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Abstract

Background: Genetics and genomics have radically altered our understanding of breast 
cancer progression. However, the genomic basis of various histopathologic features of 
breast cancer is not yet well‑defined. Materials and Methods: The Cancer Genome 
Atlas (TCGA) is an international database containing a large collection of human cancer 
genome sequencing data. cBioPortal is a web tool developed for mining these sequencing 
data. We performed mining of TCGA sequencing data in an attempt to characterize the 
genomic features correlated with breast cancer histopathology. We first assessed the 
quality of the TCGA data using a group of genes with known alterations in various 
cancers. Both genome‑wide gene mutation and copy number changes as well as a group 
of genes with a high frequency of genetic changes were then correlated with various 
histopathologic features of invasive breast cancer. Results: Validation of TCGA data 
using a group of genes with known alterations in breast cancer suggests that the TCGA 
has accurately documented the genomic abnormalities of multiple malignancies. Further 
analysis of TCGA breast cancer sequencing data shows that accumulation of specific 
genomic defects is associated with higher tumor grade, larger tumor size and receptor 
negativity. Distinct groups of genomic changes were found to be associated with the 
different grades of invasive ductal carcinoma. The mutator role of the TP53 gene was 
validated by genomic sequencing data of invasive breast cancer and TP53 mutation 
was found to play a critical role in defining high tumor grade. Conclusions: Data 
mining of the TCGA genome sequencing data is an innovative and reliable method to 
help characterize the genomic abnormalities associated with histopathologic features 
of invasive breast cancer.
Key words: Breast cancer, cBioPortal, data mining, histopathology, the cancer genome 
atlas, tumor grade

INTRODUCTION

Breast cancer is the most prevalent malignancy in 
American women. In the year 2013, it is estimated that 
there will be over 200,000 new breast cancer cases that 

will claim close to 40,000 lives.[1] For over a 100 years, the 
pathologic diagnosis of cancer was based on morphology 
using a combination of histological (architectural) criteria 
and cytological features as assessed by a pathologist using 
a conventional light (bright‑field) microscope. Once a 
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cancer diagnosis is established, further classification, 
grading and staging is typically performed in order 
to evaluate the state of the disease and to assess the 
prognosis. The “pathologic diagnosis” is then used to 
guide treatment decisions. The state of the art of breast 
pathology practice has changed little over the years, except 
for the introduction of several biomarkers, i.e., estrogen 
receptor (ER or ESR1), progesterone receptor (PR, or 
PGR) and human epidermal growth factor 2 (HER2 
or ERBB2), which are used to further guide treatment 
and help predict prognosis.[2] More recently, molecular 
techniques have been used to provide new insights 
into breast cancer classification and prognosis based on 
gene expression patterns. In particular, gene expression 
profiling has been used to classify invasive breast cancer 
into luminal A, luminal B, HER2‑enriched and basal‑like 
types, all of which are closely correlated with a few defined 
patterns of ER, PR and HER2 expression.[3,4] For example, 
the luminal A phenotype primarily identifies low grade, 
ER and/or PR positive, HER2‑negative breast carcinomas. 
In contrast, tumors in the basal‑like group are primarily 
ER, PR and HER2 negative (“triple negative”). Although 
evaluation of HER2 protein and/or gene status is the only 
genetic marker routinely used to guide clinical patient 
care, several gene‑based tests including OncotypeDx, 
Mammaprint, Prosigna (PAM50) and BRCA1/2 mutation 
tests have been shown to be of value in helping to guide 
clinical decision making by predicting prognosis and 
the efficacy of adjuvant therapy in caring for early stage 
breast cancer patients.[5,6]

