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Controlling and probing non-abelian emergent
gauge potentials in spinor Bose-Fermi mixtures
Nguyen Thanh Phuc1, Gen Tatara1, Yuki Kawaguchi2 & Masahito Ueda1,3

Gauge fields, typified by the electromagnetic field, often appear as emergent phenomena due

to geometrical properties of a curved Hilbert subspace, and provide a key mechanism

for understanding such exotic phenomena as the anomalous and topological Hall effects.

Non-abelian gauge potentials serve as a source of non-singular magnetic monopoles. Here

we show that unlike conventional solid materials, the non-abelianness of emergent gauge

potentials in spinor Bose-Fermi atomic mixtures can be continuously varied by changing the

relative particle-number densities of bosons and fermions. The non-abelian feature is

captured by an explicit dependence of the measurable spin current density of fermions in the

mixture on the variable coupling constant. Spinor mixtures also provide us with a method to

coherently and spontaneously generate a pure spin current without relying on the spin Hall

effect. Such a spin current is expected to have potential applications in the new generation of

atomtronic devices.
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G
auge fields are the fundamental ingredient in the Standard
Model of elementary-particle physics1. In condensed
matter physics, a large number of phenomena including

optical and transport properties of solids appear as the responses
of the system to an applied electromagnetic field. Remarkably,
gauge fields often emerge due to a nontrivial topology of
the Hilbert subspace to which the particle’s wavefunction is
restricted2. It is analogous to the parallel transport of a vector on
the surface of the two-dimensional unit sphere S2 as it picks up
the surface’s curvature to change its direction while going around
a closed loop. Here the vector and the S2 surface corresponds to
the wavefunction and the restricted Hilbert subspace, respectively.
If a particle with spin degrees of freedom moves in a spatially
varying magnetic field and its spin adiabatically follows the field’s
direction, the particle accumulates a quantum-mechanical phase
known as the Berry phase3. This phase arises from geometric
properties of the Hilbert subspace composed of the spin and
motional degrees of freedom, and it serves as an emergent gauge
potential in the Hamiltonian description4. Since the spin degrees
of freedom of the particle are frozen by the adiabatic orientation
of its magnetization to the local direction of the external magnetic
field, the emergent gauge potential is abelian just like the vector
potential of a conventional electromagnetic field. The potential
generates forces from its spatial and temporal variations5, and
these forces act on a spin-carrying particle in the same way as the
Lorentz forces act on a charged particle. Examples include the
anomalous Hall effect in magnetic materials due to non-coplanar
spin configurations6,7 and the topological Hall effect, which
has been observed in both chiral magnets8–10 and atomic
Bose–Einstein condensates (BECs)11 with skyrmion spin textures.

On the other hand, in two-dimensional material systems,
almost every possible linear combination of the Rashba12 and
Dresselhaus13 spin–orbit interactions can be represented by a
spatially uniform non-abelian vector potential A¼

P
a¼ x, y, z

Aasa, where sa’s are the Pauli matrices14. Due to the non-
commutativity [sa, sb]a0, the non-abelian gauge potential
generates an effective magnetic field proportional to sz. This
magnetic field points in the opposite directions for spin-up and
spin-down particles, thereby giving rise to the spin Hall effect that
underlies a large number of spintronics devices15–21. The spin
Hall effect has also been extensively studied and recently observed
in systems of ultracold atoms with light-induced gauge
potentials22–24. The idea of a non-abelian gauge potential was
first proposed by Wilczek and Zee who generalize the adiabatic
theorem to the case in which there are a group of eigenstates that
remain degenerate and well isolated from other levels in the
course of time evolution25. This analysis has led to applications in
many areas such as molecular and condensed matter physics26,27.
In particular, the possibility of generating non-abelian magnetic
monopoles was proposed and demonstrated in the rotational
dynamics of diatomic molecules28–31, nuclear quadrupole
resonance32 and spinor BECs33. The studies of non-abelian
dynamics of ultracold atoms in laser fields have been conducted
extensively34–37.

