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Abstract

Context: Although elevated parathyroid hormone (PTH) levels are associated with higher mortality risks, the evidence is limited as to when PTH
is expected to be elevated and thus should be measured among the general population.
Objective: This work aimed to build a machine learning–based prediction model of elevated PTH levels based on demographic, lifestyle, and
biochemical data among US adults.
Methods: This population-based study included adults aged 20 years or older with a measurement of serum intact PTH from the National Health
and Nutrition Examination Survey (NHANES) 2003 to 2006. We used the NHANES 2003 to 2004 cohort (n= 4096) to train 6 machine-learning
prediction models (logistic regression with and without splines, lasso regression, random forest, gradient-boosting machines [GBMs], and
SuperLearner). Then, we used the NHANES 2005 to 2006 cohort (n=4112) to evaluate the model performance including area under the
receiver operating characteristic curve (AUC).
Results: Of 8208US adults, 753 (9.2%) showedPTH greater than 74 pg/mL. Across 6 algorithms, the highest AUCwas observed among random
forest (AUC [95% CI]=0.79 [0.76-0.81]), GBM (AUC [95% CI]=0.78 [0.75-0.81]), and SuperLearner (AUC [95% CI]=0.79 [0.76-0.81]). The AUC
improved from 0.69 to 0.77 when we added cubic splines for the estimated glomerular filtration rate (eGFR) in the logistic regression models.
Logistic regression models with splines showed the best calibration performance (calibration slope [95% CI]= 0.96 [0.86-1.06]), while other
algorithms were less calibrated. Among all covariates included, eGFR was the most important predictor of the random forest model and GBM.
Conclusion: In this nationally representative data in the United States, we developed a prediction model that potentially helps us to make
accurate and early detection of elevated PTH in general clinical practice. Future studies are warranted to assess whether this prediction tool
for elevated PTH would improve adverse health outcomes.
Key Words: parathyroid hormone, hyperparathyroidism, machine learning, prediction model, NHANES
Abbreviations: γGTP, γ-glutamyl transferase; 25(OH)D, 25-hydroxyvitamin D; AUC, area under the receiver operating characteristic curve; BMI, body mass
index; eGFR, estimated glomerular filtration rate; GBM, gradient-boosting machine; LDH, lactate dehydrogenase; NHANES, National Health and Nutrition
Examination Survey; PTH, parathyroid hormone.

Parathyroid hormone (PTH) is the main regulator of calcium
homeostasis. Elevation of PTH levels was observed particular-
ly among patients with primary hyperparathyroidism and sec-
ondary hyperparathyroidism due to vitamin D deficiency and
chronic kidney diseases with inappropriately treated calcium
and phosphate level (1, 2). While the causal relationship be-
tween PTH and long-term health outcomes has not been fully
elucidated, some previous studies reported the association be-
tween elevated PTH and all-cause or cardiovascular mortality
even among the general population (3–8). Given these findings
and other common manifestations of primary hyperparathyr-
oidism (eg, osteoporosis, vertebral fractures, hypercalciuria,
nephrolithiasis) (2), the early and judicious detection of ele-
vated PTH is important in general clinical settings.
However, a previous study showed the fact that PTH was
evaluated in only 55% of the patients who were likely to

have primary hyperparathyroidism (9). Particularly, primary
normocalcemic hyperparathyroidism, a mild phenotype of
primary hyperparathyroidism, would be more difficult to be
suspected in general clinical practice. Furthermore, as vitamin
D deficiency—a common condition with a prevalence rate of
5.9% among US adults—sometimes lead to osteoporosis
due to secondary hyperparathyroidism (10, 11), prediction
of elevated PTH is also useful for the diagnosis of such second-
ary hyperparathyroidism due to vitamin D deficiency. In this
context, it is imperative to develop a high-performance predic-
tionmodel for elevated PTH from standard biochemical infor-
mation to assist the effective screening and avoid the
underdetection of this endocrine disorder among the general
population.
Over the last decade, in line with the availability of big data

