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Time series forecasting is of fundamental importance for a variety of domains including the prediction of
earthquakes, financial market prediction, and the prediction of epileptic seizures. We present an original
approach that brings a novel perspective to the field of long-term time series forecasting. Nonlinear
properties of a time series are evaluated and used for long-term predictions. We used financial time series,
medical time series and climate time series to evaluate our method. The results we obtained show that the
long-term prediction of complex nonlinear time series is no longer unrealistic. The new method has the
ability to predict the long-term evolutionary trend of stock market time series, and it attained an accuracy
level with 100% sensitivity and specificity for the prediction of epileptic seizures up to 17 minutes in advance
based on data from 21 epileptic patients. Our new method also predicted the trend of increasing global
temperature in the last 30 years with a high level of accuracy. Thus, our method for making long-term time
series predictions is vastly superior to existing methods. We therefore believe that our proposed method has
the potential to be applied to many other domains to generate accurate and useful long-term predictions.

T
he prediction of future values in a complex time series is a major interest for scientists1–17, with applications
to various scientific fields18–20. There are many natural phenomena that require a prediction algorithm for
answering important questions, such as estimating future population variations, predicting the orbits of

astronomical objects and predicting the occurrence of seismic waves. The prediction of twenty-first century
global temperature rise would be a valuable resource for policy makers and planners6. Population projections may
be used to predict species extinction before they reach a crisis point5. Moreover, prediction is an ongoing and
pressing problem in the forecasting of economic time series8. In the medical sciences, there are also many
applications for which an efficient prediction algorithm could save lives. A large number of time series obtained
from monitoring the human body can be used as a basis for the decision-making process to treat or prevent grave
diseases such as epilepsy or Alzheimer’s disease1–3.

It has been shown that data generated by such natural phenomena often behave chaotically11. Although chaotic
behaviours are deterministic, their complex properties make it difficult to distinguish them from random
behaviour. Chaotic behaviours are known to be strongly dependent on initial conditions; small changes in initial
conditions can possibly lead to immense changes in subsequent time steps and are particularly difficult to predict.
Because the exact conditions for many natural phenomena are not known and the properties of a chaotic time
series are very complex, it is difficult to model these systems.

Most of the existing methods for complex time series prediction are based on modelling the time series to
predict future values, although there are other types of methods such as agent-based simulations that model the
system generating the time series21. Model-based approaches can be classified into two main domains: linear
modelling such as in ARIMA (autoregressive integrated moving average)18 and nonlinear modelling such as in
MLP (multi-layer perceptron)22 and GARCH (generalised autoregressive conditional heteroskedasticity)23 (for
details, see Supplementary Information, section 1). However, other studies have concluded that there is no clear
evidence in favour of nonlinear models over linear models in terms of forecasting performance7. Regardless, there
is no robust procedure that can produce an accurate model for chaotic time series. For all of these methods, the
prediction error increases dramatically with the number of time points predicted7,9,21. Therefore, most of the
existing methods focus on very short-term predictions to obtain a reasonable level of accuracy. None of the
existing methods demonstrate an acceptable level of accuracy for long-term prediction12. For example, for
financial time series predictions, most methods can predict only one step ahead, which is not very helpful for
acting against a financial crisis before it occurs10,12,21. To address this deficiency in existing methods, we propose a
novel approach to making long-term time series predictions (see Methods), GenericPred24, with applications to
financial time series, medical diagnosis and global temperature prediction.
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Results
For the DJIA (Dow Jones Industrial Average) time series between
1993 and 2001, when markets were stable with no major changes and
no financial crisis, our proposed GenericPred method predicts the
trend with very high accuracy, whereas the predictions based on
other methods strongly and rapidly diverge from the real data (see
Fig. 1a and Supplementary Table 1). GenericPred is the only method
able to discover the decreasing trend corresponding to the financial
crisis, while the three other methods predicted a growth in the stock
market (see Fig. 1b and Supplementary Table 1). Although the 2009
financial crisis data were used for training in the third time period,
when the recession was in the middle of the considered range, the
GenericPred method successfully discovered the general trends for
the next 500 days, with a particularly high accuracy for the first 300
days, effectively predicting the increase in the stock market (see
Fig. 1c and Supplementary Table 1). The other three methods failed
to predict the trend.

The GenericPred method’s prediction errors were significantly
lower than the other methods for all three periods with respect to
both short-range and long-range predictions (see Supplementary
Table 1). Moreover, the GenericPred predictions were more stable
with a constant lower standard deviation, regardless of whether the
target data lie before the recession, during the recession, or after the
recession. The prediction error for the first 200 time steps is espe-
cially smaller than that of the other methods. For the three consid-
ered periods, GenericPred also significantly outperformed L-FABS21

and the MLP22 model for short-term predictions (see Supplementary
Table 1). GenericPred is also stable given that it has a low sensitivity
to the starting point of the prediction (see Supplementary Figure 2).

