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ABSTRACT

Aims/Introduction: 2-Methoxyestradiol (2ME) is an estradiol metabolite with little estrogenic activity. Previous data identified
its anti-carcinogenic properties and possible cardiovascular benefits. However, its effect on diabetes mellitus has not been fully
elucidated. The aim of the present study was to determine the effects of 2ME on glucose metabolism in the diabetic state.
Materials and Methods: To evaluate the effects of 2ME, pellets of two different doses of the drug were implanted into female
db/db mice at the age of 5 weeks. Intraperitoneal glucose tolerance test and insulin tolerance test were carried out at the age of
8 weeks. The pancreas was harvested for morphological analysis and b-cell function at the age of 9 weeks.
Results: 2ME improved random blood glucose levels and glucose tolerance with increases in insulin levels during an intraperitoneal
glucose tolerance test. Insulin sensitivity judged by an insulin tolerance test was comparable in the low- and high-dose 2ME groups
and the control group. Although glucose-stimulated insulin secretion in isolated islets was comparable among the three groups,
b-cell mass in 2ME-treated groups was higher than the control group. In the 2ME-treated groups, the number of Ki67-positive cells
in islets was higher, whereas the number of cleaved caspase-3-positive cells was comparable with the control.
Conclusions: 2ME ameliorates glucose tolerance by promoting the proliferation of b-cell mass in db/db mice. Our data suggests its
potential clinical usefulness as a disease-modifying drug for type 2 diabetes mellitus. (J Diabetes Invest, doi: 10.1111/j.2040-1124.
2010.00087.x, 2011)
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INTRODUCTION
The prevalence of type 2 diabetes mellitus is lower in premeno-
pausal women, but the trend is reversed after menopause1. This
change might be related to the anti-diabetic effects of the ovar-
ian hormones. In particular, the anti-diabetic actions of estro-
gens were confirmed in two large clinical trials. The Women’s
Health Initiative (WHI) Hormone Trial was a randomized, dou-
ble-blind trial that investigated the effect of estrogen plus pro-
gesterone during a 5.6-year follow-up period. The participants
were over 15,000 postmenopausal women. The cumulative inci-
dence of diabetes was 20% lower in women on hormone
replacement therapy than those on a placebo2. The Heart and
Estrogen/Progestin Replacement Study (HERS) was also a ran-
domized, double-blind trial. The participants were approxi-
mately 3000 postmenopausal women with coronary heart
disease who received daily estrogen plus progestin or a placebo.
Over a period of 4 years, the incidence of diabetes decreased
by 35% in the estrogen plus progestin group3. Hyperglycemia

cannot develop without b-cell failure, thus, the aforementioned
studies suggest that estrogen or its metabolites has a preferential
effect on b-cell function. This conclusion is supported by basic
experiments that had shown the preferential role of 17b-estra-
diol (E2) on b-cell function4. It should be cautioned, however,
that both the WHI and HERS found that the hormone replace-
ment therapy increased the risk of cardiovascular disease after
menopause5,6.

Several effects of E2 are known to be mediated by its metabo-
lites rather than by the compound itself7. Among them is
2-methoxyestradiol (2ME), which lacks the estrogen receptor
binding ability. 2ME is produced from 17b-estradiol by sequen-
tial hepatic hydration (cytochrome P450, family 1, subfamily
A polypeptide 2 [p450 CYP1A2]) and methylation (catechol-
O-methyltransferase). The plasma concentrations of 2ME are
higher in women than men, and increase in the luteal phase
compared with the follicular phase. Under non-pregnant condi-
tions, plasma 2ME levels are in the picomolar range; however,
during late pregnancy, the levels increase to the tens of nanomo-
lar8. Although estrogen enhances cell proliferation in some
tissues, 2ME at pharmacological doses blocks angiogenesis,
induces apoptosis and disrupts microtubules. 2ME is the first
steroid with antitumor effects. It appears to target only active
proliferating cells, not cytotoxic to quiescent cells8. 2ME is
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currently being used clinically in patients with various types of
cancers9–13. In addition, 2ME has protective effects on the
kidney, cardiovascular system and also on osteoporosis in post-
menopausal women14–17.