and rapidly increasing computational capacity, machine-
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learning algorithms have attracted substantial attention be-
cause of their high performance to predict health outcomes
(12, 13). Although a few previous studies in the United
States applied and built prediction models for primary hyper-
parathyroidism (14, 15), they did not include comprehensive
data (eg, socioeconomic status and standard biochemical
data including liver function and electrolytes) in their predic-
tion model. Moreover, other diseases that might be under-
diagnosed in the general population but impair health
status, including primary normocalcemic hyperparathyroid-
ism and secondary hyperparathyroidism due to vitamin D de-
ficiency, were not included in their model, limiting their utility
to answer the clinically important question: Who should be
targeted for PTH evaluation in general clinical settings?
To address this knowledge gap, using a nationally rep-

resentative database of US adults along with several
machine-learning algorithms, we developed several machine
learning–based models to predict elevated PTH levels from
commonly available demographic information and bio-
markers. We then compared the performance of each model,
and assessed variables that largely contribute to the prediction
of elevated PTH levels.

Materials and Methods

Study Design and Setting
The US National Health and Nutrition Examination Survey
(NHANES) is a large-scale, multistage, nationally representa-
tive survey of the civilian, noninstitutionalized population in
the United States conducted by the National Center for
Health Statistics. Data from US adults aged 20 years or older
who participated in the 2 cycles (2003 to 2004 and 2005 to
2006) of NHANES were used in this study. Structured inter-
view data and physical examination results, including labora-
tory data of blood and urine samples, are collected
continuously and released in 2-year cycles. The detailed design
and participants of the NHANES cohort are described else-
where (16). All participants gave their written informed con-
sent and the approval to participate in NHANES study
protocols as per the research ethics review board of the
National Center for Health Statistics (17). This study fol-
lowed the Transparent Reporting of a multivariable predic-
tion model for Individual Prognosis or Diagnosis (TRIPOD)
statement (18) (Supplemental Checklist) (19).

Study Samples
There was a total of 8948 participants aged 20 years or older at
enrollment for whom serum PTH level was available. We ex-
cluded individuals who lacked data on education status (n=12),
marital status (n=2), body mass index (BMI) (n=157), and
poverty-income ratio (n=432). We additionally excluded people
with missing data on serum calcium levels (n=29), serum phos-
phate levels (n=2), glycated hemoglobin A1c (n=28), aspartate
aminotransferase (n=65), total protein (n=10), and lactate de-
hydrogenase (LDH) (n=2). The final analytical cohort contained
8208 participants.

Predictors and Outcome
The variables for the prediction models were selected from the
NHANES data. Because the present study focused on building
the prediction model of elevated PTH from information ob-
tained in general practice, we included demographic and

lifestyle data (age, sex, race/ethnicity, poverty-income ratio,
education status, marital status, smoking status, comorbid-
ities, prescription medications, and BMI) and standard bio-
chemical data as predictors. Information on demographic
and lifestyle characteristics was collected at the survey enroll-
ment. Participants who smoked at least 100 cigarettes during
their lifetime were categorized as smokers, with former smok-
ers defined as individuals who smoked at least 100 cigarettes
and not currently smoking. As comorbidities, we selected self-
reported information on the physician diagnoses of diabetes
mellitus, cardiovascular disease, and cancer. The use of anti-
hypertensives and statins was also self-reported. Measured
weights and heights were used to calculate BMI.
Standard biochemical profile including albumin, total pro-

tein, cholesterol, triglycerides, total bilirubin, alanine amino-
transferase, aspartate transaminase, alkaline phosphatase,
γ-glutamyl transferase (γGTP), LDH, uric acid, blood urea ni-
trogen, sodium, potassium, chloride, calcium, phosphate, and
creatinine levels were measured by Beckman Synchron LX20.
We adjusted calcium levels for hypoalbumia as previously re-
ported (20). The estimated glomerular filtration rate (eGFR)
was calculated by the Chronic Kidney Disease Epidemiology
Collaboration equation (21). Glycated hemoglobin A1c was
measured by high-performance liquid chromatography.
Serum 25-hydroxyvitamin D (25(OH)D) levels were meas-
ured using the DiaSorin radioimmunoassay (RIA) kit.
25(OH)D values were converted to liquid chromatography–
tandemmass spectrometry equivalent values (ng/mL) as previ-
ously reported (8, 22).
Serum intact PTH was assayed by an electrochemilumines-

cence immunoassay on the Elecys 1010 autoanalyzer (Roche
Diagnostics). We defined elevated PTH levels as PTH greater
than 74 pg/mL (23).

