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Abstract: Marine ascidians are becoming important drug sources that provide abundant secondary
metabolites with novel structures and high bioactivities. As one of the most chemically prolific
marine animals, more than 1200 inspirational natural products, such as alkaloids, peptides, and
polyketides, with intricate and novel chemical structures have been identified from ascidians. Some
of them have been successfully developed as lead compounds or highly efficient drugs. Although
numerous compounds that exist in ascidians have been structurally and functionally identified, their
origins are not clear. Interestingly, growing evidence has shown that these natural products not
only come from ascidians, but they also originate from symbiotic microbes. This review classifies
the identified natural products from ascidians and the associated symbionts. Then, we discuss the
diversity of ascidian symbiotic microbe communities, which synthesize diverse natural products
that are beneficial for the hosts. Identification of the complex interactions between the symbiont
and the host is a useful approach to discovering ways that direct the biosynthesis of novel bioactive
compounds with pharmaceutical potentials.
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1. Introduction

Marine ascidians are ancestral chordates belonging to the species of tunicate in the subphylum
Urochordate [1]. Since they exhibit vertebrate-like tadpole characteristics in larval form but are
invertebrate filter feeders in adult form, ascidians occupy a unique evolutionary position between
vertebrate and invertebrate [2]. Such features are reflected in that they not only possess genes that
do not exist in invertebrates, but they have retained functions that are not evolved in vertebrates.
For instance, ascidians produce alternative oxidase and phytochelatins, which were thought to be
protostome-specific [3]. They are also unique among the animal kingdom in their ability to biosynthesize
cellulose [4,5].

There are around 3000 species of ascidians spread over the world with both asexual and sexual
reproduction, forming diversified sizes and shapes [6]. Rapid evolution of tunicate genomes—with
their short lifespan and the two modes of reproduction—is responsible for the diversity and the
adaptability of ascidians, which reflect the structural novelty and the functional diversity of their
secondary metabolites [7,8].

The first ascidian compound discovered was geranyl hydroquinone, which was isolated from
Aplidium sp. in 1967 with the cytotoxicity against leukemia [9,10]. Afterward, discovery of ascidian-
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derived natural compounds started to grow considerably. There were only 230 secondary metabolites
isolated from ascidians before 1992 [11], whereas, from 1994 to 2014, nearly 600 new metabolites were
reported [12]. Since 2015, ascidians have been the source of more than 300 discovered metabolites [13,14].
To date, around 1200 structurally distinct, natural compounds have been identified from ascidians [14,15].
Ascidians provide rich sources of bioactive secondary metabolites and have yielded promising drugs
or drug leads. According to the U.S. Food and Drug Administration (FDA) database, nine marine
or marine-derived drugs have been approved for therapeutics proposes, among which ecteinascidin
743 (Yondelis®) from the ascidian symbiotic bacteria Candidatus Endoecteinascidia frumentensis, and
dehydrodidemnin B (Aplidin®) from the ascidian Aplidium albicans are in usage for cancer treatments
(Figure 1a,b) [16,17]. Three molecules out of 12 are in clinical trial evaluations (Figure 1c) [18]. Ascidian
compounds range from derivatives of alkaloids to peptides, polyketides, quinones, and steroids, and
they have diverse bioactivities, including antitumor, antiviral, and anti-inflammatory activities in vitro
and in vivo (Figure 1d,e) [12,13,19,20].Mar. Drugs 2019, 17, x FOR PEER REVIEW 3 of 24 

 

 
Figure 1. Overview of natural compounds from ascidian and the associated symbionts. (a) 
Compounds (top panels) produced by the symbiotic microbes in host ascidians (lower panels) have 
been approved as anti-cancer drugs or are in ongoing clinical trials by the Food and Drug 
Administration (FDA). (b) Distribution of FDA-approved drugs from different marine organisms. (c) 
Distribution of FDA-approved molecules in preclinical trials from different marine organisms. (d) 
Distribution of chemical classes of ascidian-originated compounds. (e) Distribution of bioactivities of 
natural compounds from ascidians. (f) Distribution of symbiont genera associated with ascidians. 

In this review, we first document the novel compounds produced by the host animals, and then 
we focus on the existing metabolites that have been identified from ascidian symbionts. 
Subsequently, we discuss the roles of these symbionts in the biosynthesis of natural products. We 
also summarize the diversity of microbe communities, which not only benefit the hosts but are also 
involved in their regulatory roles in the biosynthesis of natural products. The interactions between 
ascidians and their symbionts indicate the existence of some small molecules that are directly 

Figure 1. Overview of natural compounds from ascidian and the associated symbionts. (a) Compounds
(top panels) produced by the symbiotic microbes in host ascidians (lower panels) have been approved
as anti-cancer drugs or are in ongoing clinical trials by the Food and Drug Administration (FDA). (b)
Distribution of FDA-approved drugs from different marine organisms. (c) Distribution of FDA-approved
molecules in preclinical trials from different marine organisms. (d) Distribution of chemical classes of
ascidian-originated compounds. (e) Distribution of bioactivities of natural compounds from ascidians.
(f) Distribution of symbiont genera associated with ascidians.
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Despite the various metabolites that are produced by ascidians, symbiotic microbes have also
been found to be rich sources of bioactive and pharmacologically valuable compounds [21]. Some
compounds first isolated from ascidians have been proven to be produced by symbiotic microbes.
There is increasing evidence that around 100 (8%) of the known compounds isolated from ascidian
symbionts offer a renewable supply, which is important for marine drug candidates (Figure 1f) [22–24].