Expression variations in genes and their proteins are no 
doubt critical players in neoplastic initiation, development 
and progression. With the completion of the human 
genome project and rapid progress in genomic sequencing 
technology, personalized (precision) medicine has become 
a promising and attainable goal for both cancer diagnosis 
and its treatment. In the past, publicly available databases 
that contained pathology information along with genomic 
and genetic data have not been readily available.[7] Since 
the pathology diagnosis currently remains the gold 
standard for many cancer related studies, this defect in 
the public databases made it difficult to independently 
validate many published genomic findings and made it 
almost impossible to perform reliable bioinformatic data 
mining.[7] Large scale whole genome sequencing projects 
such as The Cancer Genome Atlas (TCGA)[8] with 
both sequencing and pathologic data have provided an 
unprecedented opportunity for biomedical researchers 
and practitioners to explore disease mechanisms 
multidimensionally at a genomic scale. TCGA is a 
whole genome sequencing project started in 2006 and 
sponsored by the National Cancer Institute and the 
National Human Genome Research Institute. It began 
with sequencing three types of malignancies, glioblastoma 
multiforme, squamous carcinoma of the lung and 

serous cystadenocarcinoma of the ovary. The data was 
made publicly available in 2011 and its volume has 
been doubling every 7 months.[9] Since then, TCGA has 
collected data on 30 different cancers.[8] When possible, 
the patient’s pathology report, microscopic images and 
clinical treatment information were also made publicly 
available. The combination of both genomic sequencing 
data and clinical and pathologic information in TCGA 
provides an unparalleled opportunity for identifying 
clinically important biomarkers by data mining.

Clinicians and pathologists are arguably among the best 
positioned to use TCGA data to improve patient care. 
However, it is almost impossible for a non‑bioinformatician 
to effectively use these data due to their complexity. 
Fortunately, a TCGA data mining tool, cBioPortal[10,11] has 
recently been developed by investigators at the Memorial 
Sloan‑Kettering Cancer Center and is publicly available as 
a web application (http://www.cbioportal.org/public‑portal/). 
The cBioPortal stores multiple large scale, integrated cancer 
genomic data sets from both the TCGA and from the 
International Cancer Genome Consortium. This includes 
data on somatic mutations, deoxyribonucleic acid (DNA) 
copy‑number alterations, messenger ribonucleic acid 
(mRNA) and micro ribonucleic acid expression, DNA 
methylation and protein and phosphoprotein expression. 
More importantly, it provides a user‑friendly platform via a 
web service to access, analyze and display these large data 
sets.

To date, correlation between histologic features of cancers 
and specific genetic and genomic alterations has been 
limited. With the availability of abundant whole genome 
sequencing data and the corresponding pathology library 
within the TCGA and the cBioPortal data mining tool, we 
sought to evaluate the genetic drivers of certain pathologic 
features of breast cancers. To that end, we first assessed 
the quality of the sequencing data in TCGA by using a 
biological internal control. We then correlated genetic 
abnormalities such as mutation frequency and gene copy 
number variance (CNV) with traditional histopathologic 
features including tumor size, tumor grade and lymph 
node status, as well as the status of the ER, PR and HER2 
as determined by routine clinical assays. Our results 
suggest that mining of TCGA genome sequencing data is 
an innovative and reliable method to define the genomic 
abnormalities associated with cancer histopathology.

MATERIALS AND METHODS

TCGA Data
The invasive breast carcinoma (TCGA, Provisional) dataset 
includes data from 950 cases with pathology reports as of 
September 1, 2013.[8,12] The case breakdown is presented 
in Table 1. The pathology report for each patient was 
reviewed by a pathologist and histologic type, grade, tumor 
size, lymph node status and ER, PR and HER2 status 
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were extracted. Corresponding gene sequencing results for 
each breast cancer patient were also obtained for a group 
of selected genes. The study focused on the analysis of 
the cases with gene sequencing data including mutation 
counts (MC) and CNV. The cases without mutation and 
CNV data were excluded from this study. Therefore, the 
final cohort used for this analysis included 771 cases.

Data Mining with cBioPortal
All data mining was performed using cBioPortal.[10,11] 
The selection of breast cancer associated genes with 
significant mutations or CNV was determined using 
MutSig[13] and Gistic2[14] from the Broad Institute, 
Boston, MA. A total of 76 genes significant for mutation 
and 1130 genes significant for CNV were selected based 
on statistical significance as measured by the false 
discovery rate (FDR < 0.1). In this study, we focused on 
analysis of the data from the top 10 genes with the most 
prominent mutation or CNV. All searches were performed 
according to the cBioPortal’s online instructions.