Statistical Analysis
Based on the TRIPOD statement (18), we split the data into the
training data set and test data set using different periods (ie,
training data set, NHANES 2003-2004 [n=4096]; test data
set, NHANES 2005-2006 [n=4112]). Using the training set,
we developed the conventional prediction model and 4
machine-learning models to predict the probability of elevated
PTH levels. First, as the conventional model, we fit a logistic re-
gression model including demographic, lifestyle, and biochem-
ical parameters. These parameters were age, sex (male or
female), race/ethnicity (non-Hispanic White, non-Hispanic
Black, Mexican American, or others), poverty-income ratio,
education status (< 9th grade, 9th-11th grade, high school, or
general educationdegree,or>highschool),marital status (mar-
ried or not), smoking status (never, former, or current), prior
history of diabetes mellitus, prior history of cardiovascular dis-
ease, prior history of cancer, antihypertensive prescription, sta-
tin prescription, and standard biochemical markers. Given the
possible nonlinear relationship of elevated PTH with eGFR,
we also built the model adding cubic splines for eGFR.
Using the predictors listed earlier, the following 4 machine-

learning prediction models were also constructed: logistic re-
gression with lasso regularization (lasso regression) (24), ran-
dom forest (25), gradient-boosting machines (GBM) (26), and
SuperLearner (27). Briefly, lasso regression enhances standard
regression models by enabling us to select important predic-
tors (feature selection). Both random forest and GBM are an
ensemble of decision trees. The random forest combines
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outputs provided by the decision trees randomly generated
from predictors, while GBM is an additive model of decision
trees estimated by gradient descent. SuperLearner is an ensem-
ble of machine-learning algorithms that creates an optimal
weight for the initial set of candidate models (ie, logistic re-
gression, lasso regression, random forest, and GBM). The pa-
rameters of each algorithm were tuned using 10-fold
cross-validation.
In the test set, the prediction performance of each model is

evaluated by computing the area under the receiver operating
characteristic curve and prospective prediction results (ie, sen-
sitivity, specificity, positive predictive value, and negative pre-
dictive value). To calculate these values under the class
imbalance in the outcome, we chose the threshold of predic-
tion results using the Youden index (28). Calibration was
evaluated using calibration intercepts and slope for each mod-
el (29). Given the possibility that 2 major mineral and bone
metabolism biomarkers—serum calcium and phosphate—
may not be frequently measured in general clinical practice,
we also built the prediction model without information on se-
rum albumin-adjusted calcium and phosphate.
We conducted the following 4 additional analyses. First, we

evaluated the diagnostic performance of the prediction model
to distinguish patients with biochemical profiles close to pri-
mary hyperparathyroidism (ie, elevated PTH with high or
high-normal serum calcium level). The cutoff for high or high-
normal calcium levels was greater than 9.6 mg/dL, as previ-
ously reported (8). Second, although we did not include
25(OH)D in our primary prediction model as it is not com-
monly included in standard biochemical examination, we re-
built the prediction model of elevated PTH including
25(OH)D as an additional predictor. Third, because PTH is
less likely to be measured among individuals without ad-
vanced chronic kidney disease, we built the prediction model
of elevated PTH among those with eGFR greater than or equal
to 60 mL/min/1.73 m2 (n= 7492). Last, we rebuilt the predic-
tion model of elevated PTH including urine albumin to cre-
atinine ratio as an additional predictor among individuals
with available urine data (n= 5445). All analyses were per-
formed using the R version 4.2.1.

Results

The baseline characteristics of the study participants are
shown in Table 1. Compared to adults with PTH levels less
than or equal to 74 pg/mL, those with elevated PTH levels
were older, non-Hispanic Black, individuals with lower in-
come levels, less educated, and unmarried. They were also
more likely to have comorbidities such as diabetes, cardiovas-
cular disease, and cancer, and take antihypertensive and statin
prescriptions. When comparing the biochemical data among
these groups, participants with elevated PTH levels had lower

Table 1. Demographic characteristics according to serum

parathyroid hormone levels in the National Health and Nutrition

Examination Survey 2003 to 2006

PTH> 74 pg/mL PTH≤ 74 pg/mL

Total No. 753 7455

PTH, pg/mL

Mean (SD) 104.67 (43.90) 39.63 (14.28)

Median (IQR) 91 (80-108) 38 (29-49)