In this review, we first document the novel compounds produced by the host animals, and then
we focus on the existing metabolites that have been identified from ascidian symbionts. Subsequently,
we discuss the roles of these symbionts in the biosynthesis of natural products. We also summarize
the diversity of microbe communities, which not only benefit the hosts but are also involved in their
regulatory roles in the biosynthesis of natural products. The interactions between ascidians and their
symbionts indicate the existence of some small molecules that are directly recognized by symbiotic
microbes to modulate and control the production of natural compounds, which, in turn, affect the
host ascidians.

2. Compounds from Ascidians and Their Symbionts

The evolutionary position of urochordate marine ascidians indicates their importance in drug
discovery. Increasing evidence indicates that many bioactive compounds previously isolated from
ascidians closely resemble microbe metabolites or are proposed to originate from microbes, since the
single molecule governing their biosyntheses resides exclusively in microbes [21,25]. These findings
suggest that ascidian-associated microbes are important sources of bioactive compounds. Therefore,
symbiotic microbes offer a new perspective for marine drug developments [26]. The remarkably
high chemical diversity of secondary metabolites from ascidians and symbionts, including alkaloids,
polypeptides, polyketides, and other structural families, contributes to the development of new
medicinal substances as promising drug candidates.

2.1. Alkaloids

Alkaloids have provided the majority of ascidian originating bioactive compounds. More than 70%
of ascidian bioactive compounds are in the class of alkaloids (Figure 1d). Alkaloids generally represent
a highly diverse group of compounds containing cyclic structures with at least one basic nitrogen atom
being incorporated within. These compounds have been identified from diverse ascidians and display
antimicrobial and anticancer activities via inhibiting the activities of kinases, including Protein Kinase
B (PKB) and Cyclin-Dependent Kinases (CDKs) [27], interfering with topoisomerase (TOPO) I [28],
altering the mitochondrial membrane potential [29,30], and binding to the DNA minor groove to
inhibit transcriptional activation [31,32].

2.1.1. Alkaloids from Ascidians

Didemnidines

Didemnidines A (1) and B (2) (Figure 2) are two indole spermidine alkaloids isolated from the
New Zealand ascidian Didemnum sp. [33]. Both are active as inhibitors of phospholipase A2 and
the farnesyltransferase enzyme without cytotoxicity. Didemnidine B also shows mild activity on the
malaria parasite. Meanwhile, the two synthetic intermediates of didemnidines display moderate
cytotoxicity toward L6 cells and inhibit the proliferation of parasites. The antiparasitic activity of
didemnidine B provides the opportunity to explore the didemnidines family as antimalarial and
antitrypanosomal agents [34].

Meridianins

Meridianins (Figure 3) are brominated 3-(2-aminopyrimidine)-indoles isolated from the ascidian
Aplidium meridianum [35]. As they are structurally similar to variolins, meridianins are identified as a
promising kinase-inhibitory scaffold, which inhibits various protein kinases, such as CDKs, glycogen
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synthase kinase-3, cyclic nucleotide-dependent kinases, and casein kinase. Meridianins also prevent
cell proliferation and induce cell apoptosis, probably because of their interference with the activity of
kinases, which are important for cell division [36]. Among the identified meridianins, meridianins B
(3) and E (4) are thought to be the most potent in this class of compounds because of their considerable
antitumor activities [37].
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Herdmanines

Herdmanines are a series of nucleoside derivatives isolated from the ascidian Herdmania momus.
Herdmanines A–D (5–8) (Figure 4) are found to inhibit the production and the expression of mRNA of
pro-inflammatory cytokines, while herdmanines C (7) and D (8) have moderate suppressive effects on
the production of Lipopolysaccharide (LPS)-induced nitricoxide [38,39].
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2.1.2. Alkaloids from Ascidian-Associated Microbes

Ecteinascidins

Ecteinascidins belong to the tetrahydroisoquinoline alkaloid family, which was previously isolated
from the ascidian Ecteinascidia turbinata [31]. Recently, it was isolated from the ascidian symbiotic
bacteria Ca.E. frumentensis [40]. There are six known ecteinascidins (ecteinascidin 729, 743, 745, 759A,
759B, and 770) exhibiting potent antitumor activities [41]. Among them, ecteinascidin-743 (ET-743) (9)
(Figure 5) shows striking activity against a variety of tumor cells. It binds with the minor groove of
DNA and leads to the sequence-specific alterations in transcription. Its binding to DNA also triggers
DNA cleavage, and then it causes double-stranded breaks as well as interruption of the cell cycle,
apoptosis of cancer cells, and down-regulation of some transcription factors [42]. Beside this, ET-743
has modulatory effects on the tumor microenvironment. These effects are critically deemed to be
important in cancer therapy because of the resultant inhibition of neoangiogenesis and the metastatic
potential of cancer cells. With promising results in clinical trials of various chondrosarcoma, ET-743 is
now in clinical use in more than 70 countries for treatment of cancer [41].Mar. Drugs 2019, 17, x FOR PEER REVIEW 6 of 24 
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Eusynstyelamides