Selection of the Breast Cancer Diagnostic Features
The pathologic criteria selected to determine correlation 
with sequencing data included those considered to be the 
most important in clinical practice based on the current 
WHO classification of breast cancer[2] and the AJCC 
cancer staging manual, 7th edition.[15] These include 
tumor grade, tumor size, lymph node status and ER/PR/
HER2 status.

Bioinformatic Analysis
Class discovery analysis of mutated or amplified genes by 
unsupervised hierarchical clustering was performed using 
the Gene Pattern program (Broad Institute, Boston, MA) 
according to the online instructions.

Statistical Analysis
All tests were performed using the IBM SPSS Statistics 
Version 21.0 (IBM Corporation, Armonk, New York). 
Descriptive statistics were used to calculate the 

mean and standard deviation. One factor ANOVA 
and Student’s t‑test were used to compare the overall 
differences in MCs or CNV between groups. Chi‑square 
tests were utilized to compare the difference in MCs 
and CNV for selected genes. All P values were two 
sided and a P < 0.05 was considered to be statistically 
significant.

RESULTS

Characteristic Mutation Distribution Across 
Various Malignant Neoplasms
We first explored the feasibility of characterizing the 
genomic features of various malignant neoplasms using 
TCGA genome sequencing data. A novel bioinformatic 
experiment was designed to test the quality of TCGA data 
using a group of genes with a known pattern of genetic 
abnormalities, serving as the biological internal control. 
The rationale for this design was our belief that at least 
some of the known gene sequence changes or patterns 
of change should be identifiable when working with 
data mining through a high quality database. We, thus, 
examined the gene sequencing data for a group of genes 
with known changes that correlated with a specific cancer. 
The selected genes were: TP53 and CDKN2A (p16), two 
genes with a known high mutation frequency in many 
different types of malignant neoplasms;[16,17] VHL, APC 
and KRAS, three genes with known high tissue specific 
mutational events in corresponding cancer types;[18‑20] and 
ACTB and GAPDH, two so called “house‑keeping” genes, 
with non‑specific and background levels of mutational 
changes across various types of neoplasms. The result of 
this bioinformatic experiment is shown in Figure 1. As 
expected, TP53 and CDKN2A showed a high mutational 
frequency across multiple types of malignant neoplasms 
recorded in TCGA. VHL and APC/KRAS showed a high 
mutation frequency only in clear cell renal cell carcinoma 
and colorectal carcinoma, respectively. The mutations 
identified in ACTB and GAPDH were, as predicted, 
non‑specific across various types of tumors and generally 
low, representing random background mutational events 
in cancer. More convincingly, TCGA mutation profiles 
accurately reflected multiple mutational events known to 
be involved in several well‑characterized carcinogenesis 
models. For example, colorectal carcinogenesis 
from mucosal epithelium leading to carcinoma is 
well‑understood and characterized by a multi‑step model 
of mutational events involving the APC, KRAS, DCC 
and TP53 genes.[21] As shown in Figure 1, this mutation 
profile is highly consistent with the one identified in 
TCGA genome sequencing data. The other example is 
the well‑documented role of the VHL gene mutation 
in the development of clear cell renal cell carcinoma.[18] 
In contrast, the VHL gene mutation rate is, as expected, 
at a background level in papillary renal cell carcinoma. 

Table 1: Distribution of breast cancer 
histopathology subtypes in TCGA provisional 
breast cancer project

Breast cancer histologic 
subtypes

Number 
of cases

Percentage 

Invasive ductal carcinoma 720 75.8
Invasive lobular carcinoma 159 16.7
Mixed invasive ductal and 
lobular carcinoma

30 3.2

Invasive mucinous carcinoma 11 1.2
Invasive papillary carcinoma 6 0.6
Metaplastic carcinoma 11 1.2
Medullary carcinoma 5 0.5
Others 8 0.9
Total 950 100.0
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These data suggest that the TCGA genome sequencing 
data has accurately captured the genetic abnormalities 
in the many types of tumors it has collected. Therefore, 
we decided to further focus on the breast cancer genome 
sequencing data in TCGA to explore the feasibility of 
genomic characterization of breast cancer histopathology.