So far the abelian and non-abelian gauge potentials have been
investigated in different systems, and we have no way to control
the non-abelianness of the gauge potentials in a single system.
Moreover, there has been no observable indicator of the non-
abelianness for partially non-abelian gauge potentials. In this
work, we show that a spinor Bose-Fermi mixture can be used to
serve this purpose. Such a mixture offers a platform for the study
of the abelian–non-abelian crossover, where a change in the
singularity of a topological defect such as Dirac’s magnetic
monopole should play an important role. The mixture we
consider consists of an optically trapped ultracold Fermi gas that
overlaps with a spinor BEC, which forms a helical spin texture

(see Fig. 1). A noncollinear spin texture gives rise to an emergent
gauge potential that acts on fermions in the mixture due to their
spin-dependent interaction with bosons. We can switch from the
abelian to non-abelian regimes of the emergent potential by
gradually liberating the spin degrees of freedom of fermions, or
equivalently by weakening the spin adiabaticity in the sense of
decreasing the ratio of the magnitude of the fermion–boson
interaction to the Fermi energy. This can be implemented by
varying the relative particle-number densities of bosons and
fermions in the mixture. The non-abelian gauge potential then
generates a generalized non-abelian electric field, which causes a
pure spin current of fermionic atoms to flow in the mixture (see
discussions below equation (6)). The non-abelianness of the
emergent gauge potential is characterized by an explicit depen-
dence of the spin current density in the Fermi gas on the variable
coupling constant. Unlike conventional solid materials, a pure spin
current density can be measured in ultracold atomic gases by using
the time-of-flight absorption imaging in conjunction with the
Stern–Gerlach experiment38. The flows of particles of opposite
spins in opposite directions would result in two spatially separated
expanding clouds of up-spin and down-spin atoms as the trap is
removed. Alternatively, the spin accumulations at the edges of the
system as a result of the generated spin current can be observed by
an in situ spin-texture-resolved measurement39. Using the non-
equilibrium Green’s function method, we calculate the spin current
density in both strong-coupling and weak-coupling limits and
obtain its analytic expression in terms of system’s fundamental
parameters. Our result is valid over a large parameter region, and
thus allows a quantitative comparison between theoretical
predictions and experimental measurements. Spinor mixtures
also provide us with a new tool to coherently and spontaneously
generate a pure spin current, which is not a simple task in solid
materials, without relying on the spin Hall effect. Such a spin
current is expected to have potential applications in the new
generation of ultracold atom-based ‘atomtronic’ devices40–44.

Results
System. A spinor Bose-Fermi mixture considered in this work is
illustrated in Fig. 1. A helical spin texture is formed in a spinor
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Figure 1 | Non-abelian emergent gauge potential in a spinor Bose-Fermi

mixture. A Bose-Fermi mixture is confined in an optical trap shown in

magenta, where solid blue arrows show how the local magnetization of a

ferromagnetic spinor Bose–Einstein condensate varies over space to form a

helix, while solid brown spheres represent spin-1/2 fermions with arrows

showing their spin’s directions. Thin zigzag arrows illustrate diffusive

motion of fermions. A helical spin texture is prepared in the condensate

through application of a p/2 radio-frequency pulse followed by a magnetic

field gradient46. Fermions experience a non-abelian gauge potential

A¼
P

a¼ x, y, x Aasa (long grey arrow) with sa’s being the Pauli matrices due

to their interactions with the spin texture. The non-abelianness can be

controlled continuously by varying the relative particle-number densities of

bosons and fermions. The emergent gauge potential results in a pure spin

current Js (long orange arrow) in the Fermi gas, that is, flows of fermions

with opposite spins in opposite directions, which can be measured using the

time-of-flight absorption imaging in conjunction with the Stern–Gerlach

experiment.
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BEC with a ferromagnetic interaction, such as a spin-1 87Rb
condensate, through application of a p/2 radio-frequency (RF)
pulse to the z-axis polarized BEC to rotate the atomic magneti-
zation to the xy plane before applying a transient magnetic field
gradient dBz/dz for a period of tB (ref. 45). The Larmor
precession of atomic spins with a space-dependent frequency
results in a helical spin texture Fþ (r)�Fx(r)þ iFy(r)¼ eij?r and
Fz(r)¼ 0, where F(r) represents the unit vector showing the
direction of the magnetization of the condensate46. The
wavevector of the helical spin structure is given by
j¼ (gFmBtBez/‘ ) (dBz/dz), where gF is the Lande g-factor for
the hyperfine spin-F manifold, mB is the Bohr magneton and ez

denotes the unit vector in the z direction.
Since the mixture of atomic gases is a dilute system at

temperature much lower than the energy scale of the short-range
interactions between atoms, the boson–fermion interactions
can be well approximated by contact interactions whose
strengths are determined by the s-wave scattering lengths:
V r1; r2ð Þ¼d r1� r2ð Þ