For the EEG time series, the P&H chaoticity values25 were pre-
dicted using GenericPred (see Supplementary Figures 2 and 3) on a
constant-length (20 minutes) sliding window (the window moves
every 20 seconds) of the five EEG time series for all the patients.
During a seizure, a peak in the P&H values obtained from the EEG
time series appeared. Based on the analysis of all 21 patients, a
threshold for the prediction of seizures (P&H value equal to 2.4)
was determined based on patient data (see Supplementary
Information). Using this threshold, the GenericPred method can
predict the epileptic seizure with 100% sensitivity and specificity
up to 17 minutes in advance (see Table 1). The same results have
been obtained by considering the data of any five electrodes inde-
pendently. This represents a considerable improvement over one of
the best current predictive methods, which only achieves accuracy
levels of 73% sensitivity and 67% specificity for 10 patients within a
1–10 minute range26.

For the global temperature anomalies prediction, unlike ARIMA,
GenericPred accurately predicted the increasing trend in the last 30
years (Fig. 2a). Moreover, most of the successive peaks and depres-
sions were predicted with a high degree of precision. The mean
square error for GenericPred is 0.64, whereas for ARIMA, it is 1.6.
The GARCH and VAR methods were unable to make predictions
due to insufficient data.

The existing dedicated forecasting models for global temperature
anomalies predict that, as the world consumes more fossil fuel,
greenhouse gas concentrations will continue to increase and the
Earth’s average surface temperature will continue to rise27. Based
on recent predictions, average surface temperatures could rise
between 2uC and 6uC by the end of the 21st century6,28. We predicted
the global temperature anomaly until the end of the 21st century
(2014–2100) (Fig. 2b). GenericPred predicted an average anomaly
of 2.5uC for the years 2085–2100, which is in accordance with the
predictions of the dedicated models.

Our approach demonstrates a significant gain in accuracy over
traditional methods with respect to predicting different DJIA time
series for both short- and long-term predictions. Its ability to predict
the evolutionary trend of the stock market is vastly superior to the

predictive ability of existing methods. Further, the ability of our
GenericPred method to predict epileptic seizures could be a major
breakthrough in terms of managing epilepsy, providing, for the first
time, a robust method for predicting an epileptic seizure long before
its occurrence. Finally, the success of GenericPred’s predictions of
the trend of increasing global temperature shows that this method
has the potential to be a powerful tool for controlling the global
warming phenomenon. Another advantage of our approach is that
it does not rely on a complex model of the original time series and is
therefore highly general and highly computationally efficient.

This method provides a first step towards accurate and compre-
hensive time series long-term predictions. Although, with respect to
long-term predictions, it is impossible to predict exact values,
GenericPred’s performance shows great potential for predicting time
series’ trends.

Methods
Several researchers emphasise the potential of market predictions to improve important
financial decisions29, from helping businesses make sounder investment decisions to
helping governments make more efficient fiscal and monetary policy decisions8. These
time series are amongst the most complex time series because of the number of para-
meters involved. Our results are compared with respect to long-term predictions with
ARIMA, GARCH, and VAR30, which are the most widely used and most efficient
methods for making long-term time series predictions. We also compared our results for
short-term predictions with those obtained by two existing methods: the Learning
Financial Agent Based Simulator (L-FABS)21 and the MLP model22.

For the first period, we considered the DJIA (Dow Jones Industrial Average) time
series between 1993 and 2001, when markets were stable with no major changes and
no financial crisis. In the second period considered, the US stock market peaked in
October 2007, but by March 2009, the Dow Jones average had reached its minimum,
which reflects the most serious effects of a financial crisis. In the third period (August
2004–August 2012), the recession was in the middle of the considered range.

Another important application of time series predictions is in medical science.
Approximately 1% of the world population suffers from epilepsy31. Epileptic seizures
are the result of unusual and irregular neuronal activity in the brain32,33. Many recent
methods have been proposed for predicting epileptic seizure26,34,35 but none of them as
shown their ability to perform accurate predictions more than 10 minutes in advance
on a large number of patients. To evaluate the performance of our new method for
predicting epileptic seizures, we examined the EEG time series measured by five
electrodes, generating five different time series, for 21 patients. For each EEG time
series, the exact time of the seizure is known.

Predicting the monthly records of global temperature anomalies is currently one of
the most pressing and controversial environmental concerns36. As a third experiment,
we used the global temperature anomaly data from 1880 to 1983 to train for the
prediction of global temperatures during 1983–2013. Global temperature anomaly
data come from the Global Historical Climatology Network-Monthly (GHCN-M)
data set and International Comprehensive Ocean-Atmosphere Data Set (ICOADS),
which have data from 1880 to the present. These two datasets are blended into a single
product to produce the combined global land and ocean temperature anomalies.

