become no lon-
ger statistically significant, while all associations remained at least 
nominally significant in men. All reported associations for both the 
U-	shape	(IGF-	1)2 term and the age- interaction term remained signif-
icant	when	controlled	for	BMI	(Figure	S12).

3  |  DISCUSSION

In	 this	 study,	we	have	 shown	 that	 the	 relationship	between	 IGF-	1	
and age- associated disease is generalized across a variety of disease 
states with distinct physiology. Using the power of the hundreds of 
thousands of participants in the UK Biobank, we have resolved an 
important	controversy	on	the	relationship	of	IGF-	1	and	disease	risk.	
Further,	we	have	uncovered	a	unifying	framework	by	which	the	wide	
range	of	 results	 in	previous	 studies	 can	be	understood:	 IGF-	1	 is	 a	
nonlinear predictor of risk and interacts with age to modify risk for a 
variety of clinical events. This extends our knowledge of the insulin/
IGF-	1	pathway,	an	important	modulator	of	aging	in	model	organisms,	
to humans, and further provides direct evidence for antagonistic 
pleiotropy, an evolutionary theory for the origin of aging itself.

While	previous	studies	focused	on	IGF-	1's	age-	independent	ef-
fect,	we	have	discovered	a	novel	interaction	between	IGF-	1	and	age:	
While	IGF-	1	is	generally	associated	with	protection	from	disease	in	
younger individuals, it is conversely associated with increased risk 
for morbidity in older individuals. As a key player in the growth 
hormone	pathway,	IGF-	1	is	central	to	the	regulation	of	growth	and	
development, important processes during youth. Conversely, it may 
inhibit core processes of repair and maintenance for older individ-
uals, becoming harmful in old age. This is consistent with evidence 
from human cohorts with exceptional longevity, which have been 
shown	to	be	enriched	in	variants	in	genes	in	the	IGF-	1	pathway,	in-
cluding	 IGF1R,	AKT1,	 and	 FOXO3A	 (Pawlikowska	 et	 al.,	 2009).	 In	
particular,	specific	variants	in	IGF1R	have	been	shown	to	confer	par-
tial	IGF-	1	resistance	(Suh	et	al.,	2008),	providing	functional	evidence	
that	downregulation	of	the	IGF-	1	pathway	may	prolong	lifespan.

One	 mechanism	 by	 which	 IGF-	1	 may	 be	 detrimental	 to	 older	
adults is through the inhibition of autophagy (Troncoso et al., 2012), 
a critical maintenance process particularly in older individuals. In 
model organisms and in vitro studies, autophagy has been shown 
to mediate protective effects on a wide variety of organ systems 
(Rubinsztein et al., 2011), including glucose metabolism, the heart, 
bone,	 and	 the	 nervous	 system.	 In	 addition,	 IGF-	1	 signaling	 is	 also	
known to promote downstream mTOR signaling (Taniguchi et al., 
2006),	 which	may	 decrease	 lifespan	 (Papadopoli	 et	 al.,	 2019)	 and	
further inhibit autophagy through mTOR- dependent mechanisms 
(Al-	Bari	&	Pingyong,	2020).	While	IGF-	1	as	a	whole	is	critical	to	the	
growth and development of humans, its inhibition of autophagy may 
contribute to its increasing association with morbidity and mortality 
with age.

Furthermore,	 when	 IGF-	1	 signaling	 was	 experimentally	 atten-
uated in a group of older mice, improvements were observed in 
female lifespan and healthspan. In a recent study, a monoclonal an-
tibody	against	the	IGF-	1	receptor,	IGF-	1R,	was	used	to	treat	a	group	
of	18-	month	old	mice,	thereby	decreasing	downstream	IGF-	1	signal-
ing. In females, median lifespan was significantly increased, while 
inflammation	 and	 neoplasms	 were	 decreased	 (Mao	 et	 al.,	 2018).	
Taken together, evidence from centenarian genetics, cell biology, 
preclinical interventional trials, and now biodemography all support 
a	potentially	adverse	role	 for	 IGF-	1	 in	human	aging,	particularly	 in	



8 of 12  |     ZHANG et Al.

older individuals. This is in stark contrast to its crucial and likely 
disease- protective role in the growth and development of younger 
individuals.	Thus,	serum	IGF-	1	may	be	a	key	example	of	antagonistic	
pleiotropy in humans, and, to the best of our knowledge, the first to 
be explicitly observed in relation to bona fide clinical events.