Breast Cancer Genetic Abnormalities and 
Histopathology
The cBioPortal database has collected a large corpus of 
breast cancer genome sequencing data. By September 1, 
2013, there were five large breast cancer genome 
sequencing projects collated. The largest one, the 
provisional TCGA invasive breast carcinoma project, 
includes gene sequencing data from 950 breast cancer 
patients.[10] This is also the only cohort with an embedded 
corresponding pathology report. As shown in Table 1, 
among the cases with both genome sequencing data and 
a pathologic diagnosis, the majority are invasive ductal 
carcinoma (IDC; 714, 76.9%) and about one sixth are 
invasive lobular carcinoma (148, 15.9%). This frequency 
of breast carcinoma histopathologic types parallels that 
occurring in the general US population.[22]

We first examined the gene MC and gene CNV across 
the genomes of various histopathologic groups of invasive 
breast carcinoma. As shown in Figure 2, two high grade 
histologic subtypes of breast cancer, medullary carcinoma 
and metaplastic carcinoma, have a significantly higher MC 
and more CNV across the genome as compared to other 
types of breast cancer, including IDC. This suggests that 
gene mutation and copy number changes may be closely 

associated with the grade of invasive breast cancer. Due 
to the small number of the cases in these two high grade 
breast cancers, we further validated the correlation of MC 
and CNV in relation to the histologic grade in an analysis 
limited to the IDC, recognizing that IDC accounted for 
about 75% of the cases in the cohort and is known for 
its heterogeneity in histologic grade. Among the 641 IDC 
cases with both tumor grade and genome sequencing data 
in TCGA, 59 were grade I, 278 grade II and 304 grade III. 
As it has been shown in Figure 3, both MC and CNV were 
significantly different among the three groups and clearly 
increased as histologic grade increased (P < 0.001); the 
number of MC and CNV in grade III tumors was almost 
double that in grade I tumors.

Correlations between MC and CNV and tumor size and 
lymph node status are shown in Figures 4 and 5, respectively. 
Significant differences in overall MC among T1 (<2.0 cm), 
T2 (2‑5 cm) and T3 (>5 cm) tumors were identified. 
Significant differences in CNV were also identified between 
T1 and T2 tumors. Interestingly, no statistically significant 
differences in MC or CNV were identified between tumors 
with and without lymph node metastases [Figure 5].

Breast Cancer Genetic Abnormalities and 
Biomarker Status
As it can be observed in Figure 6, ER or PR positive 
and HER2 negative breast carcinomas have significantly 
lower MC and CNV than HER2 positive and triple 
negative (ER‑/PR‑/HER2‑) tumors. Similar findings were 
also found when tumors were classified according to 
molecular subtype [Figure 7]: Luminal A tumors showed 

Figure 1: The mutation landscape for a group of known genes across various types of cancer in The Cancer Genome Atlas. The 
incidence of a group of genes with known cancer specific mutations were searched via cBioPortal. Each bar represents the percent mutation 
for a selected gene in a particular study. The data were obtained as of September 1, 2013
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a significantly lower MC and CNV compared with 
luminal B, HER2‑enriched and basal‑like tumors.

Individual Genetic Abnormalities Associated 
with Grade of Invasive Breast Cancer
In current clinical practice, breast cancers are graded 
based on the scoring of three histologic features: Tubule 
formation, nuclear pleomorphism and mitotic count.[2] 
This system works fairly robustly in classifying grade I and 
grade III invasive breast cancers, but there is a high degree 

