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Using omics approaches to understand
pulmonary diseases
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Abstract: Omics approaches are high-throughput unbiased technologies that provide snapshots of various aspects of
biological systems and include: 1) genomics, the measure of DNA variation; 2) transcriptomics, the measure of RNA
expression; 3) epigenomics, the measure of DNA alterations not involving sequence variation that influence RNA
expression; 4) proteomics, the measure of protein expression or its chemical modifications; and 5) metabolomics, the
measure of metabolite levels. Our understanding of pulmonary diseases has increased as a result of applying these
omics approaches to characterize patients, uncover mechanisms underlying drug responsiveness, and identify effects
of environmental exposures and interventions. As more tissue- and cell-specific omics data is analyzed and integrated
for diverse patients under various conditions, there will be increased identification of key mechanisms that underlie
pulmonary biological processes, disease endotypes, and novel therapeutics that are efficacious in select individuals. We
provide a synopsis of how omics approaches have advanced our understanding of asthma, chronic obstructive
pulmonary disease (COPD), acute respiratory distress syndrome (ARDS), idiopathic pulmonary fibrosis (IPF), and
pulmonary arterial hypertension (PAH), and we highlight ongoing work that will facilitate pulmonary disease
precision medicine.
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Background
The commoditization of high-throughput biotechnolo-
gies has enabled the collection of an unprecedentedly
large number of so-called omics datasets by biomedical
researchers. Starting with DNA microarrays in the 1990s
and expanding to next-generation sequencing (NGS) in
the 2000s, omics approaches now capture a wide variety
of biological measurements, spanning DNA variation to
chemical modifications of proteins [Fig. 1] [1–3]. As the
repertoire of available omics approaches continues to
expand with the development of methods that combine
existing assays and new technologies, an unbiased
characterization of biological systems at ever-increasing
resolutions is possible [4, 5]. Early successes in the use
of omics technologies to understand disease and enable
drug development [6, 7] have resulted in optimism that
many more effective diagnostic tests and treatments tai-
lored to individuals’ genetic, environmental and lifestyle
factors will be developed. The commonplace use of such

tests and diagnostics is often referred to as personalized
medicine, or more recently, precision medicine [8, 9].
Decision-making in medical care for decades has often

relied on a “one-size-fits-all” approach that applies
mean-effect-size results from studies to individual
patients [10]. The goal of precision medicine, in contrast,
is to allow for more accurate treatment and prevention
decisions based on matching a patient’s exposure, life-
style and biological profile to that of similar patients
with measured outcomes. The goal of many omics stud-
ies thus far has been to build a knowledgebase of omic
variation using single-technology approaches that will
help enable precision medicine by providing reference
data to identify groups of individuals who share various
attributes. In addition to collecting omics data, the appli-
cation of sophisticated algorithms and use of extensive
computational resources to integrate datasets are
required to fully characterize diverse patients [11, 12].
Here, we provide a broad overview of how omics

approaches have been used to understand five complex
pulmonary diseases that stand to benefit from personal-
ized diagnostics and treatment:* Correspondence: bhimes@upenn.edu
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1) Asthma, an inflammatory disease characterized by
variable airflow limitation and airway
hyperresponsiveness, that affects over 25 million
Americans [13].

2) Chronic obstructive pulmonary disease (COPD), a
disease characterized by alveolar destruction,
shortness of breath, cough, and sputum production,
which is estimated to affect over 24 million
Americans [14].

3) Acute respiratory distress syndrome (ARDS), a
severe lung condition with high fatality rate that
typically occurs in critically ill patients and is

characterized by the acute development of diffuse
alveolar injury leading to respiratory failure [15].

4) Idiopathic pulmonary fibrosis (IPF), a progressive
disease that is the most common and lethal type of
idiopathic interstitial pneumonias and is
characterized by scarring fibrosis with an
unpredictable course [16].

5) Pulmonary arterial hypertension (PAH), a disease
that predominantly affects women and is
characterized by endothelial proliferation and
smooth muscle hypertrophy of small pulmonary
arteries, in situ thrombosis, and plexiform lesions

Fig. 1 Summary of omics approaches discussed: layers of biological data (left) with corresponding omics techniques used for their
characterization (right)
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that lead to right ventricular failure, and ultimately,
death [17].

Some of the main findings obtained by applying omics
approaches to these diseases are summarized in Table 1.
As our goal is to offer an extensive multi-level omics
review, readers interested in learning more about spe-
cific techniques or their application to disease are en-
couraged to read the papers in Table 1 and other in-
depth resources.

Genomics
DNA sequence variation is known to cause, or confer
risk for, various rare and common diseases, and genetic
testing is increasingly being integrated into medical
practice [18, 19]. Starting in 2005, as initial cataloging ef-
forts of common DNA single nucleotide polymorphisms
(SNPs) led to the design of commercially available mi-
croarrays [20], many investigators sought to relate SNPs
to disease presence via genome-wide association studies
(GWAS). Since then, over 2600 GWAS have been com-
pleted for a wide range of phenotypes [21]. With the ad-
vent of NGS in the late 2000s, attempts to relate DNA
sequence variants to diseases have extended to whole-
exome and whole-genome sequencing [22]. Because an
individual’s DNA sequence in non-cancerous somatic
cells is relatively stable over time and equal in all such
cells, obtaining high quality DNA via a single peripheral
blood or saliva sample at any point in a person’s life can
be used to measure an individual’s sequence variation
across the genome [23]. The availability of cost-effective
technology, ease of sample collection, and commonality
and stability of DNA sequence across a person’s cells
and lifetime, have resulted in genomics studies’ sample
sizes outpacing that of all other omics approaches.

Genome-wide association studies (GWAS)
Based on the hypothesis that common genetic variation
underlies complex disease risk, GWAS statistically
evaluate whether the frequency of SNP alleles or geno-
types differs between affected and unaffected individuals
[24]. Using case/control or family-based designs, current
GWAS evaluate differences in more than 1 million com-
mon SNPs (i.e., those with minor allele frequency
(MAF) ≥5% in a reference population) on microarrays.
Because so many significance tests are performed in
GWAS, multiple comparisons correction of raw scores
is necessary to avoid a high false-positive rate of associ-
ation findings [25]. A commonly employed threshold for
genome-wide significance is a p-value <5 × 10−8, corre-
sponding to a Bonferroni correction applied to a nomin-
ally significant p-value of 0.05 for 1,000,000 tests (i.e.,
=0.05/1,000,000). Although there is some merit to criti-
cizing the inability of GWAS results to explain a large

portion of complex disease risk [26], the identification of
many common variants with small-to-modest effect sizes
but reproducible signals that are leading to clinically
useful insights has garnered strong support for GWAS
among some researchers [27]. To facilitate the transla-
tion of genetic association results into functional
insights, GWAS results are provided in the GWAS Cata-
log [21] and the National Heart, Lung, and Blood Insti-
tute (NHLBI)-curated Genome-Wide Repository of
Associations between SNPs and Phenotypes (GRASP)
[28]. Genotype data itself can be found in the NIH’s
database of Genotypes and Phenotypes (dbGaP), which
also archives individual-level phenotype, sequence data,
and association results provided by investigators [29].
Additionally, the U.K. Biobank has made available to all
bona fide health researchers genome-wide genotyping
data for over 500,000 U.K. residents, along with in-depth
health record and phenotype data [30].