P
F

4p‘ 2aF
M P̂, where M � MbMf

Mb þMf
is the

effective mass for the relative motion of a boson with mass Mb

and a fermion with mass Mf, and aF and P̂F are the scattering
length and the projection operator onto the total hyperfine spin-F
scattering channel, respectively. For the scattering of a spin-S
boson (S is an integer) and a spin-1/2 fermion, F can take one of
the two values F ¼ S � 1

2. On the other hand, the projection
operators can be linearly expressed in terms of the identity

operator and the spin product operator as P̂Sþ 1
2
¼ Sþ 1ð Þ1̂þ 2F̂1�F̂2

2Sþ 1

and P̂S� 1
2
¼ S1̂� 2F̂1�F̂2

2Sþ 1 ; thereby the interaction can be rewritten as

V r1; r2ð Þ ¼ d r1� r2ð Þ g01̂þ gF̂1 � F̂2
� �

; ð1Þ

where g0 ¼ 4p‘ 2½ Sþ 1ð ÞaSþ 1
2
þ SaS� 1

2
�= 2Sþ 1ð ÞM½ � and

g ¼ 8p‘ 2½aSþ 1
2
� aS� 1

2
�= 2Sþ 1ð ÞM½ � are the spin-independent

and spin-dependent interaction strengths, respectively. In the
second-quantization representation, the spin-dependent
interaction between bosons and fermions is given by

V̂ ¼ J
Z

d3r cy rð Þ F rð Þ � r½ �c rð Þ; ð2Þ

where c rð Þ ¼ ðc";c#Þ
T is the annihilation operator of the

fermions (T denotes the transpose), r is the vector of Pauli
matrices and J¼ gSnb/2 is the coupling constant with nb being the
density of condensate particles. Here we used the fact that the
BEC has a macroscopic occupation of atoms in a single-particle
state so that their field operators can be approximated by a
classical field with the magnetization vector given by F(r).
In the following calculations, the spin texture is assumed to be
time independent. The validity of this assumption and the roles of
other interactions will be discussed in the Discussion section.

Emergent gauge potential. To find the emergent gauge
potential, we go to the adiabatic reference frame in which the
quantization axis of the spins of fermions is aligned parallel to the
local spin texture of the BEC. Mathematically, it is carried out
by means of a 2� 2 unitary matrix U(r) such that
Uw(r)[F(r) � r]U(r)¼sz. If the unit vector F(r) is represented by
the polar angles as F(r)¼ (sin y cosf, siny sinf, cosy)T, U(r) can
be expressed in terms of the Pauli matrices as U(r)¼m(r) � r
with m rð Þ ¼ ðsin y

2 cosf; sin y
2 sinf; cos y

2Þ
T. Note that Uw¼U and

U2¼ 1, implying the unitarity. The field operator ~c rð Þ of
fermions in the adiabatic frame is related to its counterpart in the
laboratory frame by c rð Þ¼U rð Þ~c rð Þ. The Hamiltonian of the
Fermi gas Ĥ ¼

R
d3rcw rð Þð� ‘ 2r2

2Mf
�mÞc rð Þþ V̂ , where m is the

temperature-dependent chemical potential for a given particle-
number density and V̂ is the interaction given by equation (2), is
then rewritten in terms of ~c rð Þ as47

H ¼
Z

d3r ~cy rð Þ ‘ 2 � irþAð Þ2

2Mf
�mþ Jsz

� �
~c rð Þ; ð3Þ

where each component Aj (j¼ x, y, z) of the generalized
non-abelian gauge potential is a 2� 2 matrix given by
Aj rð Þ ¼ � iU � 1@jU ¼ m�@jm

� �
� r ¼

P
a¼x; y; z Aa

j sa. Here and
henceforth, the superscripts in greek characters represent the spin
polarization, while the subscripts in roman characters denote the
spatial direction. In terms of the polar angles y and f of F(r), the
three spin polarization components of the emergent gauge
potential are written as:

Ax¼ 1
2
�rysinf� sinycosfrfð Þ; ð4Þ

Ay ¼ 1
2
rycosf� sinysinfrfð Þ; ð5Þ

Az ¼ 1
2
ð1� cosyÞrf: ð6Þ

For the helical spin texture with y(r)¼p/2 and f(r)¼ j � r, we have
Ax(r)¼ � j cos(j � r)/2, Ay(r)¼ �j sin(j � r)/2, and Az(r) ¼j/2.
The last term on the right-hand side of equation (3), which arises
from the interaction (equation (2)) after the unitary
transformation, is equivalent to a magnetic Zeeman energy in
the adiabatic frame. It is the non-abelian feature of the gauge
potential in combination with the Zeeman interaction that
generates a generalized non-abelian electric field, which in turn
causes a pure spin current to flow in the Fermi gas. This can be
seen from the Heisenberg equation of motion for a spin-1/2
particle under the Hamiltonian (equation (3)). Using the algebra
of operators, we obtain i‘ d2rH

dt2 ¼ J
M2

f
eiHt=‘ A rð Þ; sz½ �e� iHt=‘ , where

the subscript H indicates operators in the Heisenberg picture,
the [,] denotes the commutator of two operators, and
A(r)¼Ax(r)sxþAy(r)syþAz(r)sz (see Supplementary Note 1
for more details). Due to the non-abelianness in the gauge
potential A(r), the right-hand side of the equation of motion,
which depends only on r and r, is non-zero, and it can be
interpreted as a force exerted on the particle by a generalized
non-abelian electric field. It can also be seen from equation (3)
that the emergent gauge potential A(r) is coupled with the spin
current density of fermions by ‘

2

R
d3r
P

a Aa �~jas , where the
spin current density in the adiabatic frame is given by
~j
a
s � � i‘

4M ½~c
wsaðr~cÞ� ðr~cwÞsa~c�. As will be shown in the

next section, it is the generalized non-abelian electric field
generated by the non-abelian gauge potential that causes a pure
spin current of fermionic atoms in the mixture, and the non-
abelianness can be characterized by the dependence of the
measurable spin current density on the variable coupling
constant.

Spin current density. Using the unitary transformation U(r)
introduced in the previous section, the spin current density
operator for spin-1/2 fermions in the laboratory frame ĵ

a
s �

� i‘
4Mf
½cwsaðrcÞ� ðrcwÞsac� is expressed in terms of the field

operators in the adiabatic frame as ĵ
a
s ¼ � i‘

4Mf
f~cw UsaðrUÞ½

�ðrUÞsaU �~c þ ~cwðUsaUÞðr~cÞ� ðr~cwÞðUsaUÞ~cg. With
U(r)¼m(r) � r, we obtain the j (current’s direction) and a
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(spin polarization) component of the spin current density as

ĵs
� �a

j¼ �
i‘

4Mf
2i @jm�m
� �

a
~cy~cþ ~cy 2ma m � rð Þ½

hn
� sa� @j

~c
� 	

� @j
~cy

� 	
2ma m � rð Þ�sa½ �~c

io
:

ð7Þ

Since ð@jm�mÞa ¼ �Aa
j and h~cw~ci ¼ hcwci ¼ nf is the particle-

number density of fermions, the first term on the right-hand
side of equation (7) reduces to

ja Að Þ
s ¼ � ‘nf Aa

2Mf
: ð8Þ

This is the abelian contribution of the emergent gauge potential
to the spin current density since it is equal to the value of jas at the
limit of |J|-N, at which the spin direction of fermions is always
aligned parallel to the local magnetization of the spin texture and
thus the spin degrees of freedom are frozen. It is also evident from
equation (8) that the different spin polarization components Aa

(a¼ x, y, z) of the gauge potential do not mix with each other as
opposed to the non-abelian contribution. For the helical spin
texture, we have jz Að Þ

s ¼ �‘nf j= 4 Mfð Þ. This type of spin
current induced by a helical spin texture is related to the spin
current mechanism of the electric polarization underlying
multiferroic materials48–51. There is also a similarity between this
abelian component and the spin current in a fermionic system
with the one-dimensional spin–orbit interaction, that is, with
equal weights of the Rashba and Dresselhaus components. In
both cases, the spin-locking effect, which arises from either the
adiabatic alignment of magnetization to the helical spin texture or
the spin–orbit interaction, plays the key role in generating a pure
spin current.

The remaining terms on the right-hand side of equation (7)
give the non-abelian contribution ja NAð Þ

s of the emergent gauge
potential to the spin current density. Using the explicit expression
of m rð Þ ¼ cos j � rð Þ; sin j � rð Þ; 1ð ÞT=

ffiffiffi
2
p

for the helical spin
texture, we obtain the spin current density that is polarized in
the z direction:

jzðNAÞ
s ¼ cos j � rð Þ~jx

s þ sin j � rð Þ~jy
s : ð9Þ

As shown below, ~j
x
s and ~j

y
s , which emerge purely from a non-

abelian gauge potential, are non-vanishing for finite J, and the
mixing of different spin polarization components due to the
non-commutativity [sx, sy]¼ 2isz characterizes the non-abelian
component.