of variability in classifying grade II tumors. Since genetic 
changes are the drivers of malignant transformation and 
tumor progression, we further investigated how individual 
mutations and CNV are correlated with tumor grade. We 
selected a group of breast cancer associated genes with 
significant mutations and/or CNV using MutSig and 
Gistic2 (Broad Institute, Boston, MA), respectively. While 
a long list of genes with a significant number of mutations 
or CNV were identified as defined statistically by their 
FDR, we focused our study on the top 10 genes with the 
highest number of gene mutations or CNV. As it has been 
shown in Figure 8, multiple gene sequence changes were 
found to be statistically associated with the grade of IDCs. 
These include mutations in TP53, PIK3CA, MAP3K1, 
GATA3 and CDH1 and CNV in COX6C, ERBB2, GATA3, 
MAP3K1, MYC, NDRG1 and PIK3CA. The gene showing 
the most prominent difference in mutation frequency 
in relation to tumor grade was TP53. Mutations in this 
gene were identified in 58% of grade III invasive breast 
carcinomas when compared with only 4% of grade I 
lesions. Interestingly, PIK3CA mutations were even 
more frequent than TP53 mutations, but were inversely 
correlated with grade. PIK3CA mutations were identified 
in 61% of grade I invasive breast cancers when compared 
with only 27% rate in grade III tumors. Furthermore, the 
role of genes with a high number of mutations appears 
different from those with a high CNV. The genes found 
with the most prominent CNV were MYC, COX6C and 
NDRG1. High CNV in these genes were also associated 

Figure 3: Mutation count and copy number variance in different 
grades of  invasive ductal  carcinoma. Statistical  significance was 
calculated by one factor ANOVA and *indicates P < 0.05

Figure 2: Mutation count (MC) and copy number variance in different breast cancer histologic subtypes. Each column represents the 
gene MC or the fraction of copy number altered genome (mean ± 1SD) for all the genes sequenced in each case
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Figure 4: Mutation count and copy number variance in relation 
to tumor sizes. Statistical significance was calculated by one factor 
ANOVA and *indicates P < 0.05

with the genome wide incidence of gene sequence changes. 
As shown in Figure 10, the total MCs in the IDC cases with 
TP53 mutations were significantly higher than those without 
TP53 mutations. Similar findings were also present when 
the cases are stratified by grade. However, no significant 
difference in the total MC was identified for the tumors 
with and without PIK3CA mutation (data not shown).

DISCUSSION

An understanding of the genomic alterations associated 
with specific pathologic features of breast cancers can 
provide new insights into the molecular underpinnings of 
the changes pathologists have for decades observed under 
the microscope. This may also provide new opportunities 
for pathologists to identify novel molecular tools to guide 
personalized patient care.

Figure 6: Mutation count and copy number variance in relation 
to the breast carcinomas with different prognostic marker status. 
Statistical significance was calculated by one factor ANOVA and 
*indicates P < 0.05

Figure 7: Mutation count and copy number variance in relation 
to the breast carcinomas of various gene expression based classes. 
Statistical significance was calculated by one factor ANOVA and 
*indicates P < 0.05

Figure 5: Mutation count and copy number variance in relation 
to  lymph node  status.  Statistical  significance was  calculated by 
Student’s t-test and shows no difference (P > 0.05)

with higher histologic grade.

We further performed the gene class discovery analysis 
of MC and CNV in relation to the IDC grade by 
unsupervised hierarchical clustering using the incidence of 
the top 10 genes with the most frequent MC and CNV. 
As shown in Figure 9, these genes were clustered into 
three major groups in relation to tumor grade: Group 1, 
CDH1, GATA3 and MAP3K1 gene mutations associated 
with grade I IDC; group 2, AOAH, TBX3, CBFB, MAP2K4, 
PIK3CA gene mutations associated with grade II IDC; and 
group 3, TP53 and VEZF1 gene mutations associated with 
grade III tumors. Similar correlations were also present in a 
group of genes with significant CNV.

TP53 gene mutations were found to be significantly 
associated with higher grade IDC in this study. Since the 
TP53 gene is a known cancer driver gene associated with 
a mutator phenotype, we further examined its correlation 
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In this study, we first tested the data quality in TCGA/
cBioPortal by examining a group of known gene sequence 
changes. A similar approach was attempted in the past by 
some of us to examine the quality of high throughput gene 
expression analysis for data mining.[23] In that study, a panel 
of genes with known expression patterns were used to test 

the quality of gene expression data in the Cancer Genome 
Anatomy Project (http://cgap.nci.nih.gov/cgap.html). 
After validation, a data mining strategy using combined 
multiple high throughput analyses was adopted and led 
to the discovery of three differentially expressed breast 
cancer related genes, ANXA1, GATA3 and AGR2, whereas 
simultaneously verifying the value of increased expression 