Whole-exome sequencing (WES) and whole-genome
sequencing (WGS)
As NGS costs decreased, WES, and subsequently WGS,
have become preferred technologies to characterize the
genome. Compared to genotyping microarrays, both
technologies offer the advantage of being able to identify
rare and novel variants (typically with MAF <1%–5%)
[22]. With WES, sequencing costs are a fraction of WGS
ones, as only protein-coding variants are targeted under
the rationale that functional rare variants are most likely
to be in regions of the genome that are translated into
proteins. Ultimately, WGS will be the preferred method
to characterize the genome for its ability to capture all
types of sequence variation. Novel statistical approaches
have been developed to analyze WES/WGS data in re-
sponse to the challenges associated with detecting rare
variants and measuring their association with diseases.
Considerations include proper DNA sequence alignment
to have confidence that detected rare variants are not
sequencing errors, adequacy of sample sizes, classifica-
tion of variants by their presumed function, and import-
antly, availability of computational resources for storing
and analyzing large datasets [31]. Because WES/WGS
projects for complex diseases require large sample sizes
and substantial funding, some of the most notable pro-
jects have been coordinated by government agencies.
The NHLBI-Exome Sequencing Project (ESP), for
instance, used existing disease-specific cohorts to iden-
tify rare variants associated with complex diseases, in-
cluding asthma, COPD, and acute lung injury [31]. The
more recent Trans-Omics for Precision Medicine
(TOPMed) Program of the NHLBI focuses on obtaining
WGS and other omics data for a greater number of
existing population-based studies with the goal of
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Table 1 Summary of main findings for various omics approaches applied to the study of pulmonary diseases

Disease Main findings

Genomics

Genome-wide/Exome-wide microarray

Asthma Prominent asthma-associated loci are 17q21 locus (including ORMDL3, GSDMB), IL33, IL1RL1, TSLP [32]
Rare, potentially functional variants within GRASP, GSDMB, and MTHFR are associated differently with asthma
in subjects of Latino and African ancestry [56]
Severe asthma-associated loci are CDHR3, GSDMB, IL33 and IL1RL1 [43]

IgE levels FCER1A and HLA-DQB1 are associated with IgE levels, the latter in asthma patients only [47]

Asthma drug
response

SPATS2L is associated with bronchodilator response in asthma patients [54]
GLCCI1 is associated with lung function in patients treated with inhaled glucocorticoids [55]

COPD Robust COPD-associated loci are FAM13A, CHRNA3/CHRNA5/IREB2, HHIP [33]
Rare, potentially functional variants in MOCS3, IFIT3 and SERPINA12 are associated with COPD
and airflow limitation [58]

COPD endotype BICD1 is associated with emphysema [44]

Lung function FAM13A, HHIP, HTR4 are associated with both lung function (i.e. FEV1 and FEV1/FVC ratio) and COPD [48]

IPF TERT and MUC5B are associated with IPF [61, 62]

PAH CBLN2 is associated with PAH in patients without BMPR2 mutations [65]

Whole exome
sequencing

COPD Increased number of rare, non-silent mutations in DNAH8, ALCAM, RARS, and GBF1 are present in severe,
early-onset COPD [57]

PAH High penetrance missense variants in KCNK3 and TOPBP1 found in familial PAH and idiopathic PAH [67, 68]

Transcriptomics

Gene expression
microarray

Asthma Bitter taste receptors have increased expression in severe asthma [86]
Distinct epithelial gene expression signature involving in interferon response found in severe childhood asthma [87]
Transcriptional activation of circulating CD8+ T cells but not CD4+ T cells present in severe asthma [88]

Asthma endotype Severe asthma subgroups defined based on transcriptomic and clinical characteristics [92–94]

Asthma drug
response

KLF15 is a glucocorticoid responsive gene in ASM cells [101]

COPD Distinct PBMC gene expression representing immune, inflammatory response and sphingolipid metabolism
pathways, and including ASAH1, involved in COPD and emphysema [97]
Sputum gene expression changes, including IL18R1, are associated with COPD severity [98]
Increased gene expression of neutrophil proteases found in COPD patients with respiratory distress [99]

ARDS Blood neutrophil-related genes and pre-elafin are potential biomarkers in early sepsis-induced ARDS [106]
and in acute stage of ARDS [107], respectively
Neutrophil gene expression changes in ARDS similar to those in sepsis and burns [108]

IPF CCNA2 and alpha-defensin genes are upregulated in lung tissue of IPF patients with acute exacerbations [109]
PBMC CD28, ICOS, LCK, and ITK are predictors of poor outcomes (transplantation, death) in IPF [110]

PAH Expression changes in BMP2 and BMPR2 are associated with PAH, even in tissues from patients without BMPR2
mutations [114]

RNA-Seq

Asthma Differential expression of SLC26A4, POSTN, and BCL2 observed in endobronchial biopsies from asthma patients [89]

Asthma drug
response

CRISPLD2 is a glucocorticoid responsive gene in ASM cells [103]
Glucocorticoid-induced genes in ASM from asthma donors include FAM129A and SYNPO2 [104]
Cytokine gene expression is modulated by vitamin D treatment in ASM [105]

IPF Splicing changes in lung tissue COL6A3 and POSTN are associated with IPF [111]

Epigenomics

Methylation
microarray

Asthma Hypomethylation of IL13, RUNX3 and TIGIT observed in PBMCs of patients with persistent atopic asthma [136]
SMAD3 methylation at birth is associated with asthma in children of mothers with asthma [140]
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enabling precision medicine in heart, lung and blood-
related diseases.

Genomics of pulmonary diseases
Many asthma and COPD GWAS have been published
and thorough reviews have detailed their findings and
limitations [32, 33]. The most prominent GWAS of both
diseases are large meta-analyses that pool cohorts
gathered by investigators around the world and thus
have good statistical power to detect associations. Two
major published asthma GWAS consortium projects are

GABRIEL [34], consisting of European cohorts, and EVE
[35], consisting of diverse North American cohorts.
Major COPD GWAS include ECLIPSE, COPDGene, and
ICGN cohorts [36, 37]. The most well-known and highly
replicated asthma association signal is within the 17q21
locus that includes the ORMDL3 and GSDMB genes [34,
35]. Although this signal is specific to childhood-onset
asthma, and studies have made some progress in under-
standing the function of these genes, the precise
mechanism by which variants in this region modify
asthma risk is unknown [38–40]. Other robust asthma

Table 1 Summary of main findings for various omics approaches applied to the study of pulmonary diseases (Continued)

IgE levels AFPM1, ACOT7, and MND1 methylation are associated with total serum IgE levels in Hispanic children [141]
Serum IgE levels are associated with low methylated loci within/near genes encoding known eosinophil
products (e.g., IL5RA, IL1RL1, GATA1) [142]

COPD Methylation of C10orf11, a known COPD-associated gene identified via GWAS, observed in lung of smokers
who develop COPD [134]
EPAS1 identified as a key regulator of COPD by combining lung methylation and gene expression data [145]

IPF Methylation changes observed in CDKN2B, CAR10 and MGMT in fibroblasts from IPF patients [150]
Hypermethylation of CASZ1, and subsequent gene expression changes, are observed in lung of IPF patients [153]

ChIP-Seq

Asthma H3K4me2-marked enhancers in T cells are enriched for asthma-associated SNPs and Th2 cell type [154]

Asthma drug
response

Glucocorticoid receptor and p65 cooperatively regulate anti-inflammatory gene expression in airway
epithelial cells [130]

Proteomics

Asthma Plasma protein levels of CCL5, HPGDS, NPSR are associated with childhood asthma [162]

