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Abstract

Many species are too slow to track their poleward-moving climate niche under

global warming. Pesticide exposure may contribute to this by reducing popula-

tion growth and impairing flight ability. Moreover, edge populations at the mov-

ing range front may be more vulnerable to pesticides because of the rapid

evolution of traits to enhance their rate of spread that shunt energy away from

detoxification and repair. We exposed replicated edge and core populations of

the poleward-moving damselfly Coenagrion scitulum to the pesticide esfenvalerate

at low and high densities. Exposure to esfenvalerate had strong negative effects

on survival, growth rate, and development time in the larval stage and negatively

affected flight-related adult traits (mass at emergence, flight muscle mass, and fat

content) across metamorphosis. Pesticide effects did not differ between edge and

core populations, except that at the high concentration the pesticide-induced

mortality was 17% stronger in edge populations. Pesticide exposure may there-

fore slow down the range expansion by lowering population growth rates, espe-

cially because edge populations suffered a higher mortality, and by negatively

affecting dispersal ability by impairing flight-related traits. These results empha-

size the need for direct conservation efforts toward leading-edge populations for

facilitating future range shifts under global warming.

Introduction

Global warming is causing widespread poleward range

expansions where species try to keep pace with their moving

climate niche (Hickling et al. 2006; Chen et al. 2011).

Under ongoing and more intense global warming, range-

expanding species are expected to continue to move more

poleward to track their optimal thermal niche (Hickling

et al. 2006; Chen et al. 2011). There is large variation in the

rates at which different species’ geographic ranges expand in

response to climate warming (Moritz and Agudo 2013; Mair

et al. 2014), yet only part of the variation in these rates can

be explained by species differences in intrinsic dispersal abil-

ities (Angert et al. 2011; Fordham et al. 2013). Understand-

ing factors shaping the speed of range expansion is timely as

there is increasing concern that many species are too slow to

track their moving climate niche (Razgour et al. 2013).

Pesticide exposure may be one notable factor that may

affect range expansion as individuals have to cross-agricul-

tural landscapes with extensive use of pesticides. Moreover,

the frequency of pesticide application is likely to increase

under global warming, particularly at higher latitudes (Kat-

twinkel et al. 2011) where many edge populations are

migrating to (Hickling et al. 2006). How species will deal

with pesticides under global warming is becoming a major

topic in ecotoxicology (Noyes et al. 2009; Moe et al. 2013),

yet the expected interplay of range expansions and contam-

inants on organisms has been ignored. The vulnerability of

edge populations at the moving range front to pesticides

may slow down the range expansion in two ways. Firstly,

pesticide exposure may impair the locomotory perfor-

mance of animals by negatively affecting energy storage

(e.g., Janssens et al. 2014) and muscles (e.g., Mehlhorn

et al. 1999). Secondly, pesticides may reduce population
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growth rates by reducing larval growth rate and imposing

mortality, thereby slowing down further range expansion.

During range expansions, edge populations may show

rapid evolution as they experience novel evolutionary pres-

sures because edge populations are assorted by dispersal

ability and have a lower density of conspecifics than do

core populations (Phillips et al. 2010). This rapid evolution

entails a broad range of traits, including morphology, phys-

iology, and behavior that are selected toward values that

increase the rate of spread (Phillips 2009; Burton et al.

2010; Phillips et al. 2010; Shine et al. 2011; Brown et al.