Eusynstyelamides A–C (10–12) (Figure 6) are alkaloids previously isolated from the ascidian
Eusynstye lalatericus. However, the structurally similar eusynstyelamide B and ent-eusynstyelamide B,
a secondary metabolite from a bryozoan species, suggests the compounds might be synthesized by
symbiotic microbes. Eusynstyelamides A–C show specific cytotoxicity against neuronal nitric oxide
synthase (nNOS) and show modest anticancer and antibacterial activities [43]. Eusynstyelamides A and
B display inhibitory activities against Staphylococcus aureus and the plant regulatory enzyme pyruvate
phosphate dikinase (PPDK) [43,44]. In addition, eusynstyelamide B exhibits anti-proliferation activity
in MDA-MB-231 cells. It causes a strong cell cycle block at G2/M phases and induces cell apoptosis.
Nitric oxide synthase family genes are regarded as its potential target [43,45]. The bioactivities of
eusynstyelamides suggest their potential for further medical studies.
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Sesbanimides

Sesbanimide A (13) was isolated from the bacteria Agrobacterium, which is associated with
the ascidian E. turbinata, while sesbanimide C (14) was isolated from the bacteria Agrobacterium,
which is associated with the ascidian Polycitonidae sp. (Figure 7) [46,47]. Sesbanimide A showed
cytotoxicity against the growth of mouse leukemia cells and inhibited the proliferation of mouth
epidermal carcinoma (KB) cell. However, the activity was approximately one-tenth that observed for
sesbanimide C [47].
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LL-14I352 α and β

LL-14I352 α (15) and β (16) (Figure 8) were isolated from LL-14I352, a bacterium associated
with an unidentified ascidian from the Pacific Ocean. LL-14I352 α exhibits strong activity against
gram-positive bacteria, but it shows weaker anti-gram-negative bacterial activity, while LL-14I352 β is
less active on gram-positive bacteria than LL-14I352 α. Both compounds have been found to inhibit
the growth of human ovarian and colon cancer cells. They also exhibit the activities of inhibiting DNA,
RNA, and protein synthesis [48].
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Except for the alkaloids discussed above, many other alkaloids have been isolated from diverse
ascidian-associated microbes. Details on structures, host animals, origin microbes, and bioactivities of
these compounds are summarized in Table S2.

2.2. Polypeptides

Polypeptides have garnered increased interest because of their significant bioactivities. Around
5% of the identified ascidian originating compounds belong to peptides (Figure 1d). Peptides are one of
the major structural classes isolated from ascidians, including linear peptides, depsipeptides, and cyclic
peptides, with residue numbers spanning from two to forty eight [49]. Most of the active peptides from
ascidians have complex cyclic or linear structures that are rarely found in terrestrial animals. Peptides
isolated from ascidians and their associated microbes have opened a new perspective for pharmaceutical
developments [50]. These peptides affect cell behavior with different mechanisms, including inducing
apoptosis, affecting the tubulin–microtubule equilibrium [51], or inhibiting angiogenesis [52].
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2.2.1. Polypeptides from Ascidians

Vitilevuamide

Vitilevuamide (17) (Figure 9) is a bicyclic peptide isolated from the ascidians Didemnum cuculiferum
and Polysyncranton lithostrotum. With a functionally correlated totaxol analog, vitilevuamide was
shown to be active against P388 mouse lymphocytic leukemia in vivo [53]. The cytotoxic mechanism
is due to its inhibition of tubulin polymerization without competitive inhibition of the vinblastine
binding site, and it weakly affects GTP binding to tubulin as well as causes cell cycle arrest cells in the
G2/M phases [53].

The cytotoxicity of vitilevuamide made it a viable candidate for in vivo experiments. With the
potential ability to increase the life-span of leukemic mice, vitilevuamide has been approved by the
FDA for preclinical tests [53,54].Mar. Drugs 2019, 17, x FOR PEER REVIEW 8 of 24 

 

 

Figure 9. Chemical structure of vitilevuamide. 

Diazonamides 

The diazonamides are a family of macrocyclic peptides isolated from the ascidian Diazona 
angulata [51]. Among the members of diazonamides, diazonamide A (18) (Figure 10) has been 
evaluated for its antitumor activities. The results indicate that it is a tubulin-binding agent and blocks 
the cell cycle in the G2/M period [55]. Notably, it does not compete with vinblastine or colchicine to 
bind with tubulin, while it interacts with ornithine-delta-amino transferase (OAT), a mitochondrial 
enzyme involved in spindle assembly and mitosis control. Diazonamide A is a potential 
chemotherapeutic agent without significant toxicities in animal models. It is, therefore, potentially 
regarded as an efficient agent in anticancer drug development [56].  

 

Figure 10. Chemical structure of diazonamide A. 