COPD CTSD, DPYSL2, TGM2, and TPP1 are potential COPD biomarkers; TGM2 in induced sputum and plasma is not
associated with smoking but is associated with COPD severity [165]

ARDS Pathways including inflammation and epithelial injury are associated with ARDS but ARDS-specific biomarkers
have not yet been identified [167]

IPF Levels of apolipoprotein A1, hemoglobin α, hemoglobin β [168], pulmonary fibrosis mediators and eosinophil-
and neutrophil-derived proteins [169] differ in IPF patients vs. controls

PAH TCTP is a mediator of endothelial prosurvival and growth signaling in PAH [173]

Metabolomics

Asthma Pathways relating to hypoxia response, oxidative stress, immunity, inflammation, lipid metabolism and the
tricarboxylic acid cycle were identified as significant in at least two of 21 asthma metabolomics studies. [180]

COPD Sphingolipids are highly expressed in sputum of smokers with COPD than smokers without COPD [191]

ARDS Octane, acetaldehyde and 3-methylheptane in exhaled breath discriminate ARDS patients from other intensive
care unit patients [194]

ARDS endotype A subgroup of ARDS patients with 235 overexpressed metabolites in pulmonary edema fluid had higher
mortality rate [197]

IPF Distinct changes observed in IPF lung tissues vs. controls include increased lactic acid [198], and changes in adenosine
triphosphate degradation, glycolysis, glutathione biosynthesis, and ornithine aminotransferase pathways [199]

PAH Decreased arginine and increased nitric oxide was found in PAH lung tissues vs. healthy controls [200]

Integrative Omics

Asthma Asthma susceptibility loci are lung eQTLs, including a 17q21 locus associated with GSDMA mRNA expression levels.
Network analyses of eQTLs and GWAS results identified SOCS3 pathway as a key driver of asthma [209]

COPD eQTLs near previously reported COPD GWAS loci (FAM13A, CHRNA3/5, HHIP) help identify potential functional loci [210]
COPD blood pQTLs for surfactant protein D, vitamin D binding protein, and TNFRSF10C are associated with COPD
phenotypes; association between eQTLs and pQTLs was low [211]

Single Cell RNA-Seq

IPF Coexpression of different cell-specific markers in IPF cells demonstrating “Indeterminate” states of differentiation in IPF [224]
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associations have been found in and near IL33, TSLP,
and IL1RL1 [34, 35], supporting the notion that epithe-
lial cell-derived cytokines play a critical role in promot-
ing the differentiation and activation of T helper 2 (Th2)
cells in asthma pathogenesis [32]. Prominent COPD
GWAS loci include FAM13A, CHRNA3/CHRNA5/
IREB2, and HHIP [33]; functional work to understand
the mechanisms by which they modulate COPD risk in
ongoing. Notably, HHIP haploinsufficiency has been
found to result in increased age-related emphysema in a
mouse model [41], and variation in the CHRNA3/
CHRNA5 locus is associated with nicotine dependence
and lung function, suggesting its role in COPD is related
to tobacco use and/or metabolism [42].
Due to the complex nature of asthma and COPD,

there have been attempts to increase power to detect
gene associations and clarify their functional role by
measuring associations with objective secondary quanti-
tative phenotypes and specific disease endotypes. This
precise approach has been successful in some cases. A
severe asthma GWAS identified a novel locus, CDHR3,
that had not been observed using broader asthma defini-
tions, in addition to the known asthma susceptibility loci
GSDMB, IL33, and IL1RL1 [43]. In COPD, SNPs at the
BICD1 gene were uniquely associated with emphysema
[44]. GWAS has been used to study levels of IgE, an
antibody that mediates allergic diseases and is elevated
in some asthma cases [45, 46]. Some associations found
correspond to IgE levels broadly (e.g., FCER1A), while
other others (e.g., HLA-DQB1) appear to be specific to
elevated IgE among asthma patients [47]. GWAS of
forced expiratory volume in one second (FEV1) and
FEV1-to-forced vital capacity (FVC) ratio have found
that SNPs in genes modifying lung function in healthy
adults overlap with some of those that confer COPD
risk, including FAM13A, HHIP, and HTR4, suggesting
that these genes modulate COPD risk via changes in
lung function [48].
Bronchodilator and glucocorticoid medications are

common drugs used in the treatment of asthma and
COPD [49, 50]. Inhaled short acting bronchodilators
(i.e., β2-agonists for asthma and COPD, anticholinergics
for COPD) are used to provide quick symptom relief
[49], while inhaled glucocorticoids are anti-inflammatory
controller medications that decrease symptoms with
regular use [49, 51]. Patients respond differently to these
and other asthma and COPD medications, and there is
evidence that genetics plays a role in determining drug
response [52, 53]. While efforts to develop pharmacoge-
netic tests for asthma and COPD drugs have not moved
beyond early stages, GWAS of pharmacogenetic traits
have found novel gene associations. For example,
SPATS2L has been associated with bronchodilator re-
sponse [54], and GLCCI1 has been associated with lung

function outcomes in asthma patients who used inhaled
glucocorticoids [55].
Rare variants do not appear to confer much risk for

asthma or COPD based on studies published thus far,
although future efforts with larger and precisely pheno-
typed subjects may yield more promising results. One
exome study found some evidence of population-specific
low-frequency variants being associated with asthma in
the following genes: GRASP and GSDMB among Lati-
nos, and MTHFR among African Americans/African
Caribbeans [56]. Findings from COPD exome studies
have provided some evidence of rare variant association
in novel and previously reported regions, but most re-
sults do not meet exome-wide statistical significance
levels [57, 58]. Thus, rare variants are unlikely to ac-
count for a significant proportion of asthma or COPD
heritability.
Compared to asthma and COPD, fewer GWAS have

been published for ARDS, IPF and PAH, in large part
due to their lower prevalence, which results in difficulty
recruiting cohorts of sample size necessary to detect sta-
tistically significant associations. An ongoing ARDS
GWAS by the iSPAAR Consortium has reported in
abstract form that moderate ARDS association signals
are found in FARP1 [59, 60]. IPF GWAS performed in
Japanese and European individuals have identified gen-
etic risk loci within TERT, TOLLIP/MUC5B, and SPPL2C
[61, 62]; a GWAS of the broader phenotype idiopathic
interstitial pneumonia identified an association within
the MUC5B promoter that was also associated with IPF
[63]. One form of PAH, familial PAH, is known to be
caused by genetic mutations, especially in the BMPR2
gene [64], indicating that genetic loci may confer risk to
other forms of PAH. Indeed, a PAH GWAS using cases
without BMPR2 mutations detected an association near
CBLN2 with an odds ratio of 1.97 (95% CI: 1.59–2.45)
and p-value 7.5 × 10−10, suggesting that other loci might
be identified via future GWAS [65]. As expected for rare
diseases, in which rare loci of larger effect size may
modulate disease risk in a small number of individuals,
WES has been used to identify high penetrance rare var-
iants in both familial and idiopathic PAH and in familial
IPF [66–69], suggesting that there is promise in continu-
ing to apply WGS to understand PAH and IPF.