2015). For example, edge populations at moving range

fronts typically evolve a faster life history, a higher invest-

ment in reproduction (Phillips 2009; Phillips et al. 2010),

higher activity levels (Therry et al. 2014b), an increased

investment in locomotory ability (Hill et al. 2011) and a

higher investment in immune function to avoid a reduc-

tion in dispersal rates (Therry et al. 2014c). Note that these

evolutionary changes are not driven by adaptation to the

range edge or any new biotic conditions met, but are driven

by the dynamic process of range expansion itself. There-

fore, these effects are only to be expected in edge popula-

tions at moving range fronts and not in edge populations

at stable range fronts. These evolutionary changes require a

higher allocation of energy toward growth and develop-

ment and costly structures (such as muscles) and functions

(such as immune function). Given that these investments

in costly traits to accelerate range expansion will imply

trade-offs with other costly processes such as investment in

detoxification and repair (Sibly and Calow 1989; Congdon

et al. 2001), it is to be expected that edge populations at

moving range fronts will be more vulnerable to stressors

such as pesticides. This novel hypothesis needs explicit test-

ing and would provide an extra dimension to the insight

that ecotoxicology needs a macroecological (Beketov and

Liess 2012; Clements et al. 2012) and evolutionary (Coutel-

lec and Barata 2011; Hammond et al. 2012) perspective.

We tested for the potential role of pesticide exposure in

slowing down range expansion and whether evolutionary

processes during range expansion increase the vulnerability

to pesticides. We studied this in a currently poleward-mov-

ing damselfly by comparing replicated core and edge popu-

lations at low and high densities in an outdoor container

experiment. Damselflies are among the taxa showing the

strongest poleward range expansions (Hickling et al. 2006).

They have a complex life cycle with an aquatic larval stage

where growth occurs and a terrestrial flying adult stage

where reproduction and dispersal occur (Stoks and Cor-

doba-Aguilar 2012). We included a density treatment as

densities are initially lower at the expansion front while

pesticide effects may be apparent or stronger at high densi-

ties (e.g., Jones et al. 2011; Knillmann et al. 2012). We

tested for effects on larval survival, growth, and develop-

ment and for potential carryover effects bridging metamor-

phosis on a set of flight-related traits (body mass, relative

flight muscle mass, and fat content), that may be especially

relevant for dispersal ability. As study species we chose the

poleward range-expanding damselfly Coenagrion scitulum

(Swaegers et al. 2013). We have previously shown that this

species evolved a faster life history (Therry et al. 2014b)

and a higher investment in flight muscles and immune

response (Therry et al. 2014c) at the range front. As pesti-

cide we used esfenvalerate, a widely applied pyrethroid

insecticide (Spurlock and Lee 2008; Stehle and Schulz

2015) that is highly toxic to aquatic invertebrates (Ras-

mussen et al. 2013), including damselfly larvae (Beketov

2004).

Materials and methods

Study populations and rearing experiment

Coenagrion scitulum is a Mediterranean damselfly prefer-

ring small ponds (Dijkstra 2006). Up to the 1990s the

northern range limit was situated in northern France, after

which a north-eastward range expansion has occurred

(Swaegers et al. 2013). In 2010, the northern-most limit of

the expanding range margin was situated in the southern

parts of the Netherlands, and the northeastern limit in

Western Germany. We studied two core populations and

two edge populations. The two core populations, both in

France, were situated in Nord-Pas-de-Calais

(+50°26034.37″N, +1°35008.81″E) and Indre (+46°43014.03″
N, +1°10020.22″E). Both core populations are within the

historical distribution of the species (Therry et al. 2014c).

Note that the Nord-Pas-de-Calais population is situated at

the edge of the historical range as it is bordering the Atlan-

tic Ocean, making our setup conservative as we only

hypothesize a higher vulnerability to pesticides in edge

populations at moving range fronts. The two edge popula-

tions were situated in Saarland (Germany, +49°14052.96″N,
+7°16020.08″E) and in Zeeland (the Netherlands,

+51°21025.99″N, +3°40001.37″E), both at the moving range

front (further on we just call them ‘edge populations’). The

distances between populations are ca. 420 km between

Nord-Pas-de-Calais and Indre, ca. 420 km between Nord-

Pas-de-Calais and Saarland, ca. 180 between Nord-Pas-de-

Calais and Zeeland, ca. 350 km between Saarland and Zee-

land, and ca. 550 km between Indre and Saarland and

between Indre and Zeeland. Despite the relatively small

spatial scale, the edge populations are clearly differentiated

from each other and from the core populations as indicated

by neutral genetic markers (Swaegers et al. 2016). More-

over, common-garden rearing experiments from the egg

stage showed the evolution of a faster life history (Therry

et al. 2014b) and a higher investment in flight muscles and

immune response (Therry et al. 2014c) in the edge popula-
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tions at the range front compared to the nearby core popu-

lations.