While most age- related conditions exhibited complex U- shaped 
and age- interaction effects, these effects were substantially weaker 
for cancer. When higher- order interaction effects are not accounted 
for,	higher	IGF-	1	appeared	to	be	more	consistently	associated	with	
cancer	 risk	 across	 ages.	This	may	be	due	 to	 the	 fact	 that	 IGF-	1	 is	
directly involved in cancer pathogenesis. It is well established that 
IGF-	1	promotes	cellular	growth	and	proliferation	through	critical	sig-
naling pathways such as the IRS/Akt/MAPK pathway (Novosyadlyy 
&	LeRoith,	2012).	Thus,	any	indirect	effect	that	IGF-	1	may	have	on	
cancer risk through modulating a global aging pathway might be 
overshadowed by its direct, cancer- promoting effects.

In this study, we have also extended previous work on the U- 
shaped	relationship	between	IGF-	1	and	disease	risk.	While	this	as-
sociation has been shown in prior studies (Andreassen et al., 2009; 
Burgers et al., 2011; Svensson et al., 2012), we have demonstrated 
that it is more general than previously appreciated. Strikingly, it 
seems to apply to the majority of clinically relevant age- associated 
diseases. In concert with the previously discussed interaction be-
tween	age	and	 IGF-	1,	 this	 suggests	 that	 IGF-	1	may	be	modulating	
a common underlying pathway for many age- associated conditions 
and, potentially, aging itself.

While	high	IGF-	1	may	be	causally	associated	with	accelerated	aging	
and increased age- associated pathology, the mechanistic connection 
between	low	IGF-	1	and	clinical	risk	is	not	well-	understood.	One	possi-
ble	explanation	stems	from	the	fact	that	IGF-	1	is	lower	in	older	individ-
uals;	high	IGF-	1	may	therefore	be	considered	a	biomarker	for	youth.	
As	a	result,	it	is	possible	that	some	individuals	with	low	IGF-	1	currently	
may have actually experienced accelerated aging— potentially even 
due	to,	paradoxically,	previously	elevated	levels	of	IGF-	1.	Further,	low	
IGF-	1	 is	known	to	occur	 in	patients	with	either	chronic	 (Juul,	2003)	
or acute illness (Ross et al., 1991). Therefore, it is possible that some 
individuals	have	low	IGF-	1	due	to	underlying	latent	disease	processes.	
Thus,	 low	IGF-	1	may	be	caused	by	undetected	pre-	existing	disease,	
rather	than	low	IGF-	1	itself	causing	future	disease.

One	limitation	is	the	lack	of	longitudinal	serum	IGF-	1	measure-
ments	over	time.	While	a	clear	decline	in	IGF-	1	levels	in	older	adults	
is observed cross- sectionally, much remains unknown about the 
longitudinal	dynamics	of	IGF-	1	levels	 in	individuals.	 It	 is	unclear	(a)	
how	 stable	 IGF-	1	 levels	 are	 for	 individuals	 over	 time;	 (b)	whether	
IGF-	1	 self-	inhibits	 over	 time	 through	 accelerated	 aging;	 and	 (c)	
whether	trajectories	of	 IGF-	1	 levels	are	predictive	of	distinct	clini-
cal outcomes. While the UK Biobank provides detailed longitudinal 
follow-	up	for	survival	events,	serum	IGF-	1	measurements	were	only	
available at baseline for the majority of participants. Longitudinal 
studies	with	repeated	measurements	of	IGF-	1	are	needed	to	further	
explore	this	question.

Other approaches, such as Mendelian randomization, may also 
help to clarify the directionality of causality in these associations. One 

Mendelian randomization study in the UK Biobank found associations 
between	higher	genetically	determined	IGF-	1	and	diabetes	and	vascu-
lar disease (Larsson et al., 2020), consistent with our results. However, 
a different study in the same cohort failed to find any significant as-
sociations	 between	 genetically	 determined	 IGF-	1	 and	 40	 medically	
relevant phenotypes (Sinnott- Armstrong et al., 2021). In addition, 
it has been established that obesity is associated with higher free 
IGF-	1	levels	(Nam	et	al.,	1997),	and	there	is	evidence	from	the	Long	Life	
Family	Study	of	a	nonlinear	relationship	between	IGF-	1	levels	and	BMI	
(Sherlala et al., 2021). We therefore performed supplemental analyses 
controlled for BMI and found that our results were not substantially 
altered. While it remains possible that BMI may partially mediate some 
of the complex effects we observed, they appear to be largely inde-
pendent	of	the	effect	of	BMI.	Additional	work	is	required	to	further	
clarify	the	causal	relationship	between	IGF-	1	and	disease.