Transcriptomics
Characterizing a transcriptome, or all transcripts expressed
in a cell or tissue, entails capturing a static measure of a
dynamic process that depends on many factors, including
developmental stage, health status, time of day, and recent
exposures [70]. As such, the goal of most transcriptomic
studies is to compare cells or tissues under controlled con-
ditions or disease states to identify major changes in gene
or transcript expression that lead to specific functional
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hypotheses or biomarker development. In parallel with
genomics, transcriptomes were first characterized using
microarrays, and shortly after the advent of NGS, their
measure was extended to RNA-Seq. Although microarrays
have remained a cost-effective and widely used technique
[71], a primary microarray supplier (Illumina, Inc., La Jolla,
CA) discontinued its expression arrays in Dec. 2016, sug-
gesting that sequencing will soon replace arrays entirely.
Because cell and tissue types have their own character-

istic transcriptomes [72], selecting the proper site to
collect RNA for a study is critical. For pulmonary disease
transcriptomic studies, RNA is often extracted from 1)
blood, either as whole blood, peripheral blood mono-
nuclear cells (PBMCs), neutrophils, CD4+ T cells, or
CD8+ T cells; 2) lung and airway tissues, either as whole
lung, endobronchial biopsies, airway smooth muscle
cells, or bronchial epithelial cells; 3) induced sputum;
and 4) bronchoalveolar or nasal lavage fluids. Several
disease-relevant genes and pathways have been identified
via transcriptomic studies, and transcriptomics results
have been used to identify disease sub-phenotypes – so
called endotypes [73]. Although most results from tran-
scriptomics have not yet yielded diagnostic tests or new
drugs for the five diseases discussed, given the growing
sample size and careful design of ongoing transcriptomic
studies, translation of more results into actionable clin-
ical insights may occur in the near future.

Gene expression microarrays
Since 1995, gene expression microarrays, which are
designed based on known transcripts, have been the pri-
mary technique used for gene expression profiling.
Recent human mRNA arrays measure expression of all
known genes with over 40,000 probes, and additional
platforms are available to measure expression of micro
RNA (miRNA) and long-non-coding RNA (lnRNA).
Analysis of microarrays required the development of
new methods, most of which are now well established
and readily accessible to investigators with various ana-
lytical backgrounds [74]. As with GWAS, multiple com-
parisons correction procedures are necessary to reduce
false-positive findings, given the large number of tests
performed. Public repositories such as Gene Expression
Omnibus (GEO) that host transcriptome data of over
140,000 assays [75], have facilitated re-use of gene
expression data for various purposes, including increas-
ing transparency and ensuring reproducibility of pub-
lished findings [76].

RNA-Seq
RNA-Seq allows for sequencing and quantification of
transcripts in a cell or tissue at unprecedented depth
[77]. Compared to microarrays, RNA-Seq is able to (1)
quantify a greater portion of RNA, (2) quantify RNA at

baseline, rather than only measure fold changes across
conditions, and (3) cover a wider dynamic range of sig-
nal [78]. Although RNA-Seq has been shown to provide
accurate and reproducible results [79], controversy about
the best way to analyze data still exists and development
of related methods is ongoing [80]. Along with micro-
array data, publicly available RNA-Seq data can be found
via GEO, although RNA-Seq data is hosted in the
Sequence Read Archive (SRA) along with other sequen-
cing data [81].

Transcriptomics of pulmonary diseases
Many transcriptomic studies of asthma and COPD have
been performed, with studies increasing in sample size
and including a wider range of cell and tissue types over
the past 10 years [82–84]. Overall, such studies have
found a lot of heterogeneity in expression patterns
among patients and no clear expression signature that
distinguishes patients from healthy controls. Such obser-
vations have led to studies that are more restrictive in
their definition of asthma or COPD, and to studies that
attempt to use expression patterns to identify disease
endotypes using unbiased analytic approaches [85].
One prominent asthma study compared expression

profiles of white blood cells from 17 severe asthma
patients, 19 well-controlled asthma patients, and 18
healthy controls and identified bitter taste transduction
receptors (TAS2Rs) as highly expressed in severe asthma
[86]. Due to experimental evidence showing that TAS2Rs
are bronchodilators and reduce inflammation, TAS2Rs
are now candidate drug targets in asthma. Other micro-
array studies have found that (1) genes involved in inter-
feron response, including GSDMB, one of the genes in
the 17q21 locus whose variants are strongly associated
with asthma, distinguish severe asthma epithelial cells
[87], and (2) CD8+, but not CD4+, T cells have gene ex-
pression changes that distinguish severe asthma vs. mild
asthma [88]. An RNA-Seq study that compared tran-
scriptome profiles of endobronchial biopsies from
asthma patients vs. controls identified 46 differentially
expressed genes, including SLC26A4, POSTN, and BCL2,
but these results have not been further validated [89].
Transcriptomic data has been used, in combination

with clinical variables, to identify asthma endotypes by
utilizing unsupervised algorithms to identify expression
signatures that characterize groups of patients [90–94].
The Unbiased Biomarkers in Prediction of Respiratory
Disease Outcomes (U-BIOPRED) Study Group found
that peripheral blood of patients with severe asthma
could be divided into groups according to differential
response to oral steroids [92]. Another U-BIOPRED
study based on sputum transcriptomics found that pa-
tients with severe asthma could be clustered into four
stable groups with distinct clinical characteristics (i.e.,
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well-controlled moderate-to-severe asthma; late-onset
severe asthma with a history of smoking and chronic air-
flow obstruction; late-onset severe asthma in non-
smokers with chronic airflow obstruction; obese female
patients with uncontrolled severe asthma and normal
lung function) [93]. The genes defining such groups
reflect distinct molecular mechanisms of disease and
thus may lead to biomarkers and group-specific treat-
ments. The Severe Asthma Research Program (SARP)
has also sought to identify asthma endotypes, most
recently finding via a weighted gene coexpression net-
work analysis that while they could not selectively
identify severe asthma patients, genes in network mod-
ules linked to epithelial growth and repair and neuronal
function were markedly decreased in severe asthma [94].
While in vitro exposure to tobacco produces a strong

gene expression signature [95] and some of these changes
may persist in lung tissue of past smokers [96], a broad
gene expression signature for COPD has not been found
and may not exist, given that COPD can occur via different
physiological processes. One study comparing PBMC ex-
pression changes in past/current smokers with and without
COPD and emphysema found 26 genes that distinguished
those with disease, representing immune and inflammatory
responses as well as sphingolipid metabolism [97]. Other
human transcriptomic studies of COPD have searched for
differences in expression among COPD patients. One large
study of sputum from 148 COPD patients found gene
expression changes that characterize the extent of emphy-
sema and airflow limitation, including in IL18R, which was
also found to have increased protein expression in airway
macrophages [98]. Another study found that neutrophil
proteases have increased expression in COPD patients with
respiratory distress [99]. Beyond COPD alone, comparison
of transcriptomic changes in COPD and IPF vs. normal
lungs found that both diseases were characterized by
increased expression of genes in the p53/hypoxia pathway,
suggesting that they share some expression changes that
reflect overlapping biological processes [100].
Transcriptome profiling also been used to understand

asthma and COPD drug responses. For example, papers
describing glucocorticoid-induced gene expression
changes have strong and consistent results, largely be-
cause the mechanism of action of glucocorticoids in-
cludes direct modulation of gene transcription within
cell nuclei [101–104]. An early microarray study that
investigated the effects of the glucocorticoid dexametha-
sone treatment on airway smooth muscle focused on
functional validation of KLF15, which was identified as a
novel modulator of airway hyperresponsiveness and has
been the focus of various studies since its discovery [101].
RNA-Seq studies to identify transcriptomic differences in
donor-derived primary airway smooth muscle cells that
were untreated vs. treated with a glucocorticoid have

identified other novel glucocorticoid response genes, such
as CRISPLD2 [103]. The effects of a 2-week course of oral
prednisolone on gene expression in patients with mild
asthma, using airway smooth muscle extracted via laser
caption microdissection from bronchoscopy samples, was
investigated with RNA-Seq [104]. Comparing samples
from 6 patients assigned to glucocorticoid treatment vs. 6
patients assigned to placebo, this study found that 15
genes were significantly differentially expressed between
groups, and 2 of the 15 genes, FAM129A and SYNPO2,
were also associated with airway hyperresponsiveness.
Studies have also found that airway smooth muscle treated
with vitamin D influences cytokine gene expression [105].
In contrast, transcriptomic studies of β2-agonist treatment
response do not have as strong results, likely because their
mechanism of action does not involve direct modulation
of gene transcription [103, 105].
As is the case for genomics, fewer ARDS, IPF and