The study populations at Nord-Pas-de-Calais, Indre, and

Zeeland are in natural areas without agriculture and there-

fore were unlikely to be affected by pesticides (Coors et al.

2009; Cothran et al. 2013). The edge population in Saar-

land is within an agricultural area. This could have affected

our results in two opposing ways: (i) animals in the Saar-

land population may have developed tolerance to the pesti-

cide (e.g., Hua et al. 2015), or (ii) animals in the Saarland

population may have suffered stress in the parental genera-

tion due to contamination of the habitat making them

more vulnerable to pesticide exposure in the laboratory.

The local adaptation option is unlikely given that polluted,

and unpolluted ponds are intermixed in the landscape and

the high levels of gene flow at a regional scale in Coenagrion

damselflies (Johansson et al. 2013) and given the Saarland

population was founded recently when sampled (<5 years,

Therry et al. 2014c). Also, any local adaptation to pesti-

cides in this edge population would make our results of

increased vulnerability to pesticides in edge populations

conservative. Furthermore, we did not detect differential

effects of the pesticide on any response variable between

the Saarland edge population and the other edge popula-

tion in Zeeland, which was situated in a natural area

(Appendix S1). This also suggests that any effects on the

experimental larvae in the Saarland population working

through stress due to pesticide contamination of the habi-

tat is unlikely as it would have generated a higher vulnera-

bility in the Saarland compared to the Zeeland edge

population.

Mated females (Nord-Pas-de-Calais: 8, Indre: 12, Saar-

land: 12, and Zeeland: 11) were collected in June–July 2012
and allowed to oviposit in situ. Eggs were transported to

the laboratory in Belgium. After hatching, larvae of each

female were kept together in a plastic tank

(15 9 10 9 12.5 cm) filled with ca. 500 mL dechlorinated

tap water for 3 weeks to enhance survival. During this per-

iod, larvae were kept at 20°C and a photoperiod of 16:8 h

light:dark. Larvae were fed Artemia nauplii ad libitum

5 days per week. After this 3-week period larvae were intro-

duced in the container experiment.

Outdoor container experiment

To test whether evolutionary processes during the range

expansion affect the vulnerability of Coenagrion scitulum

damselflies to a pesticide and how density may play a role

in modifying these effects, we set up a full factorial outdoor

container experiment with 2 population types (edge and

core, each represented by two populations) 9 2 densities

(low and high) 9 3 esfenvalerate concentrations (0, 0.1

and 0.2 lg/L). Each treatment combination had 8 repli-

cated containers (10 L polypropylene cylindrical tanks,

height of 22 cm, diameter of 24 cm) giving a total of 96

containers. The container experiment consisted of three

periods: (i) a pre-exposure period that started when larvae

were ca. 3 weeks old and that spanned fall and winter, (ii) a

pesticide exposure period of 4 weeks in spring during

which the larvae experienced four pulses of esfenvalerate,

and (iii) a postexposure period that ended with adult meta-

morphosis. The initially installed larval densities were 15

and 45 larvae per container, corresponding to low (332 lar-

vae per m2) and high (995 larvae per m2) densities of

coenagrionid damselfly larvae in suitable habitats (Corbet

1999), respectively.