To evaluate ~j
a
s (a¼ x, y), we use the non-equilibrium Green’s

function method in which the spin current density can be
expressed in terms of the lesser Green’s function (see the Methods
section). In the adiabatic limit, where either the spin texture
varies smoothly in space or the coupling between fermions and
the spin texture is strong, we can make a perturbative expansion

of the Green’s function with respect to the emergent gauge
potential Aa. This amounts to an expansion in powers of the
dimensionless adiabatic parameter l � kEF= kFJð Þ, where kF and
EF denote the Fermi wavevector and Fermi energy, respectively52.
Up to the linear order in Aa, the Fourier transform of the lesser
Green’s function is given by

~Go
k; k0;o ¼ ~gok;odk; k0 þ

‘ kþ k0ð Þ � Aa
k0 � k

� �
~gk;osa~gk0;o
� �o

2M
;

ð10Þ
where the superscript o denotes the lesser component of the
non-equilibrium Green’s function and the summation over a¼ x,
y, z was taken. Here ~gok;o is the non-interacting Green’s function
in the adiabatic frame which is diagonal in both the wavevector
and the frequency, and Aa

k � 1=Vð Þ
R

d3reik�rAa rð Þ with V being
the volume of the system. Equation (10) is illustrated by the
Feynman diagram in Fig. 2. A straightforward calculation of the
non-abelian component of the spin current density yields (see
Supplementary Note 2 for the derivation)

jz NAð Þ
s ¼ � ‘ ~E"#j

6Mf J
; ð11Þ

where ~E"# ¼ 1
V

P
k Ekð~fþ ; k �~f� ; kÞ is the difference in total

kinetic energy density between fermions with spin up and those
with spin down in the adiabatic frame due to the Zeeman energy
(the last term in equation (3)). Here Ek � ‘ 2k2=ð2Mf Þ, and
~f� ; k ¼ ½e Ek �m�ð Þ= kBTð Þ þ 1�� 1 are the Fermi-Dirac distributions
with m±�m�J. Therefore, the total spin current density is

jz
s ¼ �

‘nf j

4Mf
1þ 2~E"#

3nf J

� �
: ð12Þ

In the strong-coupling limit jJj 	 EF and at low temperature
kBT 
 J , the difference in kinetic energy density between
particles with opposite spins can be obtained analytically as
~E"# ¼ � 3

ffiffiffi
43
p

=5
� �

nf EFsign Jð Þð1� e�
j J j

kB TÞ=ð1þ e�
j J j

kB TÞ. The spin
current density then reduces to

jz
s ¼ �

‘nf j

4Mf
1� 2

ffiffiffi
43
p

EF

5 Jj j
1� e�

j J j
kBT

1þ e�
j J j

kBT

 !" #
: ð13Þ

In the opposite weak-coupling limit J 
 EF, where the
perturbative expansion with respect to Aa does not converge if
JkF= kkFð Þ 
 1, we can make an alternative expansion of the spin
current density in powers of J=EF in the laboratory frame. Using a
similar non-equilibrium Green’s function approach, the total spin
current density is given in terms of the non-interacting Green’s
function gk,o up to the second order in J as

jz
s rð Þ ¼ � iJ2

4p‘Mf V

X
k;p;q

Z
do e� iq�r Fp�Fq� p

� �
z

� 2kþ qð Þ½gk;ogkþ p;ogkþ q;o�o;
ð14Þ

where Fq�(1/V)
R

d3r eiq � rF(r). The cross product of two
magnetization vectors on the right-hand side of equation (14)
implies that the spin current emerges from a noncollinear
spin texture. This factor arises from Tr{sz[F1 � r][F2 � r]}¼ 2
i[F1�F2]z, where F � r is the interaction between fermions
and the spin texture (equation (2)). For the helical spin texture,
we have F �q � Fx

q � iFy
q ¼ dq; � j. The lesser non-interacting

Green’s function in the laboratory frame is given by
gok;o ¼ 2pif oð Þdðo� Ek � m