PAH transcriptomic studies have been published com-
pared to those of asthma and COPD. ARDS studies
indicate that genes related to neutrophil response to
infection are modulated in sepsis patients who
develop ARDS, as well as during the acute vs.
recovery stages [106, 107]. Additionally, polymorpho-
nuclear leucocytes in ARDS patients have gene
expression changes that are very similar to those in
sepsis and burns [108]. IPF transcriptomic studies
have attempted to find markers of acute exacerbations
and poor outcome. Using RNA from lung tissue,
CCNA2 and alpha-defensins were identified as upreg-
ulated genes during acute exacerbations [109], while a
composite model that included levels of CD28, ICOS,
LCK, and ITK in PBMCs was identified as a useful
predictor of death and transplantation in IPF patients
[110]. RNA-Seq analysis of lung tissue changes in IPF
found that COL6A3 and POSTN have splicing changes
associated with disease [111]. A variety of other IPF-
associated expression changes have been identified in
lung tissue [112] and peripheral blood [113], suggest-
ing that transcriptomic changes will help identify IPF
onset and outcomes. For PAH, over 25 transcriptomic
studies have been published, most using RNA from
lung homogenate, PBMCs and pulmonary artery
smooth muscle cells [114]. Among the most signifi-
cant findings from these studies are that BMP2 and
its receptor, BMPR2, have expression changes associ-
ated with PAH. While mutations in BMPR2 are
known to lead to familial PAH, expression changes of
this gene and others related to its signaling pathway
are present in tissues derived from PAH patients who
do not have BMPR2 mutations [115, 116]. Consistent
with what is known about PAH pathophysiology,
other expression changes that have been observed in-
clude elevated expression of the estrogen receptor 1
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(ESR1) gene, and genes in pathways related to vascu-
lar remodeling [114]. Future studies of PAH gene
expression changes that are able to better capture
changes unique to pulmonary artery smooth muscle
cells may shed further light on specific biological
changes that may be targeted by drugs.

Epigenomics
An epigenome refers to genome modifications that regu-
late gene expression activity and downstream pheno-
types, but do not involve DNA sequence variation per
se. Epigenomic information can be heritable, but it also
varies considerably according to cell type, developmental
stage, and environmental exposures [117]. Most epige-
nomic studies are designed to address the question of
whether epigenome states are different in samples with
disease or other phenotype vs. those without it. Com-
monly studied epigenomic phenomena are DNA methy-
lation and histone modifications. In human methylation
studies, “methylation” usually refers to the presence of
covalently attached methyl groups to 5′ cytosine DNA
positions in CpG dinucleotides, a change that typically
represses gene expression [118]. Global profiling of
DNA methylation can be achieved using quantitative
molecular assays such as bisulfite treatment [119] and
methylated DNA immunoprecipitation (MeDIP), followed
by genotyping or sequencing of DNA [120]. Although
whole-genome bisulfite sequencing (WGBS) is the most
accurate way to measure DNA methylation, it is an expen-
sive technique. Hence, the considerably more affordable
DNA methylation arrays have been widely used. Histone
post-translational modifications (PTMs), including methy-
lation, phosphorylation, acetylation and ubiquitynation
that occur on N-terminal tails of histones, modulate gene
expression by affecting chromatin condensation and the
ability of transcriptional proteins to access DNA [121]. To
create global maps of genomic locations where histones
with modifications of a specific type are present, chroma-
tin immunoprecipitation (ChIP) to select DNA bound to
histones with specific modifications is used followed by
microarray analysis [120] or sequencing (ChIP-Seq) [122].
More broadly, techniques such as ChIP-Seq can be used
to characterize the cistrome, that is, the genome-wide
catalog of all short DNA sequences where a transcription
factor binds [123]. Because epigenomes are cell-specific,
pulmonary epigenomic studies use DNA extracted from
disease-related tissues and cells, including blood, PBMCs,
lung, and airway. While epigenomic findings related to
most pulmonary diseases have not yet yielded diagnostic
tests or therapies that are used in clinical practice, some of
the modifications identified have provided insights into
disease mechanisms that with further study may yield
actionable insights.

Epigenome-wide association studies (EWAS)
Akin to the concept of GWAS, epigenome-wide associ-
ation studies (EWAS) are unbiased studies that measure
associations between epigenetic modifications across the
genome with diseases or phenotypes [124]. To date,
EWAS have typically focused on DNA methylation due to
the availability of affordable methylation microarrays, in-
cluding Illumina’s HumanMethylation450 BeadChip,
which contains >450,000 probes and, more recently, the
MethylationEPIC BeadChip, which contains >850,000
probes [125]. Important considerations related to EWAS
design and interpretation include having appropriate sam-
ple sizes, accounting for cellular heterogeneity, and noting
that causality cannot be inferred from association results
[126]. The GEO and SRA resources mentioned earlier
host hundreds of methylation datasets obtained via micro-
array and high throughput sequencing, respectively [127].

Chromatin Immunoprecipitation sequencing (ChIP-Seq)
Experimental and analytical protocols for ChIP-Seq have
matured as this technique was used for hundreds of
Encyclopedia of DNA Elements (ENCODE) experiments,
resulting in evidence-based published standards and
guidelines [128, 129]. Although ENCODE assayed 118
cell types, neither this consortium nor others have
published many ChIP-Seq results specific to cells that
are key to pulmonary phenotypes. ChIP-Seq has been
used, however, to study gene regulation mechanisms of
important pulmonary disease-related drugs that affect
gene transcription. The global characterization of NF-κB
and glucocorticoid receptor cistromes using ChIP-Seq,
for example, has provided insights into how glucocorti-
coids alter immune response [130]. Recent studies that
measure transcription factor binding sites employ more
direct techniques, such as Assay for Transposase-
Accessible Chromatin using Sequencing (ATAC-Seq).
Unlike ChIP-Seq, which indirectly measures chromatin
structure via overlapping histone tail modifications,
ATAC-Seq probes open chromatin and provides in-
creased resolution of binding sites [131]. ChIP-Seq data
for various studies can be found in GEO and SRA, while
results for some, most notably those from ENCODE, are
available in the UCSC genome browser [127, 132].