Chondromodulin-1 (ChM-1) 

ChM-1, a 25 kDa glycoprotein originally isolated from fetal bovine cartilage, could be converted 
to a 12 kDa mature peptide at the C-terminal RERR amino acid cleavage site and subsequently 
secreted to the extracellular matrix [57]. Recently, ChM-1 was identified from the invertebrate 
urochordate ascidian Ciona savignyi [58]. As an invertebrate animal without cartilage and vascellum, 
the role of the highly expressed ChM-1 indicated its novel function. In vitro cultured cell experiments 
show that the ascidian-originated ChM-1 mature peptide (Cs-mChM-1) presents dual roles in 
different cell types—it promotes the proliferation of mouse osteoblastic cells (MC3T3-E1) and 
protects H2O2 oxidative injury. In human neuroblastoma (SHSY5Y) cells, human cervical cancer 
(HeLa) cells, and human umbilical vein endothelial cells (HUVECs), Cs-mChM-1 suppresses cell 
proliferation and inhibits angiogenesis of HUVECs. Further experiments revealed that Cs-mChM-1 

Figure 9. Chemical structure of vitilevuamide.

Diazonamides

The diazonamides are a family of macrocyclic peptides isolated from the ascidian Diazona
angulata [51]. Among the members of diazonamides, diazonamide A (18) (Figure 10) has been
evaluated for its antitumor activities. The results indicate that it is a tubulin-binding agent and blocks
the cell cycle in the G2/M period [55]. Notably, it does not compete with vinblastine or colchicine to bind
with tubulin, while it interacts with ornithine-delta-amino transferase (OAT), a mitochondrial enzyme
involved in spindle assembly and mitosis control. Diazonamide A is a potential chemotherapeutic
agent without significant toxicities in animal models. It is, therefore, potentially regarded as an efficient
agent in anticancer drug development [56].
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Chondromodulin-1 (ChM-1)

ChM-1, a 25 kDa glycoprotein originally isolated from fetal bovine cartilage, could be converted
to a 12 kDa mature peptide at the C-terminal RERR amino acid cleavage site and subsequently secreted
to the extracellular matrix [57]. Recently, ChM-1 was identified from the invertebrate urochordate
ascidian Ciona savignyi [58]. As an invertebrate animal without cartilage and vascellum, the role of the
highly expressed ChM-1 indicated its novel function. In vitro cultured cell experiments show that the
ascidian-originated ChM-1 mature peptide (Cs-mChM-1) presents dual roles in different cell types—it
promotes the proliferation of mouse osteoblastic cells (MC3T3-E1) and protects H2O2 oxidative injury.
In human neuroblastoma (SHSY5Y) cells, human cervical cancer (HeLa) cells, and human umbilical
vein endothelial cells (HUVECs), Cs-mChM-1 suppresses cell proliferation and inhibits angiogenesis
of HUVECs. Further experiments revealed that Cs-mChM-1 modifies cell behavior through regulating
the cell cycle and cell adhesion [58]. These results suggest that Cs-mChM-1 is a potential antioxidant
and antitumor agent.

CS5931

CS5931 is a polypeptide from C. savignyi with a molecular weight of 5931 Da. Sequence analysis
reveals a high structural homology between CS5931 and human granulin A [59]. CS5931 exhibits
significant cytotoxicity on several cancer cell types and induces apoptosis via a mitochondrial-mediated
pathway. Cell cycle analysis demonstrates that CS5931 causes cell cycle arrest at the G2/M phases.
Further studies found out that it inhibits the proliferation, the migration, and the formation of
capillary-like structures of HUVECs, represses spontaneous angiogenesis of the zebrafish vessels, and
blocks the production of vascular endothelial growth factor (VEGF). Moreover, CS5931 also reduces
the expression of matrix metalloproteinases (MMP-2 and MMP-9) at both protein and mRNA levels
in HUVECs. Enolase 1 was then identified as its molecular target [60,61]. These observations clearly
demonstrate that CS5931 achieves antitumor activities both in vitro and in vivo, and it possesses the
potential for therapeutic application.

The details of other polypeptides extracted from ascidians are listed in Table S3.

2.2.2. Polypeptides from Acidian-Associated Microbes

Didemnins

The didemnins are cyclic depsipeptides containing a macrocyclic core and consist of an isostatine
and a -(-hydroxyisovaleryl) propionyl (Hip) group. Didemnins were first obtained from the ascidian
Trididemnum solidum in 1981 [62], and they subsequently were proven to be produced by the
ascidian-associated microbes α-proteobacteria Tistrella mobilis and Tistrella bauzanensis [63].

Didemnins A–C (19–21) (Figure 11) were initially identified from ascidian symbiotic microbes.
Among them, didemnin B (20), with a high cytotoxicity activity, was the first marine natural product to
be utilized in clinical trials [64].

Several studies have shown that didemnin B suppresses the proliferation of cancer cells by acting
as a cell-cycle arrest agent. G1/S phase cells are more sensitive to didemnin B. It is known that the
antiproliferative potency of didemnin B is due to interference with the mitogenic signal transmission,
such as the inhibitors of kinases, phosphatases, and elongation factors [65,66].