Due to higher mortality in the pre-exposure stage of the

experiment in edge (62.89%) than in core populations

(58.1%) (Loglinear model, v21 = 6.88, P < 0.0088) and in

high-density (64.10%) than in low-density containers

(49.13%) (Loglinear model, v21 = 48.15, P < 0.001) and the

resulting density variation among containers of the same

density treatment, we re-installed the density treatments

after winter. This was carried out by redistributing larvae

among containers (cf. Liess et al. 2013), thereby keeping

larvae at their combination of population and density.

Note this was carried out just before the pesticide exposure

period started. The new densities were 8 (low density) and

20 (high density) larvae per container. The resulting num-

ber of containers per density treatment varied from 5 to 8

per population (exact numbers are shown in the figures).

See Appendix S2 for more details of the experimental

setup.

Application of esfenvalerate

The esfenvalerate concentrations were chosen based on a

48 h acute toxicity test in which C. scitulum damselfly lar-

vae were individually exposed to concentrations of 0, 0.25,

0.5, 1, and 2 lg/L at 18°C (close to the temperature in the

containers at the start of the exposure period, see Fig. S1G–
H). After 48 h the survival was 100% in the control, 82% at

0.25 lg/L, 33% at 0.5 lg/L and 0% at 1 and 2 lg/L. In
another acute toxicity test in which Daphnia pulex, the food

source of the damselfly larvae in the containers, was

exposed in groups of 10 individuals to the same esfenvaler-

ate concentrations at 18°C, none of the Daphnia died after

48 h, even at the highest tested esfenvalerate concentration

of 2.0 lg/L. Because we were also interested in sublethal

effects, we selected concentrations of 0.1 lg/L (the lowest

observed effect concentration for invertebrates, European

Commission 2000) and 0.2 lg/L (below the lowest lethal

concentration in our acute toxicity test) for our experi-

ment. Both concentrations fall within the range of concen-

trations found in water bodies nearby agricultural areas,

which go up to 0.76 lg/L (Stampfli et al. 2013). A 1 mg/
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mL stock solution was prepared by dissolving esfenvalerate

powder (purity >99%, Sigma-Aldrich) in absolute ethanol.

This stock solution was further diluted with filtered water

from the containers to obtain concentrations of 12 and

24 lg/L esfenvalerate (the spraying solutions), respectively.

Fifty millilitre of each spraying solution (12 and 24 lg/L)
was gently poured over the surface of the containers

(Stampfli et al. 2013) to obtain the nominal esfenvalerate

concentrations of 0.1 and 0.2 lg/L. In the control treat-

ment, we added 50 mL ethanol (24 lL/L), using the etha-

nol concentration of the high esfenvalerate treatment, in

the same manner as in the pesticide treatments.

Esfenvalerate was applied four times in spring, with

1 week between pulses, starting on 2 May 2013 with the last

pulse on 23 May 2013. This mimics the realistic scenario of

exposure to several pesticide pulses in spring through run-

off (Van Drooge et al. 2001). The measured concentrations

in the containers, based on a pooled sample from all con-

tainers of each of the exposure concentrations, were 0.072

and 0.084 lg/L 2 h after spraying (the expected peak con-

centration, Knillmann et al. 2013), for the nominal concen-

trations of 0.1 and 0.2 lg/L, respectively. After 1 week, just

before applying a new pulse, the concentrations were below

the detection limit of 0.005 lg/L. Esfenvalerate concentra-

tions were analyzed by the research laboratory Lovap NV,

Geel, Belgium using gas chromatography in combination

with mass spectrometry.

Abiotic and biotic parameters

Temperature, dissolved oxygen, pH, and conductivity were

measured in a subsample of 24 containers, 2 containers per

combination of population type 9 density 9 esfenvalerate

concentration. These parameters were quantified biweekly

throughout the exposure and postexposure periods.