Figure 8: Percent cases with gene mutation and copy number variance (CNV) in different grades of invasive ductal carcinoma. The genes 
with a significant mutation count and CNV were selected by MutSig and Gistic2, respectively. Statistical significance was calculated by 
a Chi-square test and *indicates P < 0.05

Figure 9: Unsupervised hierarchical clustering of the genes with 
the most significant genetic changes in relation to histologic grades. 
An unsupervised hierarchical clustering analysis was performed for 
the top 10 genes with the most significant mutation count (left) 
and copy number variance (right) in relation to invasive ductal 
carcinoma histologic grades using the Gene Pattern software 
(Broad Institute, Boston, MA) and its default parameters of average 
linkage and Pearson’s correlation. Purple and red colors represent 
the lowest and highest incidence, respectively, for the genetic 
changes identified

Figure 10: Correlation of TP53 mutation, total mutation count 
(MC) and histologic grade. The difference of genome wide MCs 
between invasive ductal carcinoma and its various histologic 
subgroups with and without TP53 mutation were compared. 
Statistical significance was calculated by Student’s t-test and 
*indicates P < 0.05
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of ERBB2 as an internal control.[23,24] These genes were then 
validated[24‑26] and all were later found to be biologically 
important breast cancer associated genes.[27‑29] In the 
current study, we applied the same principle to examining 
the data quality in TCGA. We analyzed the TCGA genome 
sequencing data for genetic changes in a group of genes 
with known tissue specific mutation patterns. These include 
genes with a high mutation rate across many types of 
malignancies such as TP53 and CDKN2A (p16); genes with 
tissue specific mutations such as VHL in clear cell renal cell 
carcinoma and APC and KRAS in colorectal cancer; and 
ACTB and GAPDH genes with baseline genetic changes. 
The results, as shown in Figure 1, are highly consistent 
with the known genetic changes in the corresponding types 
of cancer and suggest that TCGA genome sequencing 
data has accurately captured the genetic changes in many 
types of malignancies. Although many bioinformatic 
approaches have been developed for the quality control 
of next generation sequencing projects,[30,31] to the best 
of our knowledge this study is the first attempt to use a 
“biological internal control” as a quality control measure to 
improve data mining of high throughput sequencing data.

Breast cancer is histologically heterogeneous with over a 
dozen histologic variants.[2] IDCs or invasive carcinomas 
of no special type comprise approximately 80% of 
these tumors.[2,22] IDCs, however, comprise a highly 
heterogeneous group of tumors that vary with regard to 
their architecture, cytology, biomarker status, treatment 
response and prognosis. Some correlations between breast 
cancer histopathology and molecular genetic changes 
were well‑established. For example, histologically low 
grade tumors are usually ER positive and triple negative 
and HER2 positive cancers are usually histologically high 
grade. In this study, we have for first time systematically 
investigated the genomic changes in relation to the 
important diagnostic and prognostic features of breast 
cancers including tumor size, grade, lymph node status 
and ER, PR and HER2 status. Our results demonstrated 
that genomic abnormalities were significantly associated 
with tumor size, histologic grade and ER/PR/HER2 
status. A higher number of genome wide MCs and CNV 
were associated with larger tumor size, higher tumor 
grade and receptor negativity. These results suggest that 
accumulation of these genetic abnormalities is probably 
among the primary driving forces of tumor progression. 
Interestingly, no significant difference in genomic 
defects was identified between cases of IDC with and 
without lymph node metastases [Figure 5]. This finding 
suggests that no additional genetic changes in the cancer 
cells themselves are required for metastasis and that 
genetic changes other than mutation or CNV along 
with alterations in the tumor microenvironment likely 
contribute more to this process.[32,33] Although many 
genetic changes were found to be associated with various 
pathologic features, no single gene was identified to be 

responsible for a particular histologic feature in this study.