The high efficiency of the antitumor activity of didemnin B provided the ground for clinical trials.
Unfortunately, the trials were stopped because of cardiac and neuromuscular toxicities [67]. However,
the structurally similar compound dehydrodidemnin B (aplidine) isolated from the Mediterranean
tunicate Aplidium albicans was shown to be more potent and less toxic. It is currently being evaluated
in phase II and III trials for the treatment of medullary thyroid carcinoma, renal-cell carcinoma,
melanoma, and tumors of neuroendocrine origin [68,69]. The subtle structural difference of didemnin
B and dehydrodidemnin B causes critically functional changes, which lead to different clinical
application profiles.
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Patellamides

The patellamides are cyclic peptides isolated from the cyanobacterium Lissoclinum patella, with
host animals belonging to the ascidian Didemnidae family [70]. Patellamides A, C, and D (22–24)
(Figure 12) exhibit cytotoxic effects. Patellamides A (22) and C (23) inhibit the growth of L1210 murine
leukemia cells, while patellamide D (24) acts as a resistance-modifying agent in the multidrug-resistant
human leukemic cell lines, indicating its potential as a drug-resistance modulator [71].
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Most of the peptides discovered from ascidian-associated microbes contain circular sequences
and exhibit antibiotic or antitumor activities. Table S4 lists a series of peptides isolated from ascidian
symbiotic microbes.

2.3. Polyketides

2.3.1. Polyketides from Ascidians

Polyketides are the other important compounds in the screening of secondary metabolites from
ascidians [around 80 of 1200 (7%)] (Figure 1d). Polyketides are complex molecules built from simple
carboxylic acids and synthesized by polyketide synthetases [72]. Polyketide synthetases are large
multienzyme machineries. Natural products having polyketide and non-ribosomal peptide (NRP)
structures are generally found to be of microbial origin [13]. Polyketides and the synthetic analogs
have been discovered as important lead compounds with various activities, such as blocking protein
tyrosine phosphatase and inhibiting the ATP synthase complex [73].
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Palmerolide A

Palmerolide A (25) (Figure 13) is a macrocyclic polyketide isolated from the ascidian Synoicum
adareanum. Palmerolide A displays selective cytotoxicity toward melanoma by inhibiting V-ATPase [74].
As a promising compound, palmerolide A was chemically synthesized by enantio-selective methods [75],
by which a large amount of palmerolide A and its analogs could be made for the investigation of
biological function and application.
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Mandelalides

Mandelalides are variously glycosylated polyketides isolated from the ascidian Lissoclinum sp.
Mandelalides A and B show potent cytotoxicity to NCI-H460 cells and mouse Neuro-2a neuroblastoma
cells [76]. Mandelalide B also displays a potent antifungicidal activity against Candida albicans [77].
The inaccessible supply of the source of promising biomedical actives indicates the importance of total
chemical syntheses of the valuable compounds.

Phosphoeleganin

Phosphoeleganin is a novel phosphorylated polyketide from the ascidian Sidnyum elegans.
Phosphoeleganin has no significant cytotoxicity against human prostate cancer (DU145) cells and
human breast cancer (MCF-7) cells, but it shows inhibitory activity against the protein tyrosine
phosphatase 1B [73]. This compound is expected to be a new hit for the treatment of diabetes
and obesity.

Polyketides from marine ascidians have become important sources in drug discovery. Table S5
provides several polyketides based on their bioactivities.

2.3.2. Polyketides from Ascidian-Associated Microbes

Patellazoles

Patellazoles A–C (26–28) (Figure 14) are a family of compounds produced by theα-proteobacterium
Candidatus Endolissoclinum faulkneri, a microbe associated with the ascidian L. patella. These compounds
display cytotoxicity towards HCT 116 cells by inhibiting protein synthesis, arresting cell cycle at G1/S
phases, and inducing cell apoptosis [78]. It is known that their inhibition effects on protein synthesis
are achieved by interfering with the mTOR/p70 pathway [78].

Arenimycin

Arenimycin (29) (Figure 15) was isolated from the ascidian E. turbinate-derived bacteria Salinispora
arenicola. Arenimycin inhibits the division of HCT cells as well as exhibits potent antimicrobial activities
against the drug-resistant strains Staphylococci and Mycobacterium [79]. The antiproliferation and
antibacterial activities make arenimycin a potential candidate for clinical medicine [80].
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Ascidian symbionts are known as the true sources of bioactive polyketides. Polyketides originating
from symbionts and their biological properties are provided in Table S6.

2.4. Other Types of Compounds from Ascidians and the Host-Associated Microbes

Tables S7 and S8 list the other classes of compounds from the host ascidians and their associated
microbes with the biological activities and molecular targets, respectively.

3. The Effects of the Interaction between Ascidian-Associated Microbes and Hosts on the
Production of Natural Compounds

As filter feeders, ascidians harbor diverse microbes and are regarded as the ideal model for the
study of marine eukaryote–microbe associations [81]. Various proteobacteria, cyanobacteria, and fungi
reside in the extra- and the intracellular space of ascidians, many of which may function as beneficial
symbionts or persist through host developmental events [82]. The potential role of microbes in ascidian
biology varies from mutualistic symbiosis to nutritional sources. Microbes not only serve as food or
enrich the diet of their hosts by fixing carbon and nitrogen, but they also are involved in the synthesis
of natural products [83].