Utilizing	the	largest	IGF-	1	dataset	available	to	date,	we	demon-
strated	 a	 U-	shaped	 relationship	 between	 serum	 IGF-	1	 levels	 and	
most	major	diseases	and	mortality.	Furthermore,	the	findings	exhib-
ited	a	clear	interaction	between	age	and	IGF-	1	level,	which	we	have	
shown	to	strongly	influence	the	role	of	IGF-	1	in	disease	risk.	More	
generally, the strong consistency of hazard associations for multiple 
diseases suggests that the morbidities of old age are intricately in-
terrelated and intertwined, which may be explained by the existence 
of an underlying unified aging process. In fact, these results suggest 
that	IGF-	1	may	be	one	of	the	central	regulators	of	that	overarching	
aging process in humans, promoting increased growth and anabo-
lism at the cost of autophagy and somatic maintenance.

4  |  E XPERIMENTAL PROCEDURES

4.1  |  Study cohort

The UK Biobank is a population- based study of roughly 500,000 in-
dividuals	from	the	United	Kingdom	(Bycroft	et	al.,	2018).	It	provides	
baseline	 measurements	 at	 recruitment	 between	 2006	 and	 2010,	
and follows participants prospectively through integration with na-
tional health records. At baseline, participants underwent extensive 
phenotyping, including phlebotomy and physical measurements, 
and provided medical history and demographic information. Due 
to relatively lower numbers of other ethnicities in the UK Biobank, 
this study focused on individuals of European descent. We included 
440,185	 individuals	 of	 self-	reported	European	 ancestry	 for	whom	
serum	insulin-	like	growth	factor-	1	(IGF-	1)	measurements	were	avail-
able. This study was approved by the institutional review board (IRB) 
at the Albert Einstein College of Medicine. Informed consent was 
obtained from all study participants by the UK Biobank.

4.1.1  |  IGF-	1	measurements

IGF-	1	measurements	were	made	by	chemiluminescence	on	a	Liaison	
XL	 (Diasorin	Ltd.,	Saluggia,	 Italy).	The	 limit	of	quantification	 (LOQ)	
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was	1.30	nmol/L	 and	 the	 coefficient	 of	 variance	 (CV)	was	6.03%,	
5.29%,	and	6.18%	for	 the	 low	 (range	7.06–	12.84	nmol/L),	medium	
(range	27.23–	44.97	nmol/L),	and	high	 (range	35.85–	84.62	nmol/L)	
internal	 quality	 controls,	 respectively.	 More	 detailed	 information	
about UK Biobank biochemical measurements can be found online 
(https://bioba nk.ctsu.ox.ac.uk/cryst al/cryst al/docs/serum_bioch 
emist ry.pdf).

4.1.2  |  Clinical	event	definitions:	Mortality

Mortality	was	 assessed	using	 the	UK	Biobank's	 data	 from	 linkage	
to	national	death	registries.	Follow-	up	occurred	through	April	2020	
for mortality and morbidities listed as causes of death (death regis-
ter),	 through	March	2020	 (England),	October	2016	 (Scotland),	 and	
February	 2016	 (Wales)	 for	morbidities	 as	 defined	 by	 inpatient	 di-
agnosis	 codes,	 and	 through	March	2016	 (England	 and	Wales)	 and	
October 2015 (Scotland) for cancer diagnoses (cancer register).

4.1.3  |  Pre-	defined	clinical	events:	Dementia	and	
vascular disease

Dementia	was	assessed	using	the	UK	Biobank's	internal	algorithmi-
cally defined dementia variable. This variable is based on a combina-
tion of inpatient and death register ICD- 10 and ICD- 9 codes, and 
self-	report,	 as	previously	described	 (Wilkinson	et	 al.,	 2018).	A	de-
tailed description of the procedure and a full list of ICD codes used 
in the definition of this variable is available online (https://bioba 
nk.ctsu.ox.ac.uk/cryst al/cryst al/docs/alg_outco me_demen tia.pdf).