Epigenomics of pulmonary diseases
Epigenomic studies of asthma and COPD mostly consist
of case/control designs that used arrays to measure
genome-wide methylation changes [133], with recent
studies simultaneously measuring gene expression
profiles to more directly link methylation status with
gene expression levels [134–136]. One study comparing
PBMC methylation changes of 97 inner-city children
with persistent atopic asthma to 97 healthy controls
found 81 differentially methylated regions, including
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hypomethylated immune genes in asthma (i.E. il13,
RUNX3, TIGIT) [136]. Analyses of methylation status of
2484 genes that were also correlated with expression
levels led to the identification of asthma-associated CpG
markers in RUNX3, IL4, and CAT [136].
Exposures to environmental factors, such as air pollu-

tion and maternal tobacco smoking during pregnancy,
have been associated with asthma development and
exacerbation in late childhood via alterations of DNA
methylation [137–139]. A recent EWAS comparing
methylation status in cord blood mononuclear cells from
36 children born to mothers with asthma, of whom 18
did and 18 did not develop asthma by age 9 years, iden-
tified 589 differentially methylated regions, including
one near the asthma-associated gene SMAD3, implying
that epigenetic changes may contribute to asthma patho-
genesis long before disease develops [140].
Total serum IgE EWAS conducted in asthma cohorts

found that methylation status of some genes was associated
with total IgE levels [136]. In Hispanic children, AFPM1,
ACOT7, and MND1 were associated with total IgE levels in
PBMCs [141], while a family-based EWAS of blood leuko-
cytes obtained from European nuclear pedigrees found
associations between IgE and low methylation at 36 loci an-
notated to genes (e.g., IL5RA, IL1RL1, GATA1) encoding
known eosinophil products and phospholipid inflammatory
mediators. Loci within genes encoding eosinophil products
were also found to be hypomethylated in eosinophils of
asthmatics with high IgE levels vs. asthmatics with low IgE
levels and controls, suggesting potential targets for asthma
patient stratification [142].
Epigenomic studies of COPD have identified methyla-

tion changes associated with COPD severity, decreased
lung function, and systemic glucocorticoid use [143, 144].
Combined analysis of genome-wide DNA methylation and
gene expression data in lung tissues obtained from pa-
tients with COPD vs. healthy controls identified EPAS1 as
a key regulator of COPD pathogenesis that has been con-
firmed via functional studies [145]. Because tobacco
smoking alters DNA methylation in cells/tissues [146],
with changes that persist after cessation [147], epigenomic
studies of COPD match cases and controls by smoking
status. DNA methylation changes associated with the de-
velopment of COPD among smokers were observed in
airway epithelial cells and lung tissues [134, 135]. The loci
involved were enriched for transcription factors and over-
lapped with known COPD GWAS hits, such as C10orf11
[134]. Changes in methylation among COPD patients have
also been linked to the development of lung cancer, as
tumors from non-small-cell patients with COPD had
more methylated CCDC37 and MAP1B promoters than
those of patients without COPD [148].
An ARDS genome-wide methylation profiling study of

whole blood from 114 intensive care unit patients, 39 of

whom developed ARDS, used a candidate-gene approach
to determine that methylation changes in MYLK were
associated with genetic variation and modified by ethni-
city between ARDS cases and intensive care unit
controls [149]. IPF EWAS conducted using lung tissues
and fibroblasts have provided preliminary evidence that
widespread DNA methylation changes were present in
IPF, including in CDKN2B, CARD10, and MGMT, genes
that were also differentially expressed at the mRNA and
protein levels [150–152]. Combined genome-wide DNA
methylation and gene expression data of lung tissues
from 94 IPF patients vs. 67 controls identified 738 differ-
entially methylated regions with significant changes in
gene expression, also suggesting that DNA methylation
changes affecting gene expression contribute to the
pathogenesis of IPF, although precise mechanisms of this
change are unknown [153]. Genome-wide methylation
studies of PAH have not yet been published.
Beyond the ENCODE datasets described above, two

salient pulmonary-disease related ChIP-Seq studies have
been published. A ChIP-Seq study of H3K4me2 in naïve
and memory CD4+ T cells obtained from 12 asthma
patients and 12 healthy controls found that H3K4me2-
marked enhancers were associated with both asthma
susceptibility and Th2 cell type, and that asthma GWAS
SNPs were enriched in the Th2 enhancers [154].
Secondly, ChIP-Seq data for glucocorticoid receptor
(GR) and NF-κB (p65) in Beas-2B bronchial epithelial
cells treated with the glucocorticoid dexamethasone
found that GR and p65 cooperatively regulate the
expression of anti-inflammatory genes [130].

Proteomics
Protein expression levels reflect the metabolic state of,
and physical processes experienced by, cells. In addition to
measures of protein levels themselves, assays to measure
critical aspects of protein function, including localization,
protein-protein interactions, and post-translational modi-
fications (PTMs) have also been developed. Characterizing
the full proteome is still challenging, but technological
innovations are improving our ability to obtain cross-
sectional time and space snapshots of protein levels. These
snapshots reflect observed phenotypes more closely than
those of genomic, transcriptomic, or epigenomic tech-
niques [3]. Protein microarrays designed based on known
proteins or peptides were the first to increase high-
throughput capacity to discover protein biomarkers,
analogous to the microarray technologies that were first
used to measure global gene expression and variation
[155]. Beside array-based assays, high-throughput tech-
nologies for proteomics include mass spectrometry (MS)-
based techniques (e.g., tandem-MS (MS/MS)) and gel-
based techniques (e.g., differential in-gel electrophoresis
(DIGE)) [3].
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Pulmonary disease proteomics studies have been
carried out using induced sputum, pulmonary epithelial
lining fluid, bronchoalveolar and nasal lavage fluids, ex-
haled breath condensate, and blood plasma and serum
[156]. Most proteomic studies of pulmonary diseases
have case-control designs, with sample sizes ranging
from tens to hundreds of samples [156]. While some of
the statistical issues relevant to other omics techniques
apply to proteomics, the technologies used for proteo-
mics are quite different than those used for next-
generation sequencing and arrays, necessitating tailored
analytical approaches and introducing new limitations.
Additionally, the greater diversity of technologies used
to obtain proteomics data has resulted in a slower adop-
tion of standards to identify and report findings. While
the creation and use of a public repository analogous to
GEO or SRA to store and catalog proteomics data
contributed by researchers has lagged relative to other
omics data types, the European Bioinformatics Institute’s
PRoteomics IDEntifications (PRIDE) database, a standards-
compliant repository that now contains data from over
70,000 assays, is a comprehensive and widely utilized
resource [157].

Quantitative proteomics
Although MS-based approaches have been widely used
since the 1980s, recent advances referred to as “next-gener-
ation proteomics,” allow for the quantitative characterization
of nearly complete proteomes [3]. These newer approaches
involve pre-fractionating protein samples or enriching spe-
cific subpopulations of peptides (e.g., by selecting for PTMs),
and then using liquid chromatography (LC)-MS, which con-
sists of measuring peptides via MS/MS within fractionated
portions separated by LC. After MS/MS spectra are
converted into corresponding peptide sequences via com-
parison to a known database, peptides are assembled into
proteins [3]. The ProteomicsDB resource contains a draft of
the human proteome, consisting of 18,097 human protein-
coding genes, identified via the collection of MS-based
assays [158].

Histone post-translational modifications (PTMs)
In addition to characterizing DNA binding sites for
specific histone PTMs via ChIP-Seq, recent high-
throughput quantitative proteomics approaches can
measure modified forms of histone amino terminal tails
using online LC-MS. Via these state-of-the-art tech-
niques, both single and combinatorial histone codes can
be interrogated to quantify global changes in PTMs
under different conditions [159]. Because analyses of his-
tone PTMs have revealed that a large number of modi-
fied residues in histones act as “histone codes” that are
associated with specific physiological processes, identify-
ing combinations of PTMs provides a more complete

view of how histone states influence gene transcription
and lead to specific physiological processes or disease
states [160]. Following the identification of histone
PTMs that are associated with an outcome, ChIP-Seq
can be used to identify specific genes whose expression
is altered by the PTMs.