3.1. Proteobacteria

The phylum Proteobacteria is one of the main ascidian-associated microbes that produce bioactive
metabolites. α-Proteobacteria and γ-Proteobacteria are the two dominant groups. The majority of
these produced bioactive compounds exhibit antimicrobial, antitumor, and anticancer properties. Ca. E.
frumentensis is one of the proteobacteria residing in the host ascidian E. turbinate, which produces a
large number of tetrahydroisoquinolines, including ET-743 [40].

The similarity of ET-743 to the bacterial-derived natural products, such as saframycin A and
safracin B, suggests that it is of prokaryotic origin [84,85]. Analysis of the ~631 kb Ca. E. frumentensis
genome further demonstrates the existence of biosynthetic genes as well as the biosynthetic enzyme
of ET-743 [86]. Metaproteomic analysis reveals that the genome of Ca. E. frumentensis related to
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production of primary metabolism is reduced, as it is missing the genes involved in early glucose
catabolism but encodes several sugar phosphate transporters, and it lacks a number of key amino acids
and cofactors, including coenzyme A (CoA), but it encodes genes linked to transporter functions [86,87].
These features suggest that proteobacteria require some essential metabolite or their precursors from
the host [88]. The genome of the microbe is also missing a number of genes involved in peptidoglycan
and lipid A biosynthesis, which are incorporated in the vast majority of proteobacteria. The absence of
these genes within the Ca. E. frumentensis highlights that the survival of the microbe strongly relies on
the host animal [89,90].

Moreover, Ca. E. frumentensis is also missing a number of key biosynthetic genes of secondary
metabolism involved in the production of ET-743 [86]. Gene candidates for enzymes that catalyze
the formation of certain precursors to produce ET-743 remain to be identified, which suggests that
genes involved in ET-743 biosynthesis might come from other microbes or that the production of these
enzymes needs the interaction between the symbiotic microbes and the host ascidian [87,91].

3.2. Cyanobacteria

Cyanobacteria are the only prokaryotes thus far described that are obligate photosymbionts in
chordates [92]. In tropical ascidians of the family Didemnidae, Synechocystis trididemni and Prochloron
sp. are the most common cyanobacterial symbionts [93,94]. S. trididemni contains phycoerythrin
pigments, which is typical for most of cyanobacteria, while Prochloron sp. is a unique photosymbiont
possessing chlorophyll a and b [95]. The genera Acaryochloris marina, a remarkable photosymbiont with
chlorophyll d (chl d) for photosynthesis, was isolated from the ascidian L. patella [96]. The presence
of A. marina was also reported in the ascidians L. patella, Diplosoma similis, and Diplosoma virens [97].
A diversity assessment of the cyanobacterial community inhabiting didemnid ascidians from Bahamas
Islands showed Synechocystis sp. in the tunic of ascidians Trididemnum solidum and Trididemnum
cyanophorum as well as acaryochloris-like symbionts living with ascidians Lissoclinum fragile and L.
aff. fragile. The host identity strongly correlated with the identity of the photosymbionts found in the
tunic [98,99].

Symbiont cyanobacteria have been found to locate both on the surface or in the cloacal cavities of
the hosts, and they show high colony densities from larvae to adult [100]. Studies also reveal that the
intact Prochloron cells containing vesicles or granules are interspersed in the tunic matrix of ascidian
Trididemnum miniatum but without direct contact with the host cells [101]. However, the observation of
a round cell mass derived from the remains of degenerative Prochloron in the ascidian T. miniatum tunic
indicates that tunic phagocytes may dispose of defective photosymbionts and expel them from the
colony [101].

As an oxyphototrophic prokaryote, Prochloron sp. is an extremely important nutrient source for its
host ascidians through both photosynthesis and nitrogen fixation, which enable the host to occupy
various environments [102].

Systematic screening of photosynthetic genes shows that Prochloron didemni possesses complete
photosynthetic components and genes encoding the sole phycobiliprotein, which is regarded as a
photoreceptor [103]. Another feature of the component is organization of hli genes encoding Scps
proteins, hard light-induced proteins belonging to the plant Lhc protein family, which are involved
in the absorption of excess excitation energy [104]. However, P. didemni contains a small number of
genes involved in CO2 transport. The NADH dehydrogenase complex is encoded by homologues of
Synechocystis ndhD4 and ndhF4 genes, which takes up CO2 and converts it to HCO3

- [105].
Prochloron sp. contains genes required to fix nitrogen. It also provides amino acids for the hosts by

a nitrogenase complex, which is formed with two subunits: the Fe subunit coded by the nifH gene and
the Mo-Fe subunit coded by the nifD and the nifK genes. The expression of nif genes and the process of
nitrogen fixation are mainly affected by O2 and NH3 [106].