Vascular disease was defined as a composite of stroke and myo-
cardial infarction (MI). Stroke and myocardial infarction were as-
sessed using internal algorithmically defined variables from the UK 
Biobank. As with the dementia variable, these variables were built 
using a combination of ICD- 10 codes, ICD- 9 codes, and self- report, 
with	a	full	description	available	on	the	UK	Biobank's	website	(stroke:	
https://bioba nk.ctsu.ox.ac.uk/cryst al/cryst al/docs/alg_outco me_
stroke.pdf; MI: https://bioba nk.ctsu.ox.ac.uk/cryst al/cryst al/docs/
alg_outco	me_mi.pdf).	For	this	study,	prevalent	vascular	disease	was	
defined as the occurrence of either MI or stroke prior to the base-
line assessment. Incident vascular disease was defined as the first 
occurrence of either MI or stroke following the baseline assessment, 
excluding individuals with prevalent vascular disease.

4.1.4  |  ICD-	defined	clinical	events:	Diabetes,	
osteoporosis, and cancer

Diabetes was not available as an algorithmically defined variable 
from the UK biobank and was therefore constructed using a similar 
approach for this study. The earliest occurrence of either an inpa-
tient ICD- 10 code in the range E10– E14, an inpatient ICD- 9 code in 
the range 250, a death register entry with an ICD- 10 or ICD- 9 code 

in	 either	 range,	 or	 a	 self-	report	 from	UK	Biobank	 data-	field	 2976	
was considered to be the date of disease onset. When the death 
register entry was the earliest documentation of disease, the date 
of death was considered to be the date of onset. Prevalent diabetes 
was defined as a date of disease onset before the baseline assess-
ment. Incident diabetes was defined as a date of disease onset fol-
lowing the baseline assessment, excluding individuals with prevalent 
diabetes.

Osteoporosis was defined as the earliest occurrence of either 
ICD-	10	code	in	the	range	M80–	M82,	or	ICD-	9	code	7330,	using	in-
patient and death register data. As with diabetes, prevalent osteo-
porosis was defined as a date of disease onset before the baseline 
assessment, and when a death register entry was the earliest doc-
umentation of disease, the date of death was considered to be the 
date of onset. Incident osteoporosis was defined as a date of disease 
onset following the baseline assessment, excluding individuals with 
prevalent osteoporosis.

Cancer was defined as the earliest occurrence of a malignant 
neoplasm, excluding non- melanoma cancers of the skin. The UK 
Biobank used national cancer registries to obtain follow- up data on 
cancer in its participants.

For	 this	 study,	 the	occurrences	of	 ICD-	10	codes	C00–	C97,	ex-
cluding C44, or ICD- 9 codes 140– 209, excluding 173, in the cancer 
registry were considered as cancer diagnoses. Prevalent and incident 
cancer were defined as a date of disease onset prior to or following 
the baseline assessment, respectively. Incident cancer analyses ex-
cluded individuals with prevalent cancer. A full listing of ICD codes 
and UK Biobank self- report fields used for diabetes, osteoporosis, 
and	cancer	is	provided	in	Table	S8.

4.2  |  Stratification by age and IGF- 1

For	 the	separate	age-	interaction	 (Figure	3)	and	U-	shape	 (Figure	2)	
analyses, the cohort was split into groups based on the distribution 
of	 age	 and	 IGF-	1	 ranges,	 respectively.	 After	 excluding	 individuals	
with baseline disease for each morbidity, a total of seven groups 
were created based on evenly spaced intervals between the 5th per-
centile	and	95th	percentile	value	of	age	or	IGF-	1.	The	individuals	in	
the	top	and	bottom	5%	were	then	appended	to	the	highest	(group	
7) and the lowest (group 1) groups, respectively. This procedure pro-
duced evenly spaced intervals with relatively consistent numbers 
of individuals within each group (since outliers at each extreme are 
grouped together). This nonparametric approach has the advantage 
of	being	able	to	capture	nonlinear	relationships	between	IGF-	1	and	
risk	of	disease,	which	may	be	overlooked	when	 IGF-	1	 is	used	as	a	
parameter in a linear model.

4.3  |  Statistical analysis

Statistical analysis was performed using custom scripts in Python 
(version	 3.6),	 including	 standard	 numeric	 and	 scientific	 packages	

https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/serum_biochemistry.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/alg_outcome_dementia.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/alg_outcome_dementia.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/alg_outcome_stroke.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/alg_outcome_stroke.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/alg_outcome_mi.pdf
https://biobank.ctsu.ox.ac.uk/crystal/crystal/docs/alg_outcome_mi.pdf
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such as numpy, pandas, and scipy. Cox proportional hazard models 
were fit using the package lifelines (Davidson- Pilon et al., 2019). All 
covariates in Cox analyses were rescaled to a mean of 0 and stand-
ard deviation of 1.