Age, y 58.98 (19.41) 48.01 (18.63)

Male sex, n (%) 357 (47.4) 3591 (48.2)

Race/ethnicity, n (%)

Non-Hispanic White 304 (40.4) 3952 (53.0)

Non-Hispanic Black 250 (33.2) 1457 (19.5)

Mexican American 144 (19.1) 1517 (20.3)

Others 55 (7.3) 529 (7.1)

Poverty-income ratio 2.37 (1.49) 2.66 (1.61)

Education status, n (%)

< 9th grade 140 (18.6) 924 (12.4)

9th-11th grade 119 (15.8) 1098 (14.7)

High school or GED 177 (23.5) 1811 (24.3)

> High school 317 (42.1) 3622 (48.6)

Marital status, n (%)

Married 357 (47.4) 4166 (55.9)

Not married 396 (52.6) 3289 (44.1)

Smoking, n (%)

Never 432 (57.4) 3781 (50.7)

Former 227 (30.1) 1941 (26.0)

Current 94 (12.5) 1733 (23.2)

Diabetes, n (%) 107 (14.2) 714 (9.6)

Cardiovascular disease, n (%) 205 (27.2) 743 (10.0)

Cancer, n (%) 85 (11.3) 612 (8.2)

Antihypertensive prescription,
n (%)

377 (50.1) 1930 (25.9)

Statin prescription, n (%) 169 (22.4) 941 (12.6)

BMI 30.69 (8.52) 28.41 (6.21)

eGFR, mL/min/1.73 m2 75.2 (30.18) 98.64 (24.52)

Albumin, g/dL 4.10 (0.38) 4.17 (0.40)

Total protein, g/dL 7.18 (0.51) 7.14 (0.51)

HbA1c, % 5.69 (0.94) 5.57 (1.00)

Cholesterol, mg/dL 197.93 (48.48) 203.16 (43.53)

Triglycerides, mg/dL 144.50 (99.62) 146.84 (118.35)

Total bilirubin, mg/dL 0.77 (0.70) 0.73 (0.29)

Alanine aminotransferase, U/L 23.31 (15.05) 25.64 (28.24)

Aspartate aminotransferase, U/L 25.46 (11.11) 25.75 (24.53)

Alkaline phosphatase, U/L 61.02 (30.30) 56.69 (24.58)

γ-Glutamyl transferase, U/L 61.24 (117.4) 58.44 (103.61)

Lactate dehydrogenase, U/L 140.19 (31.27) 128.20 (31.36)

Uric acid, mg/dL 6.10 (1.71) 5.27 (1.38)

Blood urea nitrogen, mg/dL 16.75 (11.33) 12.30 (5.14)

Serum sodium, mmol/L 139.58 (2.54) 138.89 (2.26)

Serum potassium, mmol/L 4.02 (0.40) 3.97 (0.33)

Serum chloride, mmol/L 104.04 (3.36) 103.60 (2.70)

Serum albumin-adjusted
calcium, mg/dL

9.53 (0.47) 9.59 (0.33)

(continued)

Table 1. Continued

PTH> 74 pg/mL PTH≤ 74 pg/mL

Serum phosphate, mg/dL 3.69 (0.62) 3.82 (0.54)

25-Hydroxyvitamin D, ng/mL 19.60 (7.80) 25.24 (8.80)

Abbreviations: BMI, bodymass index; eGFR, estimated glomerular filtration
rate; HbA1c, glycated hemoglobin A1c; GED, General Educational
Development; IQR, interquartile range; PTH, parathyroid hormone.
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levels of eGFR, serum phosphate, and cholesterol and higher
levels of alkaline phosphatase, γGTP, LDH, uric acid, blood
urea nitrogen, and 25(OH)D than others with low or normal
PTH levels. Decreasing trends in PTH levels according to in-
creased eGFR (< 30, 30 to < 60, 60 to < 90, ≥ 90) are shown
in Supplementary Table S1 (19).