Mar. Drugs 2019, 17, 670 13 of 24

In addition, Prochloron sp. also protects the host against the toxicity from active forms of oxygen
during photosensitizing processes [107]. The Cu-Zn metalloprotein in Prochloron sp. is a cyanide-sensitive
superoxide dismutase, and it is not only involved in carbonic anhydrase reactivity and phosphoester
hydrolysis for photosynthesis but is also required for oxygen activation [107–109]. Studies revealed
the increasing activities of superoxide dismutase (SOD), ascorbate peroxidase, and catalase under high
irradiance in ascidian L. patella-harbored Prochloron sp. [107]. It is still not clear whether UV radiation can
penetrate ascidian host tissues, but the visible radiation reaching the symbionts in the tunic is decreased by
60 to 80% [102]. These findings provide good evidence that symbionts are important to prevent the host
from the toxicity produced by active forms of oxygen by removing superoxide radicals (O2-), hydrogen
peroxide (H2O2), and hydroxyl radicals (HO·) during photosensitizing processes [107]. The removal
of these superoxide radicals is important in preventing the inactivation of ribulose-1,5-bisphosphate
carboxylase/oxygenase, the primary CO2-fixing enzyme in Prochloron sp. [110], and in protecting the
nitrogenase enzyme from inactivation by reactive oxygen species (ROS) [111].

Another protective effect of Prochloron sp. is to screen out UV radiation with mycosporine-like
amino acids (MAAs), substances with absorption maxima ranging from 310 to 360 nm [112].
In high-ultraviolet (UV) tropical environments, Prochloron sp. specifically localizes in tunic bladder
cells of the ascidians and employs MAAs to prevent the host from excess UV irradiation [113]. Genome
data indicate that MAAs are produced by the symbiont and are transported to the animal [114]. Under
UV irradiation, photosynthesis in isolated Prochloron cells is severely inhibited, but this process is
normal in the Prochloron cells when it is associated with the host, which indicates that the MAAs are
located in the tunic of ascidians but not in Prochloron cells [115].

Moreover, the different colors observed in the ascidians are also attributed to the presence of
cyanobacteria and the variety of their secondary metabolites. The ascidian Didemnum molle bearing the
Prochloron sp. exhibits great color varieties, from bright white in shallow sites to dull white in deep
sites. This variation in colony color is also related to the presence of MAAs, which is essential for the
photoadaptation of host ascidian [116].

Prochloron sp. also synthesizes the most abundant lipids, including terminal olefin lipids,
nonadec-1-ene, and derivatives, by polyketide synthase (PKS) gene gaz. These lipids may impact the
structure and the chemical components of membranes of the host animals [117,118].

The study of Prochloron sp. genetic modules for cyanobactin biosynthesis sets an example in
understanding the pathway that evolved in the production of natural compounds. Prochloron sp.
possesses genes for the synthesis of toxic cyanobactins, a group of ribosomally synthesized and
postranslationally modified peptides (RiPPs) [119,120]. Numerous cyclic peptides, especially the
patellamide class, that are secondary metabolites with pharmaceutical interest have been isolated from
Prochloron sp. [70].

Though analysis of the patellamide biosynthetic genes, the pat gene cluster was identified. Seven
coding sequences, patA–patG, are responsible for patellamide biosynthesis, all of which are transcribed
in the same direction (Figure 16). Among them, patA, patD, patE, and patG are essential for patellamide
biosynthesis [121,122]. The patE encodes a peptide of 71 amino acids (aa). The first 37 aa are proposed
to serve as a leader sequence. As for the remaining 34 aa, 16 of them directly encode part of patellamide
A and C, whereas the additional 18 aa make up motifs that may direct cyclization [123]. Within patE,
the start and the stop recognition sequences flanking the coding regions are responsible for recruiting
modifying enzymes [124,125]. patA, with a proline-rich coding region, encodes enzymes involved in
cleavage of the patE precursor. patD is responsible for two domains: the N-terminal domain (patD1),
which shows an adenylating enzyme activity to activate cleaved patellamide precursors as adenylates,
and the C-terminus domain (patD2), which serves as a hydrolase and is involved in the cyclization
of patE [121]. As for patG, which has a multidomain, its N-terminal is homologous to NAD(P)H
oxidoreductases (patG1). The C-terminal patG2 contains subtilisin-like protease, indicating that patG
is involved in the oxidation and the maturation of patE [123]. However, the roles of patB, patC, and
patF in biosynthesis of patellamides are still not clear.
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Beside this, two new cyanobactin pathways have also been discovered in Prochloron sp. A tru-like
cluster, trf, encoding patellins 3 and 5, while a pat-like cluster, bis, encoding bistratamides A and E [126],
is highly similar to the proteins that are encoded in the pat pathway [123,124].Mar. Drugs 2019, 17, x FOR PEER REVIEW 15 of 24 
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Prochloron sp. (b) ascidian Lissoclinum patella. (c) Patellamides synthesis pathway. The pat cluster
includes seven coding sequences: patA–patG. petE (red arrow) is an essential gene for the production of
patellamide C [highlighted amino acid (aa) in yellow] and patellamide A (highlighted aa in green).
PatA, patD, and patG encode enzymes that are responsible for the production of patellamide (blue
arrows); the functions of patB, patC, and patF are not clear (white arrows).