4.3.1  |  Age-	interaction	analysis

In	 the	 overall	 age-	interaction	 analysis	 (Figure	 3,	 left	 column),	 Cox	
proportional hazards models were fit to determine the hazard as-
sociated	with	one	standard	deviation	increase	in	IGF-	1	within each 
age group. Age and sex were included as covariates. In the age- 
interaction	analyses	focused	on	the	lowest	(Figure	3,	middle	column)	
and	highest	(Figure	3,	right	column)	quintiles	of	IGF-	1,	Cox	propor-
tional hazards models were fit to determine the hazard associated 
with	membership	 in	 that	 sex-	specific	 quintile	 of	 IGF-	1	 relative	 to	
membership	in	the	middle	IGF-	1	quintile	(e.g.,	Quintile	1	vs.	Quintile	
3).	IGF-	1	group	membership	(in	which	membership	in	the	focal	quin-
tile	was	coded	as	1	and	membership	in	the	middle	quintile	as	0),	age,	
and	 sex	were	 included	 as	 covariates.	 For	 all	 of	 these	 analyses,	 an	
F- test for linear regression was performed to assess the relationship 
between	age	and	IGF-	1-	associated	hazards.

4.3.2  |  U-	shape	analysis

In	the	U-	shape	analysis	(Figure	2),	Cox	proportional	hazards	models	
were fit to determine the relative hazard of experiencing a clinical 
event	for	each	IGF-	1	range	group.	The	middle	group	(group	4)	was	
designated	as	the	reference	group	for	comparisons.	For	each	non-	
reference group, a Cox model with group membership, age, and sex 
as covariates was fit, and the estimated hazard ratio for each group 
relative to the reference group was obtained.

Due to the clearly nonlinear relationship between clinical event 
hazard	and	IGF-	1	levels,	a	quadratic	model	was	fit	to	the	data	points	
for each clinical outcome. To confirm this nonlinear relationship, the 
residuals	of	a	 linear	fit	to	the	data	were	computed.	A	second	qua-
dratic model was then fit to those residuals and an F- test for linear 
regression	was	performed	between	the	second	quadratic	model	and	
the residuals.

4.3.3  |  IGF-	1	quintile	and	age	quartile	analysis

In order to understand the relationship between the age- interaction 
and U- shape effects, the cohort was simultaneously split into sex- 
specific	 age	 quartiles	 (Age	 Q1-	4)	 and	 sex-	specific	 IGF-	1	 quintiles	
(IGF-	1	Qn	 1-	5)	 for	 a	 total	 of	 20	 groups	 of	 interest	 (Figure	 4).	 For	
example,	all	subjects	who	are	both	in	the	sex-	specific	fourth	quar-
tile	 of	 age	 (Age	Q4),	 and	 in	 the	 sex-	specific	 first	 quintile	 of	 IGF-	1	
(IGF-	1	Qn1)	comprise	one	of	these	20	groups.	Then,	the	third	IGF-	1	
quintile	 (Qn3)	was	designated	as	the	reference	group	for	each	age	
quartile.	For	each	IGF-	1	quintile	and	age	quartile,	a	Cox	model	was	

fit with group membership, age, and sex as covariates. Each of the 
non-	reference	groups	was	then	compared	to	the	third	IGF-	1	quintile	
within	the	same	age	quartile.

4.3.4  |  Combined	hazards	model	for	overall	cohort

Lastly, to assess the age- interaction and U- shape effects in the en-
tire cohort, we formed a combined model with explicit terms for 
these	effects.	For	the	age-	interaction	effect,	we	included	an	interac-
tion	term	that	multiplied	IGF-	1	serum	level	by	age.	For	the	U-	shape	
effect,	 we	 included	 an	 IGF-	1-	squared	 term	 that	 multiplied	 serum	
IGF-	1	level	by	itself.	For	each	outcome	of	interest,	these	two	terms	
were then included as covariates along with age, sex, and a linear 
IGF-	1	term	in	a	combined	Cox	proportional	hazards	model	(Figure	5).	
The p-	values	for	the	two	key	IGF-	1-	squared	and	age*IGF-	1	terms	all	
remained significant when multiplied by a Bonferroni correction fac-
tor of 12 (2 key effects ×	6	clinical	conditions).	An	additional	analy-
sis in which these more complex terms were iteratively added to a 
“base”	Cox	model	of	linear	IGF-	1,	sex,	and	age	showed	that	these	ef-
fects are significant regardless of the order in which terms are added 
(Table S9).
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