Prediction of Hyperparathyroidism With Predictors
Overall, 753 participants (9.2% of 8208 participants) had ele-
vated levels of PTH. Across 6 algorithms, the highest predictive
performance was shown in random forest (AUC [95% CI]=
0.79 [0.76-0.81], sensitivity=0.62, specificity=0.80), GBM
(AUC [95% CI]=0.78 [0.75-0.81], sensitivity=0.67, specifi-
city=0.77), and SuperLearner (AUC [95% CI]=0.79
[0.76-0.81], sensitivity=0.72, specificity=0.70) (Table 2 and
Fig. 1).While the logistic regression showed the lowest predictive
performance (AUC [95% CI]=0.69 [0.66-0.72], sensitivity=
0.69, specificity=0.61), the performance was substantially im-
proved when we added the cubic splines for eGFR in the logistic
regression model (AUC [95% CI]=0.77 [0.74-0.80], sensitivity
=0.69, specificity=0.72). These patterns were consistently ob-
served when we excluded serum calcium and phosphate levels
from the model while AUC was slightly lower than that in the
model with serum calcium and phosphate levels (eg, logistic re-
gression with splines, AUC [95% CI]=0.76 [0.73-0.79]; ran-
dom forest, AUC [95% CI]=0.76 [0.74-0.79]; GBM, AUC
[95% CI]=0.78 [0.75-0.80]; SuperLearner, AUC [95% CI]=

0.75 [0.72-0.78]) (see Table 2 and Fig. 2). Among the 6x algo-
rithms, logistic regression models with splines showed the best
calibration performance (calibration slope [95% CI]=0.96
[0.86-1.06]; Fig. 3).
Fig. 4 shows the importance of variables in the random for-

est model and GBM. Renal function (eGFR) was the most im-
portant predictor in both models. In the random forest model,
age, calcium, and other laboratory data including blood urea
nitrogen level, alkaline phosphatase, and uric acid levels were
frequently used to build the algorithm. Likewise, serum cal-
cium, phosphate, sodium, uric acid levels, and BMI were fre-
quently used to build the GBM algorithm.

Additional Analyses
We also found high predictive performance for elevated PTH
levels with serum calcium levels greater than 9.6mg/dL (eg, lo-
gistic regression with splines, AUC [95% CI]= 0.76
[0.71-0.80]) (Table 3).Whenwe added 25(OH)D as a predict-
or, we found the improvement of predictive performance (eg,
AUC [95% CI]=0.82 [0.80-0.84] for logistic regression with
splines, GBM, and SuperLearner) (Supplementary Table S2)
(19). AUC was around 0.73 when we restricted individuals
to those with eGFR greater than or equal to 60 mL/min/
1.73 m2 (Supplementary Table S3) (19) and when we add-
itionally included urine albumin to creatinine ratio in the pre-
diction model among individuals with urine data
(Supplementary Table S4) (19). The predictive performance

Table 2. Predictive ability of the logistic regression model, tree-based algorithms, and SuperLearner for elevated parathyroid hormone levels

AUC Sensitivity Specificity PPV NPV

Model without calcium and phosphate

Logistic regression 0.69
(0.66-0.72)

0.69 0.61 0.14 0.95

Logistic regression + spline models 0.77
(0.74-0.80)

0.69 0.72 0.19 0.96

Lasso regression 0.73
(0.70-0.76)

0.67 0.69 0.17 0.96

Random forest 0.79
(0.76-0.81)

0.62 0.80 0.22 0.96

Gradient boosting 0.78
(0.75-0.81)

0.67 0.77 0.21 0.96

SuperLearner 0.79
(0.76-0.81)

0.72 0.70 0.18 0.96

Model without calcium and phosphate

Logistic regression 0.67
(0.64-0.71)

0.55 0.73 0.16 0.95

Logistic regression + spline models 0.76
(0.73-0.79)

0.65 0.75 0.19 0.96

Lasso regression 0.72
(0.69-0.75)

0.53 0.80 0.20 0.95

Random forest 0.76
(0.74-0.79)

0.67 0.69 0.17 0.96

Gradient boosting 0.78
(0.75-0.80)

0.67 0.72 0.18 0.96

SuperLearner 0.75
(0.72-0.78)

0.64 0.75 0.19 0.96

The predictionmodel included age, sex, race/ethnicity, poverty-income ratio, education status, marital status, smoking status, prior history of diabetes mellitus,
prior history of cardiovascular disease, prior history of cancer, antihypertensive prescription, statin prescription, and standard biochemical markers. PPVswere
generally low for all algorithms because of the small number of outcomes overall.
Abbreviations: AUC, area under the curve; NPV, negative predictive value; PPV, positive predictive value.
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was not different between logistic regression with andwithout
splines in these analyses.