In the present study, as a first step to understanding the role
of 2ME in glucose metabolism, we investigated the effects of
2ME on glucose metabolism in female db/db mice, which are
obese diabetic mice with hypo-ovarian function18.

MATERIALS AND METHODS
Animals and Experimental Procedures
The study protocol was reviewed and approved by the Animal
Care and Use Committee of Juntendo University. The db/db
female mice were purchased from CLEA Japan (Tokyo, Japan)
at the age of 5 weeks. All mice were housed in specific patho-
gen-free barrier facilities, maintained under 12-h light/dark
cycle, and fed a standard rodent food (Oriental Yeast, Tokyo,
Japan) and water ad libitum. At the age of 5 weeks, mice were
implanted subcutaneously with small pellets (Innovative
Research of America, Sarasota, FL, USA) that released 0.5 mg
(n = 11) or 5 mg (n = 14) of 2ME or a placebo (n = 12) gradu-
ally over 50 days.

Measurement of Blood Glucose and Insulin Levels
At the age of 8 weeks, mice were injected with glucose at 1.0 g/kg
for an intraperitoneal glucose tolerant test (IPGTT), after an
overnight fast and 2.0 U/kg of insulin for an insulin tolerance
test (ITT), as described previously19. Glucose levels were mea-
sured using a glucose analyzer (Free Style; KISSEI Pharma,
Nagano, Japan) at the indicated time-points and insulin levels
were measured by an enzyme-linked immunosorbent assay
(ELISA) kit (Morinaga, Kanagawa, Japan). ITT data were repre-
sented by percentage reduction of basal blood glucose level.

Assay of Insulin Secretion From Isolated Islets and Islet Insulin
Content
Pancreatic islets were isolated from 9-week-old mice by collage-
nase digestion, as described previously19. Briefly, five size-
matched islets were incubated in 400 lL Krebs–Ringer solution
(129 mmol/L NaCl, 5 mmol/L NaHCO3, 4.8 mmol/L KCl,
1.2 mmol/L KH2PO4, 1.2 mmol/L MgSO4, 0.2% bovine serum
albumin, 10 mmol/L 4-[2-hydroxyethyl]-1-piperazineethanesulf-
onic acid and 2.5 mmol/L CaCl2 at pH 7.4), with 2.8 or
16.7 mmol/L glucose. To measure islet insulin content, islets
were solubilized in acid-ethanol solution overnight at 4�C
and insulin concentration was analyzed by an ELISA kit
(Morinaga). Insulin secretion was expressed as percentage secre-
tion (serum insulin divided by insulin content) divided by islet
DNA content.

In Vitro Analysis of Cell Proliferation and Apoptosis
In these studies, we analyzed the pancreatic tissue immunohisto-
chemically for cell proliferation (using Ki67 as a marker protein)
and cell apoptosis (using cleaved caspase 3 as a protein marker).

The pancreas was removed from anesthetized mice after cardiac
perfusion with 4% zinc formalin fixative. The pancreatic tissue
was fixed by immersion at 4�C overnight, paraffin embedded
and then cut at 5-lm thick sections before mounting on slides.
Immunohistochemical analysis was carried out using guinea pig
anti-human insulin antibody (dilution 1:2,000; Linco Research,
St Charles, MO, USA), mouse antihuman Ki67 antibody (dilu-
tion 1:1000; Pharmingen, San Jose, CA, USA) and rabbit anti-
cleaved caspase 3 antibody (1:400; Cell Signaling Technology,
Danvers, MA, USA). All primary antibody reactions were visual-
ized using the appropriate biotinylated secondary antibody
and incubated with streptavidin conjugated with horseradish
peroxidase regent (Dako, Glostrup, Denmark) and peroxidase
substrate solution containing 3.3¢-diaminobenzidine tetrahydro-
chloride. Sections were counterstained with methylene blue. The
islet b-cell mass and the percentages of areas immunopositive
for Ki67 and cleaved caspase 3 were determined as described
previously20. Briefly, an insulin positive area was determined on
five of each immunostained sections from each mouse, each
separated by at least 200 lm. The areas of positive staining were
automatically measured using IMAGE analysis software (Image
Pro4.5J; Planetron, Tokyo, Japan). Non-specific staining was
excluded from the quantification. b-cell mass was calculated
using the following equation:

ðinsulin positive area=total pancreatic areaÞ
� pancreas weight ðmgÞ:

The number of Ki67-positive cells and caspase 3 positive cells
per islet were counted using five immunostained sections each
from five mice, with each section separated by at least 200 lm.