‘ Þ, where f ðoÞ ¼ ½e‘o= kBTð Þ þ 1�� 1.
Substituting these in the right-hand side of equation (14) and
with a straightforward calculation, we obtain the z-axis spin
polarization component jz

s at low temperature kBT 
 EF as (see

=
k k′� k, � k,� k′,�

+

k′− k A�

g g gG
~ ~ ~~

σ�

Figure 2 | Feynman diagram of a fermion interacting with an emergent

gauge potential up to the linear order. The non-abelian gauge potential Aa

with a¼ x, y, z denoting the direction of the spin polarization is coupled to

the spin current density of fermions in the adiabatic frame, leading to the

Dyson equation for the Green’s function (equation (10)). The thick, thin and

dotted lines represent the interacting (~Gk; k0 ;o) and non-interacting (~gk;o)

Green’s functions, and the gauge potential, respectively, where ~g is diagonal

in both wavevector k and frequency o. The Pauli matrix sa appears due to

the spin-dependent coupling of fermions to the emergent gauge potential.
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Supplementary Note 3 for details)

jz
s Tð Þ ¼ � ‘nf J2j

16Mf E2
F

1þ p2

8
kBT
EF

� �2
" #

: ð15Þ

The other spin polarization components js
x and js

y vanish.
It should be noted, however, that the coupling constant J is also
a function of temperature via the density of condensate particles
nb Tð Þ’nb T ¼ 0ð Þ½1� T=Tcð Þ3=2�, where Tc’3:31‘ 2n2=3=
kBMbð Þ is the critical temperature of Bose–Einstein condensation

with n being the total particle-number density of bosons. Here we
use the model of free bosons, which is a good approximation in
evaluating thermodynamic properties of a weakly interacting
Bose gas53. Therefore, we have

jz
s Tð Þ

jz
s T ¼ 0ð Þ ¼ 1þ p2

8
kBT
EF

� �2
" #

1� T
Tc

� �3
2

" #2

; ð16Þ

where jz
s � jjz

s j. Using the same parameters as in ultracold atomic
experiments (see the Discussion section below), the critical
temperature is estimated to be kBTc ’ 5EF. The temperature
dependence of the spin current density at higher temperatures is
evaluated numerically and the obtained result is shown in Fig. 3.
The initial growth of jz

s with increasing temperature originates
from the broadening of the Fermi-Dirac distribution towards the
states with high velocities due to thermal excitations. In contrast,
at higher temperatures where the Fermi gas becomes non-

degenerate, the thermal random motion of fermions and a
decrease in the number of condensate particles suppress the
directional flow of the spin current. The maximum value of the
spin current density is attained at the temperature given by
kBTmax ’ 0:3EF.

Abelian–non-abelian crossover. From the result obtained in the
previous section (equation (12)), the ratio between the non-abe-
lian and abelian components of the spin current density is given

by jz NAð Þ
s =jz Að Þ

s ¼ 2~E"#


3nf Jð Þ, which is equal to � 2
ffiffiffi
43
p

EF= Jj j for
Jj j=EF41

 ffiffiffi
23
p

and T¼ 0. This implies that the abelian–non-
abelian crossover should occur at Jj j=EF � 1. The investigation of
this crossover should be of importance because it relates to the
question of how the singularity of a topological defect such as the
Dirac magnetic monopole changes as it transforms into a non-
singular non-abelian monopole. In contrast, if the coupling
constant is so weak that Jj j=EF 
 k=kF, where typically k
 kF,
the fermions are essentially decoupled from the spin texture in
the BEC. The classification of the emergent gauge potential into

the abelian (jz
s=jz Að Þ

s ’ 1), non-abelian (jz
s=jz Að Þ

s t1), and decou-

pled regimes (jz
s=jz Að Þ

s 
 1) is schematically shown in Fig. 4,
where these different regimes can be identified from the magni-
tude of the total spin current density relative to its abelian
component based on equations (12) and (15).

Discussion
We now discuss possible experimental situations of a spinor
Bose-Fermi mixture in which the non-abelianness of the
emergent gauge potential can be controlled, and, consequently,
the abelian–non-abelian crossover can be investigated. As shown
in Fig. 4, we can move from the abelian to non-abelian regimes by
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constant and the Fermi energy, respectively. (b) Blowup of jzs for small

kBT=EF with the asymptotic behaviour at low temperature (the right-hand

side of equation (16)) shown by the curve in magenta for comparison. The

initial growth of jzsðTÞ is attributed to the increasing number of particles with

higher velocities, while at higher temperatures the thermal random motion

of particles in a non-degenerate Fermi gas and a decrease in the number of

condensate particles suppress the directional flow of the spin current. The

maximum value of jzs is attained at kBTmax ’ 0:3EF.
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regimes depending on the variable coupling strength in a spinor