Phosphoproteomics
Changing the catalytic activity of proteins via phosphor-
ylation is a ubiquitous mechanism used to control many
biological pathways. Over 30,000 phosphorylation sites
have been quantitatively identified via MS-based tech-
nology, and it is estimated that an additional 500,000
phosphorylation sites exist in the proteome [3]. Phos-
phoproteomics is a technique that attempts to quantify
levels of all phosphorylation sites simultaneously by elut-
ing phosphorylated peptides from solution prior to per-
forming MS. Although phosphoproteomic studies of
pulmonary diseases have not been reported so far, this
technique has shown promise in other areas. Global
phosphoproetomic profiles of thrombin response in hu-
man endothelial cells, for instance, were used to identify
known and novel phosphorylation sites that may play a
role in platelet aggregation [161].

Proteomics in pulmonary diseases
A proteomic study of plasma from 106 children with
asthma and 68 controls identified three proteins (CCL5,
HPGDS, NPSR) that had different plasma levels in
asthmatic children compared to controls, suggesting
they could be biomarkers [162]. Studies of the induced
sputum proteome from asthma and COPD patients vs.
healthy controls have found many potential biomarkers,
including calgranulin A and B [163, 164]. Comparison of
the lung tissue proteome of nonsmokers, smokers,
smokers with mild to moderate COPD, and those with
severe to very severe COPD found and validated potential
COPD biomarkers, including CTSD, DPYSL2, TGM2, and
TPP1 [165]. Additionally, increased sputum and plasma
levels of TGM2, which were not associated with smoking,
were correlated with COPD severity. Although histone
PTM studies related to pulmonary diseases have not been
published, such studies would provide helpful insights.
For example, reduced responsiveness to glucocorticoids in
patients with severe asthma and COPD has been attrib-
uted to GR modifications mediated via histone deacetylase
2 (HDAC2) [166]. Because HDAC2 modifies histone
PTMs widely, understanding its role on a global level
would provide a more comprehensive view of how it alters
glucocorticoid response.
Proteomics studies have been conducted to find

biomarkers for ARDS, and poor outcomes among those
who develop it, as the need for drug development and
understanding disease pathobiology are particularly high
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for this disease [167]. Although some pathways have
been identified via these studies (e.g., inflammation and
epithelial injury), ARDS-specific markers have not yet
been identified [167]. Proteomic changes in lung tissue,
nasal lavage fluid and bronchoalveolar lavage fluid from
patients with IPF compared to healthy controls include
differences in apolipoprotein A1, hemoglobin α, and
hemoglobin β [168], pulmonary fibrosis mediators (osteo-
pontin, MMP7, CXCL7, CCL18) and eosinophil- and
neutrophil-derived proteins [169]. Proteomic changes
identified in PAH thus far also suggest proteins (e.g.,
TCTP) and pathways (e.g., cell contraction, oxidative
stress) that may be important, but there are no validated
markers to identify patients or subclassify those with PAH
[170–174].

Metabolomics
Metabolites are small molecules (<1 kDa) that partici-
pate in chemical reactions within living organisms, and
they include endogenous (amino acids, nucleic acids,
vitamins) and exogeneous (drugs, toxins) chemicals.
Metabolomics refers to the measure of all metabolites in
a biological system [175]. Similar to proteomics, metabo-
lomics provides a snapshot of the active physiological
status of a cell or tissue. The most common techniques
used to characterize the metabolome are nuclear
magnetic resonance (NMR) and high-resolution MS
[176, 177]. While metabolomics studies are unbiased,
the identification of specific metabolites relies on hav-
ing references to link measured spectra to them. The
public repository Human Metabolome Database
(HMDB) provides curated metabolomic data, cur-
rently listings 42,000 metabolites [178]. This resource
allows users to search metabolites by categories (e.g.,
metabolite name, disease, and biofluid), and it expe-
dites the process of mining metabolomic data. A wide
range of biological samples have been used for pul-
monary disease metabolomics studies, including blood
serum and plasma, induced sputum, exhaled breath
condensate, bronchoalveolar lavage fluid, and lung tissue
[179]. Due to the non-invasive and convenient nature of
acquiring urine in a clinical setting, urine is also sought as
a target to identify metabolomics biomarkers.

Metabolomics in pulmonary diseases
Metabolomics studies related to asthma have focused on
differences between patients and healthy controls, and
between those who are responsive to glucocorticoid treat-
ment vs. those who have low responsiveness [180–182].
Despite small sample sizes, varied biospecimens, profliling
technologies, and populations, there were consistencies
across 21 asthma biomarker studies: several identified the
metabolites acetate, adenosine, hippurate, succinate, ala-
nine, and threonine as related to asthma, and the pathways

hypoxia response, oxidative stress, immunity, inflammation,
lipid metabolism, and TCA cycle [180]. Although high
accuracy tests based on metabolic markers in exhaled
breath condensate, serum, and urine have been proposed
for noninvasive asthma diagnostics and therapeutic moni-
toring, most have not been validated in independent sam-
ples [183–186]. For example, a metabolomic study of
volatile organic compounds in exhaled breath condensate
samples from 63 children with asthma vs. 57 healthy con-
trols found that eight volatile organic compounds could
classify children with asthma with a sensitivity of 89% and a
specificity of 95% [187].
Metabolomic studies of COPD have identified poten-

tial serum/plasma metabolic markers used for early
recognition of COPD development and exacerbation,
independently of smoking status, with markers consist-
ently representing chronic inflammation and oxidative
stress pathways [188–190]. A study that focused on lipi-
dome metabolites, found that sphingolipids were highly
expressed in sputum of smokers with COPD compared
to smokers without COPD [191]. A subsequent targeted
study of plasma sphingolipids, found that two specific
subgroups, sphingomyelins and glycosphingolipids, were
associated with emphysema and COPD exacerbations,
respectively [192]. A study of urine metabolomic data
from patients with asthma and COPD created a diagnos-
tic model to discriminate asthma from COPD that had
90% accuracy on the dataset used for model creation
[193]. Validation of this and other previously reported
metabolomics-based biomarker tests in independent co-
horts is necessary to verify their potential clinical utility.
Metabolomics has also been applied to the search for

ARDS biomarkers, with reports based on exhaled breath,
plasma, and bronchoalveolar lavage fluid that showed
promise to discriminate between 1) ARDS patients and
healthy controls, 2) ventilated intensive care unit
patients who did or did not develop ARDS, and 3) sepsis
patients who did or did not develop ARDS [194–196]. A
recent study comparing undiluted pulmonary edema
fluid in ARDS patients and control patients with hydro-
static pulmonary edema, identified an endotype of ARDS
patients based on a signature of 235 overrepresented
metabolites that was associated with a higher mortality
rate [197]. IPF metabolomics studies comparing lung
tissue of IPF patients vs. healthy controls have found in-
creased levels of lactic acid in lung tissue of patients sug-
gesting a pH-dependent TGF-β activation mechanism
that drives myofibroblast differentiation in IPF [198],
and metabolite signatures involving the pathways adeno-
sine triphosphate degradation, glycolysis, glutathione
biosynthesis, and ornithine aminotransferase [199]. A
PAH metabolomics study comparing lung tissues of 8
PAH patients vs. 8 healthy controls found disruption of
arginine and oxidative pathways in PAH lung tissues,
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including decreased arginine and increased nitric
oxide [200].