Statistical Analysis
Results were expressed as mean ± SEM. Student’s unpaired
t-test was used to compare the laboratory data of two groups.
Differences among three or more groups were analyzed by
ANOVA. A P-value <0.05 was considered significant.

RESULTS
2ME Treatment Improves Glucose Tolerance in db/db Mice
To investigate the effect of 2ME on blood glucose level, we
divided db/db mice into three groups: (i) the high-dose 2ME-
treated group (2ME-H); (ii) the low-dose 2ME-treated group
(2ME-L); and (iii) the placebo group (control). 2ME and a pla-
cebo were provided by implanted pellets and the estimated
administered dose of 2ME was 0.1 and 0.01 mg/day in the
2ME-H and 2ME-L group, respectively.

After implantation of the pellets at the age of 5 weeks, we
measured serial changes in bodyweight and food intake. 2ME-
treated mice showed lower food intake at the age of 7 weeks,
but higher food intake at the age of 8 weeks. Total food intake
was comparable among the groups In contrast, 2ME-treated
mice gained more weight than the control mice (Figure 1a,b).
The randomly-measured glucose level was significantly lower in
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2ME-treated mice than the control (Figure 1c). Whereas fasting
blood glucose level was comparable among the groups, IPGTT
carried out at the age of 8 weeks showed a marked improve-

ment in glucose tolerance of 2ME-treated mice (Figure 2a).
Although blood glucose levels during IPGTT were lower in
2ME-treated mice, simultaneously measured insulin level in
the 2ME-L group was comparable to the control, though that
of 2ME-H mice was significantly higher than the control at the
age of 8 weeks (Figure 2b). ITT showed comparable insulin
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Figure 1 | Treatment with 2-methoxyestradiol (2ME) reduces random
glucose levels in db/db mice. Serial changes in (a) bodyweight, (b) food
intake and (c) random blood glucose level in placebo treated (control)
mice, low-dose 2ME-treated mice (0.01 mg/day; 2ME-L), and high-dose
2ME-treated mice (0.1 mg/day; 2ME-H) between 5 and 8 weeks-of-age.
Solid circles and open bars, control (n = 12); open triangles and grey
bars, 2ME-L (n = 14); solid squares and solid bars, 2ME-H (n = 11). Data
are mean ± SEM. *P < 0.05 vs control, #P < 0.05 vs 2ME-L.
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Figure 2 | Treatment with 2-methoxyestradiol (2ME) improves glucose
tolerance in db/db mice. (a) Blood glucose concentrations and (b) serum
insulin levels during intraperitoneal glucose tolerant test in placebo
(control) mice (n = 12), low-dose 2ME-treated mice (n = 14, 0.01 mg/day;
2ME-L), high-dose 2ME-treated mice (n = 11, 0.1 mg/day; 2ME-H) at
the age of 8 weeks. (c) Results of insulin tolerance test at the age of
9 weeks in each group (control, n = 12; 2ME-L, n = 14; 2ME-H, n = 11).
Solid circles, control; open triangles, 2ME-L; solid squares, 2ME-H. Data
are mean ± SEM. *P < 0.05 vs control, #P < 0.05 vs 2ME-L. IRI, immuno-
reactive insulin.
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sensitivity in the three groups (Figure 2c). These results suggest
that 2ME treatment improves glucose tolerance and enhances
glucose-stimulated insulin secretion in db/db mice.

2ME Increases b-cell Mass
To determine the mechanism of improved glucose-stimulated
insulin secretion in 2ME-treated mice, we investigated islet mor-
phology by immunohistochemical staining for insulin. As shown
in Figure 3a, treatment with 2ME increased b-cell mass, com-
pared with control mice. Quantitative analysis showed signifi-
cant increases in b-cell mass in both 2ME-H and -L groups
(Figure 3b).

Using isolated islets, we further studied the effect of 2ME on
islet function. Insulin secretion by islets incubated under a low
concentration of glucose was lower than by islets of 2ME-H, but
insulin secretion responded to high glucose in a manner compa-
rable between islets from 2ME-H and control mice (Figure 3c).
It was noteworthy that these results were after normalization by
islet DNA content.