Bose-Fermi mixture. The behaviour of the magnitude of the z-axis spin

polarization component jzs of the spin current density (normalized by its

abelian component j
z Að Þ
s ) as a function of the coupling constant J (measured

relative to the Fermi energy EF) is plotted according to equations (12) and
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s ’ 1, jzs=j
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s t1, and jzs=j
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s 
 1,

respectively. The abelian–non-abelian crossover occurs at Jj j=EF � 1, while

for Jj j=EF 
 k=kF, where typically k=kF 
 1, the interaction between

fermions and the spin texture in the Bose–Einstein condensate is so weak

that they are essentially decoupled from each other. Since js
z(A) is a constant

with respect to the coupling constant, the J-dependence of jzs can be used as

an evidence of the non-abelian feature of the emergent gauge potential.
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changing the ratio of the magnitude of the coupling constant |J| to
the Fermi energy EF. It is given by

j J j
EF
¼

8S aSþ 1
2
� aS� 1

2

��� ���ffiffiffiffiffi
9p3
p

2Sþ 1ð Þ
1þ Mf

Mb

� �
nb

n2=3
f

: ð17Þ

Therefore, the non-abelianness of the emergent gauge potential
can be continuously changed by varying the particle-number
density of condensed bosons nb against fermions nf. Since the
abelian component of the spin current density jz Að Þ

s is a constant if
nf is held fixed, the J dependence of the measurable total spin
current density jz

s (with nb being varied) will characterize the non-
abelian feature of the gauge potential. Alternatively, if nf is varied
to linearly change the coupling constant J, the deviation of the
measured jz

s from a linear function of nf provides a telltale signal
of the non-abelian gauge potential.

To give a concrete example, we consider a mixture of the spin-1
87Rb BEC and the 6Li Fermi gas with spin-1/2 (refs 54–57).
Other choices of atomic species for the spinor Bose-Fermi
mixture are also possible58. To give an estimate of the difference
a3/2� a1/2 in the s-wave scattering length between the two
possible total hyperfine spin-F channels (F¼ 1/2 and 3/2), we
have used the numerically calculated atomic potentials59 and the
corresponding values of the scattering lengths60 for the electronic
spin-singlet and spin-triplet scattering channels, and calculated
the Clebsch–Gordan coefficients for the transformation between
the hyperfine- and electronic-spin bases (see the Supplementary
Note 4 for details). Here we take |a3/2� a1/2|¼ 50 aB, where aB is
the Bohr radius. We take the particle-number density of
condensed bosons nb¼ 1014 cm� 3 and that of fermions
nf¼ 1011 cm� 3. Substituting these parameters in equation (17),
we obtain Jj j=EF ’ 1:1. The ratio between the non-abelian and
abelian components of the spin current density is found to be
jzðNAÞ
s =jzðAÞ

s ’ 0:6. The pitch of the helical spin texture can be
adjusted by controlling the duration of the applied magnetic field
gradient, and here we take k/kF¼ 0.1. The magnitude of the spin
transport velocity for spin-1/2 particles vz

s � 2jz
s=nf is found to

be about 9.4� 10� 4 m s� 1, implying that a particle with a
specific spin polarization propagates through a 100-mm-long
atomic cloud in B0.1 s. In other words, one-half of particles in
the Fermi gas with spin up moves with that velocity in one
direction and the other half of particles with spin down moves
with the same velocity but in the opposite direction. This kind of
spin transport can be measured in ultracold atomic systems using

time-of-flight absorption imaging in conjunction with the
Stern–Gerlach experiment.

In this work, we have concentrated on the spin-dependent
interaction between bosons and fermions. The effects of the other
interactions in the system can be neglected because the spin-
independent interaction does not affect the spin transport under
consideration. The interaction between fermions, which is
typically small in an atomic gas compared with the Fermi energy,
should give a negligible effect on the spin current density.
However, the helical spin texture in the BEC tends to decay
towards a modulated spin structure. There are two mechanisms
for this decay. The first is due to the reflection of the supercurrent
at the edges of the finite-size BEC as shown by a numerical
simulation61. The second is due to the backaction of the Fermi
gas on the spin texture in the condensate. The backaction can be
understood in terms of the RKKY interaction, which is an
indirect interaction between two spins mediated by the Fermi sea.
Similar to the case of ferromagnetic metals where two localized
spins can interact with each other via conducting electrons, the
RKKY interaction between two magnetizations F1 at r1 and F2 at
r2 due to a three-dimensional Fermi gas has the form of