Chlorophyll a concentrations were measured in all contain-

ers on a biweekly basis during the exposure and postexpo-

sure periods. The abundance of D. pulex was quantified in

each container at the start of the pesticide exposure period

to obtain the initial density, and after 7 days to obtain the

lowest density. Thereafter, Daphnia abundance was quanti-

fied every 2 weeks just before (lowest density) and after

(highest density) the weekly addition of Daphnia. See

Appendix S2 for detailed overviews of the temporal pat-

terns of abiotic and biotic parameters in the experimental

containers under the different treatment combinations.

Response variables

To estimate larval growth rate during the 4-week exposure

period, all larvae from each container were collected and

weighted on 26–29 April 2013 (just before the start of the

exposure period) and on 29–30 May 2013 (end of the expo-

sure period). Mean per capita mass per container was used

to calculate growth rate as (lnfinal mass – lninitial mass)/dura-

tion exposure period. Based on the number of larvae

counted at the start and at the end of the exposure period,

we calculated mortality (%) during the exposure period as

(initial number – number of survived larvae)/initial num-

ber of larvae 9 100. After the exposure period, we daily

checked for emergence of adult damselflies. The larval

development time was calculated as the time from egg

hatching to adult emergence. To quantify mass at emer-

gence, all freshly-emerged adults were kept in the dark for

ca. 16 h to harden their exoskeleton where after their wet

mass was weighted to the nearest 0.01 mg using an elec-

tronic balance (AB135-S, Mettler Toledo�, Zaventem, Bel-

gium). Afterward, all adults were stored at �80°C until the

analyses of flight muscle mass and fat content. For each

adult that emerged, flight muscle mass and fat content, two

important flight-related traits (Therry et al. 2014c), were

quantified based on protocols described in Swillen et al.

(2009) (see Appendix S3 for more detail).

Statistical analyses

To test for effects of the population type, larval density,

and esfenvalerate concentration on the response variables

mortality, growth rate, and development time during the

exposure period, and adult mass at emergence, flight mus-

cle mass, and total fat content, we ran separate AN(C)OVAs

using the mixed procedure of SAS v9.3 (SAS Institute Inc.,

Cary, NC, USA). In all models, population nested in popu-

lation type was included as a random factor. When testing

effects on flight muscle mass and fat content, we included

the exoskeleton mass as covariate to correct for size differ-

ences (see Therry et al. 2014c). All models use containers

as the unit of replication. We will here report results for

total development time, the patterns for the duration of the

postexposure period (relevant for potential recovery) are

similar and shown in Appendix S4.

In damselflies, sexes may differ in their response to pesti-

cide exposure (e.g., Campero et al. 2008). We therefore

sexed all adults at emergence and analyzed the traits scored

at emergence separately by sex (development time, mass at

emergence, flight muscle mass, and fat content). Note that

given the large number of larvae (>1000 larvae) involved, it
was logistically not possible to sex all larvae at the start and

the end of the exposure period, so we could not separately

analyze larval traits by sex.

Results

Larval life history traits

Surprisingly, in total 71 adults emerged before winter dur-

ing the months of October and November 2012, hence
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before the pesticide exposure period started. These were all

edge animals (ANOVA on numbers emerged per container,

Population type: F1,92 = 26.35, P < 0.0001), and numbers

did not differ between containers at low density (n = 28

adults) and containers at high density (n = 43 adults)

(Density: F1,92 = 1.18, P = 0.28).

Overall mortality during the spring exposure period did

not differ between edge and core populations (F1,2 = 0.4,

P = 0.59) and between low and high density (F1,68 = 1.13,

P = 0.29). Exposure to esfenvalerate increased mortality

(F2,68 = 34.34, P < 0.001). Notably, the effect of esfenvaler-

ate differed between edge and core populations (Popula-

tion type 9 Pesticide, F2,68 = 4.1, P = 0.021). Contrasts

analyses showed that at the high esfenvalerate concentra-

tion the pesticide-induced mortality was stronger in edge

populations than in core populations (F1,70 = 8.03,

P = 0.006, Fig. 1), while mortality did not differ between

edge and core populations in the control (F1,70 < 0.01,

P = 0.99) and at the low concentration (F1,70 = 0.37,

P = 0.54). This pattern of increased mortality of edge com-

pared to core populations at the high concentration was

similar at both densities (Population type 9 Pesti-

cide 9 Density: F2,68 = 0.75, P = 0.48, Fig. S4A,B in

Appendix S5). The pesticide effect did not depend upon

density (Density 9 Pesticide, F2,68 = 1.29, P = 0.28).