Our new method for complex time series prediction is based on the concepts of
chaos theory and an optimisation process. The general idea is to extract a unique
characteristic from an existing time series that somehow represents the behaviour of
the time series and to subsequently generate successive new values that continue the
time series, each value minimising the difference between the characteristic of the new
time series and the initial one. The details of the GenericPred method for long-term
time series prediction are as follows. We consider a time series SN:

SN~fx1,x2,:::,xNg ð1Þ

A nonlinear measure V() is computed on SN The fractal dimension37 and the
Lyapunov exponent38 are examples of such nonlinear measures that return a single
value for a time series. A possible mapping may be required, forming a new time series
Sm

N ~fyL,yLz1,:::yNg, for different applications as follows:

yi~V(Si{Lz1,i), LƒiƒN where Si{Lz1,i~fyi{Lz1, yi{Lz2,:::, yig ð2Þ

otherwise, Sm
N 5 SN, where 0 , L , N is the size of a sliding window used to compute

the local level of chaos measured by V(). Therefore, when the mapping is applied, the
new considered time series Sm

N corresponds to the variation in time of the local non-
linear measure in the initial time series SN.

We consider V(Sm
N ) as a reference value that will be used for predicting the next k

values of the time series:

yNzi, 1ƒiƒk ð3Þ

The parameter s of a normal distribution N(yi, s2) is estimated by computing the
variation between every two consecutive values (yi to yi11) of the time series Sm

N . This
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distribution represents the probability distribution P(yijyi21) (see Fig. 3). Several data
sets have been considered to determine that a normal distribution is a good
approximation of the real distribution. However, the same method has been applied
using other distributions without significant degradation is the prediction.

For predicting yN1i, a set Pos(yN1i) of Nrand random values are generated following
the distribution N(yN1i21, s2) (Fig. 3):

Pos(yNzi)~fyj
Nzi ,1ƒjƒNrandg ð4Þ

Figure 1 | Dow Jones Industrial Average stock market index prediction. We examined the DJIA time series with respect to the daily closing values of the

DJIA for three time periods: (a) September 1993-September 2001 for the prediction of DJIA values before the 2009 financial crisis, (b) July 2001-July

2009 for the prediction of the financial crisis in 2009 and (c) August 2004- August 2012 for the prediction of DJIA values after the financial crisis in 2009.

For each time series, 1500 time steps (approximately 6 years) were analysed to predict the next 500 time steps (approximately two years).
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Nrand is a parameter that can impact the quality of the prediction because having
more values will increase the chance of finding an optimal value. However, no sig-
nificant improvement was observed for the data considered when Nrand was greater
than 10. For this reason, we chose 10 as the value of Nrand for each experiment. yN1i is

then computed by selecting the yj
Nzi that makes the new nonlinear measure the

closest to V(Sm
N ):

jmin~ arg minj ( V(Sm
Nzi{1zyj

Nzi){V(Sm
N )

���
���)

yNzi~yjmin
Nzi

,

where Sm
Nzi{1zyj

Nzi~fy1,y2,:::,yNzi{1,yj
Nzig

� �
ð5Þ

The value yj
Nzi is chosen to make V(Sm

Nzi{1zyj
Nzi) as close as possible to V(Sm

N ).
The important point is that the reference value is always V(Sm

N ), which is the
calculated nonlinear measure from the original time series. Therefore, the
GenericPred method uses two basic rules:

R1: Always endeavour to keep the value of a nonlinear measure as steady as possible
during prediction (Fig. 3).

R2: The new value must be chosen from a set of potential values generated from a
probability distribution.

The prediction has to be pursued one step at a time because the predicted value in
the current step is needed for determining the valid range of change for the next step.
For those problems for which a binary prediction (‘yes’ or ‘no’) is required, (e.g., the
epileptic seizure prediction), a threshold t is computed from the learning data.
Whenever the value yN1i is greater than the threshold t, the prediction is positive. For
example, yes there is an epileptic seizure at time N 1 i if yN1i . t; otherwise, there will
be no seizure at time N 1 i.

Classical model-based prediction approaches consider a unique value for the next
step, whereas in the GenericPred method, several points are considered simulta-
neously. Our method is also able to constantly adjust the information regarding the
current time series, whereas classical predictive methods apply the model without

Table 1 | Sensitivity and specificity of epileptic seizure prediction
for 21 patients for different lengths of prediction. For each patient,
one positive and 10 negative samples were constructed. The pos-
itive sample contains one epileptic seizure event, and the 10 nega-
tive samples are seizure-free. Therefore, there are 21 positive and
210 negative samples in total that were used to compute the spe-
cificity and the sensitivity accuracy levels

Length of prediction before seizure Sensitivity Specificity

16 minutes 6 7 seconds 100% 100%
17 minutes 6 7 seconds 100% 100%
18 minutes 613 seconds 85% 100%
19 minutes 6 13 seconds 57% 100%
20 minutes 6 43 seconds 43% 100%

Figure 2 | Predicting the annual records of global temperature anomaly (a) for 30 years (1983–2013) and (b) until the end of the 21st century (2014–
2100).
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taking into account the concordance between the original time series and the pre-
dicted ones. Technically, any nonlinear measure could be used for the time series
characterisation. However, here, we used the P&H method25 because it has been
shown that this method can efficiently discriminate between different types of non-
linear behaviour39.
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