Through what mechanism does 2ME increase b-cell mass?
To answer this question, we quantitated the proliferation and
apoptotic rate of islets by Ki67 and cleaved-caspase 3 staining,
respectively. The number of Ki67-positive cells in the islets
was higher in islets of 2ME-treated mice than control mice
(Figure 3a,d). In contrast, the number of cleaved-caspase
3-positive cells was similar among the three groups (Figure 3e).
Thus, the increase in b-cell mass induced by 2ME was mainly
a result of increased rate of cell proliferation in islets, not by
suppression of the apoptotic rate.

DISCUSSION
In the present study, we investigated the effects of 2ME on glu-
cose metabolism. The results suggested that 2ME ameliorated
glucose intolerance in db/db mice at least in part through the
expansion of b-cell mass by increasing the proliferation rate of
these cells. Zang et al.21 investigated the effect of 2ME on glu-
cose metabolism in diabetic ZSF1 rats. They found that 2ME
significantly improved HbA1c level without changes in insulin
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sensitivity, based on ITT. Our data are in agreement with those
of the aforementioned study.

We found that 2ME enhanced proliferation of b-cell in db/db
mice. This is in contrast to the reported antiproliferative effect
of 2ME on various cells. For example, 2ME is reported to inhibit
proliferation of endothelial cells17,22, smooth muscle cells23 and
fibroblasts24. In addition, several studies showed that 2ME
inhibits the proliferation of various types of tumor cells8. How-
ever, it is plausible that sensitivity of cells to 2ME depends on
the cell type and 2ME concentration. In methylnitrosourea-
induced mammary carcinoma, low-dose 2ME stimulated tumor
growth, whereas at a high dose, it inhibited tumor growth25.
In this regard, the dose of 2ME used in the present study and
the cell-specific response of b-cells might be key factors for the
unique cell proliferating effect of 2ME.

Several mechanisms have been proposed for the effects of
2ME. The antiproliferative effects of 2ME are considered to a
result of the induction of cell cycle arrest and apoptosis through
the activation of p5326,27 or JNK-Bcl228,29. This effect is also
caused by the inhibition of tubulin polymerization to disturb
cytoskeletal function30. Furthermore, the anti-angiogenic effect
of 2ME is mediated by the inhibition of hypoxia-inducible fac-
tor-1a, a key angiogenic transcription factor30. In addition,
it has been reported that 2ME has a calcium antagonistic effect8

and oxidation inhibiting effects31. However, the exact signal
transduction pathway of 2ME has not been yet elucidated. Fur-
ther studies are required to determine the exact mechanisms on
various actions of 2ME, including the proliferation of b-cells.

In the present study, IPGTT data showed that 2ME treatment
improves b-cell function in a dose-dependent manner (Fig-
ure 2a). In contrast, the batch incubation data using isolated
islets shows that 2ME treatment did not improve insulin secre-
tion from each islet (Figure 3c). The measurement of b-cell
mass showed that low and high doses of 2ME treatment compa-
rably increase b-cell mass in vivo (Figure 3b). These results sug-
gest that the increase of b-cell mass might be implicated in the
amelioration of b-cell function. However, the effect of 2ME on
b-cell mass cannot explain why the 2ME-H group showed bet-
ter b-cell function judged by IPGTT than the 2ME-L group.
If 2ME improved islet endothelial function or altered the envi-
ronment of extracellular matrix in islets in a dose-dependent
manner, 2ME could improve insulin secretion in vivo, but could
not improve insulin secretion using isolated islets. Further stud-
ies are required to elucidate its mechanism in detail.

In conclusion, the present study showed that 2ME increases
b-cell mass, which is relatively decreased in female db/db mice,
without major adverse effects. The effect of 2ME on male db/db
mice is under our investigation. Until now, we have found that
2ME treatment decreases fasting blood glucose, with the ten-
dency to increase immunoreactive insulin levels in male db/db
mice (Uchida and Watada, unpublished observation). 2ME
might be useful not only in a female diabetic model, but also in
a male diabetic model. Considering that 2ME has already been
used in a clinical setting, this drug is a promising agent to

prevent any decrease in b-cell mass, which occurs during the
natural history of type 2 diabetes.
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