Integrative omics
The integration of diverse omics datasets provides an
opportunity to gain insights beyond those that are pos-
sible from individual datasets. Thus far, most integrative
omics analyses involve the pairing of two data types, but
increasingly complex analyses have been conducted as
novel methods have been developed [201]. Genome-
wide expression quantitative trait loci (eQTL) studies,
the most common paired approach, involve the meas-
urement of associations between genetic variants and
gene expression levels. An assumption of eQTL studies
is that differing levels of mRNA result in different
observable phenotypic outcomes. Thus, if a GWAS hit is
also an eQTL, one can hypothesize that the SNP modu-
lates an associated phenotype via changes to level of
expression of a specific gene. Due to the cell- and
exposure-specific nature of gene expression, eQTLs are
most relevant to a GWAS if their results were obtained
in a disease-relevant context. The most comprehensive
eQTL database currently available is the Genotype-
Tissue Expression (GTEx) resource, which includes data
for 1641 samples across 43 tissues from 175 individuals
[202]. Although this resource is helpful, it does not ideal
for pulmonary disease studies, as results for lung are de-
rived from lung tissue, rather than cell-specific lung
components. The design of eQTL studies has been ex-
tended to relate genetic variants to protein and methyla-
tion levels, resulting in so-called protein quantitative
trait loci (pQTL) [203] and methylation quantitative trait
loci (meQTL) [204] studies. Approaches that consider
more than two data types often involve multi-staged
analyses, where relationships among datasets are sought
in a hierarchical fashion [205, 206]. Prior to integration,
individual datasets must be analyzed carefully to reduce
propagation of errors, as these compound when per-
forming integrated analyses [11]. Additionally, overfitting
errors are more prominent because the number of ob-
servations in integrative analyses are much greater than
the number of individual samples [11].
Most integrative omics studies in pulmonary diseases

are eQTL studies [207, 208]. A large-scale asthma eQTL
study of 1111 human lung tissues identified an eQTL
within GSDMA that was a risk allele for asthma in the
GABRIEL GWAS study, and created a network of rela-
tionships with eQTL and GWAS data that identified
SOCS3 as a key asthma pathway [209]. A large COPD
eQTL study that used whole blood and sputum gene
expression data from 121 ECLIPSE subjects found
eQTLs near previously reported GWAS loci (FAM13A,
CHRNA3/5, HHIP), suggesting hypotheses for how asso-
ciation signals are functionally related to COPD [210]. A

COPD pQTL study based on expression levels of 88
blood proteins and a COPD GWAS, found 527 pQTLs,
including surfactant protein D, vitamin D binding pro-
tein, and TNFRSF10C [211]. Despite not using unbiased
proteomic measures, this study showed that pQTLs
provide helpful functional links that were absent at the
level of eQTLs for most of the genes in question. A
broader integrative study of longitudinal FEV1 in chil-
dren with asthma combined GWAS, RNA-Seq, and
ChIP-Seq data to identify seven nominally significant
variants that could be related to this phenotype [212].
Although this study did not fully integrate datasets and
it suffered from having a small sample size, it demon-
strated that leveraging multiple datasets can lead to
helpful disease insights.
Another approach taken in integrative omics studies is

to use networks to model higher-order interactions
among biological, environmental, and clinical character-
istics of patient groups to identify hypotheses regarding
disease mechanisms. A common network approach is to
represent molecules (e.g. genes, proteins) and diseases as
nodes, and assign edges between nodes according to
known or measured relationships. From such networks,
various structural measures are made, including the
identification of the most highly connected nodes (i.e.,
the key nodes) and of modules consisting of highly
connected groups of nodes that are thought to partici-
pate in specific biological or pathogenic processes or
share other commonalities [213, 214]. Such measures
are used to prioritize relationships for further validation
studies. Network-based analyses focused on transcrip-
tomic data are most common, and have been applied to
identify clinically distinct asthma and COPD subgroups
[94, 215, 216].

Single cell approaches
In contrast to the omics techniques already discussed
that use cells or tissue in bulk as starting materials,
newer assays are enabling the characterization of single
cells [217]. Such approaches offer a more thorough
understanding of physiological processes, as single-cell
resolution omics data enables the characterization of
intra-cellular populations, cell states, and cell transitions
that are not observable with population-averaged cell
data [218, 219]. The workflow for single-cell techniques
is similar to that for their bulk counterparts, but with
additional key steps to isolate single cells and amplify
the genome component of interest [220]. Novel compu-
tational and statistical methods have arisen to deal with
challenges related to these techniques. For example,
analysis of single-cell RNA-Seq (scRNA-Seq) data, the
most widely used single cell approach, involves dealing
with a large number of undetected transcripts (i.e., an
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abundance of zeros), increased variability, and multi-
modal expression distributions [221].
Although the number of scRNA-Seq studies is quickly

expanding, few related to pulmonary diseases have been
published. Mouse model scRNA-Seq studies have been
used to 1) reconstruct cell lineage hierarchies of lung
epithelial cells, unveiling progenitors of two alveolar type
cells and novel cell-type specific markers [222], and 2)
identify innate lymphoid cell precursor subsets using
mouse bone marrow progenitors [223]. An IPF scRNA-
Seq study found that IPF cells often coexpressed markers
of alveolar type 1, alveolar type 2, and conducting airway
cells, and were thus in “indeterminate” states of differen-
tiation, in contrast to normal lung epithelial cells that
expressed alveolar type 2 markers [224]. Future single-
cell omics studies will be especially helpful to under-
stand cell populations that are drivers of disease and
characterize developmental processes.

Conclusions
A growing number of pulmonary disease omics studies
have been reported over the last decade, covering an
ever-increasing number of tissues and using newer tech-
nologies. Omics studies thus far have led to insights into
disease mechanisms and laid a foundation for biomarker
and therapeutic discovery, but our ability to generate
hypotheses from omics-based studies has quickly out-
paced our ability to translate hypotheses into actionable
biologic insights. Genomic and transcriptomic studies of
asthma, COPD, ARDS, IPF, and PAH, have identified
replicable findings that are the subject of ongoing func-
tional validation studies. Prominent genomics results in-
clude the 17q21 locus, HHIP and MUC5B genetic
variants that confer risk for asthma, COPD and IPF,
respectively, while prominent transcriptomic results
include the differential expression of bitter taste receptor
and KLF5 genes observed in asthma that may lead to
novel therapeutic targets. Epigenomic studies have iden-
tified methylation patterns specific to COPD (e.g.,
C10orf11 in lung), asthma (e.g., IL13, RUNX3, TIGIT in
PBMCs) and IPF (e.g., CASZ1 in lung), although much
work remains to characterize cell-specific changes and
include more ARDS and PAH samples. Relatively few
proteomic and metabolomic studies have been published
for pulmonary diseases, but sphingolipids are candidate
biomarkers for COPD and a combination of exhaled
breath condensates, including octane and acetaldehyde,
show promise to become ARDS biomarkers. Studies that
have identified asthma, COPD and IPF endotypes thus
far show promise in our ability to reliably classify dis-
eases using omics data, and such approaches will extend
to ARDS and PAH.
As the knowledgebase derived from omics profiles of

healthy, diseased and treated cells from diverse donors

grows, defining subgroups of patients with distinct
molecular and clinical characteristics will facilitate the
development of biomarkers to accurately predict
whether a patient has or will develop a specific disease
type, or whether a patient is responding or will respond
to a particular drug or form of therapy. Integrative
analyses of omics data that combine a wide variety of
data types will help prioritize mechanistic studies to
understand the function of various observed relation-
ships, as well as identify the most promising candidates
for prospective biomarker trials. Ongoing and future
omics studies covering a broader and diverse set of pa-
tients and data types and leveraging integrative analytic
strategies will accelerate the advance of pulmonary
disease precision medicine.
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