VRKKY ¼ �
J2Mf k4

F F1 � F2ð Þf kFrð Þ
8p3‘ 2 ; ð18Þ

where r¼ |r1� r2| and f(x)�[sin(2x)� 2x cos(2x)]/x4 (refs 62–64).
As shown in Fig. 5, the RKKY interaction is ferromagnetic at
small distances rrrc¼ 2.25 kF

� 1 but its sign will oscillate between
positive and negative in addition to the rapid damping of its
magnitude at large distances. Both of the two mechanisms,
however, can be suppressed by loading bosons to an optical lattice
with the lattice constant much larger than kF

� 1 and the lattice
depth adjusted by the laser intensity so that each of the
subcondensates on the lattice sites has a dimension of the same
order or smaller than rc. The bosonic part of the mixture
then consists of an array of almost independent and spin-
homogeneous subcondensates whose magnetization’s direction
varies from one subcondensate to another to form a helical spin
texture. This would suppress the supercurrent in the system,
while the RKKY interaction between atoms in a single
subcondensate has a ferromagnetic nature that helps stabilize
the spin configuration. It should be noted that the magnetic
dipole–dipole interaction of 87Rb is so weak that it gives a
negligible effect on the spin structure in a lattice.

To conclude, we have demonstrated that spinor Bose-Fermi
mixtures offer an excellent playground for the study of the
abelian–non-abelian crossover of the emergent gauge potential as
the non-abelianness can be continuously varied. The change in
the singularity of a topological defect such as Dirac’s magnetic
monopole at this crossover deserves further investigation. We can
move from the abelian to non-abelian regimes by varying the
relative particle-number densities of condensed bosons and
fermions in the mixture. The non-abelian feature of the emergent
gauge potential is characterized by the dependence of the
measurable spin current density on the variable coupling
strength. The result of this study also suggests a method to
coherently and spontaneously generate a pure spin current
without relying on the spin Hall effect and the spin–orbit
interaction unlike in conventional solid materials. It is expected
that the non-abelian emergent gauge potential will have potential
applications in the new generation of ultracold atom-based
spintronics, that is, ‘atomtronics’ devices.

Methods
Non-equilibrium Green’s function method. The spin current density ~j

a
s (a¼ x, y, z)

in the adiabatic frame can be expressed in terms of the lesser Green’s function

f (kFr )

0.2
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0.8
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4 6 8 102
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Figure 5 | Dependence of the RKKY interaction between two

magnetizations on their distance. The RKKY interaction between two

magnetizations F1 at r1 and F2 at r2 that couple to a common three-

dimensional Fermi gas is proportional to F1 � F2 with a coefficient that

depends on the distance r¼ r1� r2 through the function f(kFr) in

equation (18). The interaction is ferromagnetic at small distances

rrrc¼ 2.25 kF
� 1 but its sign oscillates between positive and negative in

addition to the rapid damping of its magnitude at large distances.
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~Go
mn r; r0; t; t0ð Þ � ih~cyn r0; t0ð Þ~cm r; tð Þi (m, n¼m, k) as

~j
a
s ¼ �

‘ rr �rr0ð Þ
4Mf

Tr sa ~Go r; r0; t; t0ð Þ
� �

j r0!r; t0!t ; ð19Þ

where the trace is taken over the spin indices and rr indicates the gradient with
respect to r. On the other hand, the lesser Green’s function is related to the Keldysh

non-equilibrium Green’s function ~Gmn r; r0; t; t0ð Þ � � ihT C
~cn r; tð Þ~cym r0; t0ð Þi

by taking the two arguments on the forward (tAC’) and backward (t0AC-) parts
of the Keldysh contour C65. Here T C denotes the path-ordering operator on
C. Similar to the ordinary Green’s function with the time-ordering operator T
defined on the real-time axis, the Keldysh Green’s function satisfies the Dyson’s
equation. Making a perturbative expansion of the Dyson’s equation with respect to
the emergent gauge potential, we obtain the Fourier transform ~Go

k; k0 ;o of the lesser
Green’s function up to the linear order in Aa as given by equation (10). Here for a
time-independent system under consideration, the Green’s function ~Go r; r0; t; t0ð Þ
depends only on the time difference t� t0 ; thereby, its Fourier transform depends
only on a single frequency o. Substituting equation (10) in equation (9) and further
in equation (9) and after a straightforward calculation, we obtain the non-abelian
contribution of the emergent gauge potential to spin current density jz NAð Þ

s as given
by equation (11). The details of the derivation are presented in Supplementary
Note 2.
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