3.3. Actinomycetes

As well-known producers of secondary metabolites such as tetracyclines, aminoglycosides,
and macrolides, actinomycetes have been reported to be symbionts for different ascidians [127,128].
The genus Streptomyces is known as the most diverse actinomycete that widely exists in the ascidians
E. turbinata and Molgula manhattensis, respectively (Figure 17) [129,130]. By analyzing the overall
bacterial communities of the ascidian Eudistoma toealensis, the genera Salinispora and Verrucosispora were
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found to be the most notable colonies in the host [131]. These two actinomycetes are known for their
production of indolocarbazole, which also has been isolated from the ascidian L. patella and enables it to
be cultured in vitro [103]. A new taxonomic variation in the genus of Gordonia, named Gordoniadidemni
sp. nov., has been isolated from the ascidian Didemnum sp. and is classified as a novel species of
the genus Gordonia [132]. This strain exhibits the potential in bioremediation and the biodegradation
of pollutants [133]. The genus Aeromicrobium sp., discovered from the ascidian Halocynthia roretzi,
is the first ascidian originating symbiont that could biosynthesize taurocholic acid, a bile acid that
is usually produced by mammalian liver cells [134,135]. The strain Actinomadura sp., associated
with the ascidian E. turbinate, has been described to harbor an ionophore antibiotic, ecteinamycin,
which has demonstrated potent activity against the strain Clostridium difficile in detoxification and
cell death via potassium transport dysregulation [136]. Novel brominated analogues have also been
isolated from such strains and have displayed potent nuclear factor E2-related factor antioxidant
response element (Nrf2-ARE) activation, which is an important therapeutic approach in the treatment
of neurodegenerative diseases [137]. By investigating the actinomycetes associated with three different
Australian ascidians, Symplegma rubra, Aplidium solidum, and Polyclinum vasculosum, the genera
Streptomyces and Micromonospora were highly diverse microbes, which presented rich sources for
natural product discovery [138]. The fermentation extract obtained from strain Streptomyces sp.
(USC-16018) derived from the ascidian Symplegma rubra yielded two polyketides, herbimycin G
and elaiophylin, which showed antiplasmodial activities against chloroquine sensitive (3D7) and
chloroquine resistant (Dd2) Plasmodium falciparum strains [139].

Numerous novel bioactive compounds have been isolated from marine-derived
actinomycetes [140]. In general, most actinomycetes do not require seawater or salt supplementation
for growth, but they are commonly associated with marine animals [141], where they contribute
significantly to the turnover of complex biopolymers and antibiotics [142,143]. The toxic compounds
produced by actinomycetes protect the host from predation and infection in shallow-water habitats [24].

3.4. Fungi

Compared with other microbes, fungi identified from ascidians represent only a small percentage
of the total microbe community (Figure 17). The majority of them belong to the genera Penicillium
and Aspergillus [144,145]. Penicillium verruculosum TPU1311 and Penicillium albobiverticillium TPU1432
isolated from Indonesian ascidians produce pharmacologically active compounds with inhibitory
activities against protein tyrosine phosphatase 1B (PTP1B) [146,147]. Penicamide A, an alkaloid from
the ascidian Styela plicata-derived Penicillium sp. 4829, inhibits the production of NO in RAW264.7
cells [148]. There are also reports regarding the bioactivities of compounds isolated from the ascidian
Didemnum sp.-derived fungus Penicillium sp. CYE-87, which shows antimigratory and antiproliferation
activity against several human cancer cell lines [149,150]. The fungus Aspergillus sp. KMM 4676 is
associated with an unidentified ascidian from Shikotan Island [151]. A new alkaloid, asperindole A,
produced by this fungus, exhibits cytotoxic activity against hormone therapy-resistant cancer cells and
induces apoptosis [151]. The specificity of fungal communities has been discovered in the ascidian
Eudistoma vannamei, in which the fungus Aspergillus sp. and another ten kinds of fungal strains resided.
Three of the mycelium extractions of the fungal strains showed pronounced cytotoxic effects [152].
Transcriptome-based analyses showed the presence of the fungal strain Talaromyces sp. in ascidians
collected from both Australia and South China [153,154]. This fungus produces talarolide A, the
second cyclic peptide discovered from the genus Talaromyces, and has been proven to be a new cyclic
heptapeptide rich in D-amino acids and a rare hydroxamate residue.

Fungi isolated from ascidians have been demonstrated to be capable of producing novel defense
chemicals that are considered to play roles in the survival of ascidians [155], and they are involved in
host–fungus and fungus–microbe interactions [156].
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4. Concluding Remarks

Ascidians possess numerous intriguing features, such as producing abundant secondary
metabolites and occupying the closest phylogenetic position to vertebrate. Recent works have
revealed that plenty of bioactive compounds originate from ascidian symbionts. These compounds
serve as one of the richest sources contributing to the defense infection/predation and the absorption of
nutrients that are apparently necessary for the survival of the hosts. The hosts also provide amino
acids, lipids, or recycled nitrogen for growth and residence of the symbiotic microbes within the
ascidians. Their interactions benefit the survival and the co-evolution of both the symbionts and the
host ascidians in environmental adaption (Figure 17).
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