Histologic grade is one of the most important criteria 
predicting prognosis and determining treatment for IDC. 
The prevailing view is that low and high grade tumors 
have different sets of genetic abnormalities and develop 
along distinct carcinogenic pathways.[34,35] However, the 
genetic changes and the molecular pathway of grade II 
tumors are not well defined. Several studies have applied 
gene expression profiling to classifying the grade II tumors 
and found that a significant portion of these tumors 
could be reclassified as either grade I or grade III based 
on their gene expression signatures.[36,37] In our study, 
significant differences were identified in both overall 
genomic sequence changes [Figure 3] as well as in 
sequence changes of many individual genes [Figure 8]. 
Of interest, the patterns of genetic changes in individual 
genes are quite different in different grades of tumors. For 
examples, two genes, TP53 and PIK3CA, with the most 
prominent mutational events in invasive breast carcinoma, 
have an opposite frequency of mutations in low and 
high grade tumors, respectively. Although these findings 
have been reported before,[12] how these mutations 
contribute to formation of particular histologic grades is 
not well understood. We then performed an unsupervised 
hierarchical clustering analysis to look into the correlation 
of individual prevalent genetic changes with histologic 
grade based on the incidences of gene mutation of the 
top 10 genes with the most prominent genetic changes 
in IDC. The analysis revealed three major gene mutation 
clusters in relation to respective tumor grade: Group 1, 
CDH1, GATA3 and MAP3K1 gene mutations associated 
with grade I IDC; groups 2, AOAH, CBFB, MAP2K4, 
PIK3CA and TBX3 gene mutations associated with grade II 
IDC; and groups 3, TP53 and VEZF1 gene mutations 
associated with grade III tumors. Similar correlations are 
also present in a group of genes with significant CNVs. 
The analysis validated the association of TP53 mutation 
with high tumor grade; however, it suggested that PIK3CA 
might be more associated with grade II tumors. While 
this observation requires further experimental validation, 
our data suggest that tumor grade has a strong genetic 
basis which could be defined by a limited number of gene 
sequence changes and that all three histologic grades of 
IDC may have distinct sets of genetic changes.

In this study, TP53 mutations were found to be 
significantly associated with high grade IDC [Figure 8]. 
Wild‑type TP53 normally functions in the maintenance 
of genetic stability and its mutation has been proposed 
as being responsible for a mutator phenotype in cancer 
cells.[38,39] In our study, the total MC in the IDC cases 
with TP53 mutation was significantly higher than 
those without TP53 mutations. Similar findings were 
also observed when the cases were stratified by grade. 
Although the difference is not statistically significant 
in the grade I IDC group probably due to the small 
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number of cases with TP53 mutation (3 cases only), the 
few grade I IDC with TP53 mutations in this study had 
a much higher number of genome wide MCs than those 
without a TP53 mutation [Figure 10]. While it is possible 
that these tumors might still be grade I, it is also possible 
that they may represent the grade I tumors in transition 
to a higher grade, or they may be simply misgraded due to 
either sampling issue or misinterpretation of the histology.

Most molecular assays currently used in clinical practice to 
improve and personalize the care of patients with breast 
cancer are gene expression based. However it is likely that 
sequencing approaches, including targeted sequencing, 
whole exome sequencing, or even whole genome 
sequencing will be used increasingly to further attain the 
goals of precision oncology. In addition, with the ongoing 
progress in computational quantitative pathology,[40‑42] 
one promising research direction is to correlate genomic 
alterations with quantitative histopathologic features, 
which may, in turn, provide the pathologist with a novel 
high throughput, slide based method to help identify the 
underlying genetic aberrations and guide clinical decision 
making.

CONCLUSION

In summary, we performed data mining using the genome 
sequencing data from TCGA via cBioPortal to examine 
the genomic basis of breast cancer histopathology. This 
analysis shows that accumulation of genomic alterations 
contributes to larger tumor size, higher tumor grade and 
receptor negativity. Distinct groups of genomic changes 
were found to be associated with different grades of 
IDC. TP53 mutation was found to play an important role 
in defining high tumor grade and is associated with a 
mutator phenotype. Our study suggests that data mining 
of the human genome sequencing data is an innovative 
and reliable method to define the genomic abnormalities 
associated with cancer histopathology.
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