Discussion

In this analysis of the total of 8025 participants from a nation-
al population-based survey data, we applied several machine-
learning approaches (ie, lasso regression, random forest,

GBM, and SuperLearner) to differentiate participants with
elevated PTH from those with normal or low PTH levels.
Among these algorithms, the random forest model, GBM,
and SuperLearner achieved the highest predictive perform-
ance in discrimination using demographical data and clinical
data, such as serum electrolytes including calcium and phos-
phate, liver function, and lipid profile. However, these
machine-learning algorithms showed poor calibration per-
formance. Instead, logistic regressionmodels with splinemod-
els achieved high performance of both discrimination and
calibration. The predictive performance for elevated PTH lev-
els remained high even without calcium and phosphate data—
2 major mineral and bone metabolism biomarkers that are
closely related to PTH.
To the best of our knowledge, this is the first study that has

applied several models including machine-learning ap-
proaches to predict elevated PTH levels among the US general
population. Our results suggest that we can predict elevated
PTH from general information even without serum calcium,
phosphate, and vitamin D level, which are not routinely eval-
uated in the general clinical setting. A few previous studies re-
ported that machine learning–based prediction models
effectively differentiate patients with primary hyperparathyr-
oidism and those without primary hyperparathyroidism. For
instance, Somnay et al (14) developed a Bayesian network
model using age, sex, and serum calcium, phosphate, PTH,
vitamin D, and creatinine levels and reported C statistics of
0.989 among 6777 patients with surgically treated primary
hyperparathyroidism and 5053 controls. However, the utility
of this prediction model might be limited to specific circum-
stances, because their cohort was based on 3 high-volume
endocrine surgery programs. Moreover, because almost half
of their patients with primary hyperparathyroidism showed
elevated calcium and PTH levels, the authors’ findings cannot
be extended to patients with primary normocalcemic hyper-
parathyroidism, which is not a rare condition (0.18% to
8.9% of the general population) and potentially underdiag-
nosed among the general population (30, 31). Greer et al
(15) also reported the prediction model of primary hyperpara-
thyroidism with an accuracy of 0.86. Their findings based on
hospital electronic health record data would also not be ex-
tended to the general population or general clinical settings
given the unique feature of the university hospital specializing
in endocrine disorders.
In both the random forest model and GBM, we observed

that GFR was the most important variable to predict elevated
PTH among the general population. Impaired renal function
is one of the key factors leading to elevated PTH levels (32).
In our cohort, of 753 individuals with hyperparathyroidism,
102 individuals (14%) exhibited eGFR less than 40; the con-
dition under which more than 50% of the patients present
with hyperparathyroidism (32). Because not a few individuals
would have impaired renal function associated with second-
ary hyperparathyroidism, eGFR is critical information to con-
sider whether the individuals have elevated PTH. The
importance of eGFR to predict elevated PTH was also sup-
ported by the fact that the difference in predictive ability be-
tween logistic regression models with and without splines of
eGFR diminished when we built the model among people
without impaired renal function or when we additionally in-
cluded urine albumin to creatinine ratio in the model.
In addition, our prediction model showed that age and oth-

er biochemical predictors (blood urea nitrogen, and uric acid)

Figure 2. Receiver operating characteristic curve of the logistic
regression model, tree-based algorithms, and SuperLearner to predict
elevated parathyroid hormone levels without information on serum
calcium and phosphorus levels. GBM, gradient-boosted machines;
Lasso, logistic regression with lasso regularization, Logistic, logistic
regression model; RF, random forest.

Figure 1. Receiver operating characteristic curve of the logistic
regression model, tree-based algorithms, and SuperLearner to predict
elevated parathyroid hormone levels. GBM, gradient-boosting
machines; Lasso, logistic regressionwith lasso regularization, Logistic,
logistic regression model; RF, random forest.
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were other important variables to predict elevated PTH as
well as major mineral and bone metabolism biomarkers
(ie, serum calcium and phosphate levels). PTH levels are
known to increase with age (33–35). According to previous
studies, the age-related increase in PTH levels might be
induced by a fall in renal function and an age-related de-
crease in calcium absorption possibly due to low vitamin
D levels (36, 37). Furthermore, a previous study using the
NHANES 2003 to 2006 observed that hyperuricemia sup-
pressed 1-αhydroxylase leading to higher PTH (38). While
there was no report about the association between blood
urea nitrogen and PTH levels, blood urea nitrogen might
contribute to predicting elevated PTH levels by indirectly
reflecting renal function or dehydration resulting from

nephrogenic diabetes insipidus due to hypercalcemia in-
duced by primary hyperparathyroidism.
Our study has several limitations. First, PTH was measured

at one time during the survey and thusmay not reflect patients’
chronic status. There is a circadian rhythm and seasonal vari-
ation in PTH levels (39, 40), and a single measurement of PTH
levels might be affected by circadian rhythm. However, be-
cause seasonal variation in PTH levels might be inversely asso-
ciated with the seasonal variation of vitamin D levels (40), the
prediction model indirectly reflected the vitamin D status by
other predictors and thus partly compensated for the seasonal
variation in PTH levels. Second, we included only participants
with PTH measured, and thus cannot rule out the possibility
of selection bias. Third, because the purpose of our study

Figure 3. Calibration plots of the logistic regression model, tree-based algorithms, and SuperLearner for elevated parathyroid hormone levels.
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was to build the prediction model of elevated PTH from
demographic and clinical data, we did not employ the
NHANES survey weight, which is generally recommended
to use to produce nationally representative descriptive statis-
tics. Thus, our findings may suffer from sampling bias and
have limited generalizability. Fourth, while we split the
NHANES data into training and test data, we did not evaluate
the validity of our prediction models in external data. Last, we
did not have detailed information to differentiate the path-
ology of hyperparathyroidism (eg, primary hyperparathyroid-
ism and secondary hyperparathyroidism due to vitamin D
deficiency or chronic kidney disease). However, the diagnosis
of the etiology of hyperparathyroidism was based on a multi-
modal approach including biochemical data, ultrasonog-
raphy, and scintigraphy, and this is outside of the scope of
our study.
In conclusion, among US adults, we found that the applica-

tion of flexiblemodels includingmachine-learning approaches
has the potential to improve the discriminative ability for ele-
vated PTH levels from generally available demographic, life-
style, and biochemical data. Among all algorithms, logistic
regressionwith splines showed better calibration performance
than other machine-learning algorithms. These prediction
models, if well discriminated and calibrated, would improve
the medical management of hyperparathyroidism (including
primary hyperparathyroidism and secondary hyperparathyr-
oidism due to vitamin D deficiency) by helping clinicians to
evaluate PTH levels leading to the early diagnosis andmanage-
ment of this endocrine disorder. Future investigations are
needed to validate our findings and assess whether using

prediction models of elevated PTH in clinical practice reduces
long-term adverse health outcomes among the general
population.

Figure 4. Variable importance of each predictor in the random forest and gradient-boosting machine algorithms. The variable importance is a measure
scaled to have a maximum value of 100. A, random forest; B, gradient-boosting machines.

Table 3. Predictive ability of the logistic regression model,

tree-based algorithms, and SuperLearner for elevated parathyroid

hormone levels with serum calcium levels greater than 9.6 mg/dL

AUC Sensitivity Specificity PPV NPV

Logistic
regression

0.73
(0.68-0.78)

0.61 0.71 0.11 0.97

Logistic
regression +
spline models

0.76
(0.71-0.80)

0.61 0.71 0.11 0.97

Lasso regression 0.72
(0.67-0.77)

0.61 0.74 0.06 0.99

Random forest 0.73
(0.67-0.78)

0.68 0.66 0.11 0.97

Gradient
boosting

0.71
(0.66-0.77)

0.67 0.70 0.06 0.99

SuperLearner 0.74
(0.68-0.79)

0.66 0.67 0.11 0.97

The predictionmodel included age, sex, race/ethnicity, poverty-income ratio,
education status, marital status, smoking status, prior history of diabetes
mellitus, prior history of cardiovascular disease, prior history of cancer,
antihypertensive prescription, statin prescription, and standard biochemical
markers without serum albumin-adjusted calcium and phosphate levels.
PPVs were generally low for all algorithms because of the small number of
outcomes overall.
Abbreviations: AUC, area under the curve; NPV, negative predictive value;
PPV, positive predictive value.
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