Growth rates differed neither between edge and core

populations (F1,2 = 0.02, P = 0.91 Fig. S4C,D) nor between

low and high densities (F1,68 = 0.2, P = 0.65). Growth rate

during the exposure period strongly decreased with

increasing esfenvalerate concentrations: the growth reduc-

tions were ca. 27% at the low and ca. 36% at the high esfen-

valerate concentration (F2,68 = 7.03, P = 0.0017, Fig. S4C,

D in Appendix S5). The pesticide effect did not depend

upon population type or density (all interactions:

P > 0.25).

Exposure to esfenvalerate tended to result in a slightly

later emergence of ca. 3 days (Males: F2,67 = 3.1,

P = 0.051; Females: F2,66 = 2.73, P = 0.072, Fig. 2A,D).

Development times were longer at high density (Males:

F1,67 = 69.1, P < 0.001; Females: F1,66 = 47.7, P < 0.001,

Fig. 2B,D). Development times tended to be slightly

shorter in edge females than in core females in the control

and at the high esfenvalerate concentration (Females: Pop-

ulation type 9 Pesticide, F1,66 = 3.12, P = 0.051, Fig. 2C,

D).

Adult flight-related traits

Mass at emergence decreased with increasing esfenvalerate

concentrations (Males: F2,67 = 7.64, P = 0.001; Females:

F2,65 = 8.4, P < 0.001, Fig. 2E–H) and was lower at high

density (Males: F1,67 = 55.65, P < 0.001; Females:

F1,65 = 47.17, P < 0.001). Mass at emergence did not differ

between edge and core animals (Males: F1,2 = 0.04,

P = 0.86; Females: F1,2 = 0.08, P = 0.80, Fig. 2E–H).

Exposure to esfenvalerate negatively affected the relative

flight muscle mass (Males: F2,66 = 2.79, P = 0.068;

Females: F2,64 = 9.42, P < 0.001, Fig. 3A–D). Edge animals

tended to have a higher flight muscle mass than core ani-

mals at high density in the absence of the pesticide, while

the opposite was observed at low density (Males: Popula-

tion type 9 Density, F1,66 = 4.75, P = 0.033; Females:

Population type 9 Density 9 Pesticide, F2,64 = 6.18,

P = 0.0035). High density resulted in a lower flight muscle

mass (Males: F1,66 = 29.35, P < 0.001; Females:

F1,64 = 21.29, P < 0.001).

Exposure to esfenvalerate strongly decreased the fat con-

tent (Males: F2,66 = 5.58, P = 0.0058; Females: F2,64 = 7.61,

P = 0.0011). In males, this pesticide effect was density-

dependent (Density 9 Pesticide, F2,66 = 4.89, P = 0.011,

Fig. 3E–H): at low-density fat content was only reduced at

the high esfenvalerate concentration while at high-density

fat content was already reduced at the low esfenvalerate

concentration. In both sexes, fat content was lower at high

density than at low density (Males: F1,66 = 18.89,

P < 0.001; Females: F1,64 = 10.94, P = 0.0015); this pattern

was stronger in core animals than in edge animals (Popula-

tion type 9 Density, Males: F1,66 = 8.06, P = 0.006;

Females: F1,64 = 7.07, P = 0.0099, Fig. 3E–H).

Discussion

Main effects of the pesticide

We found strong negative effects of larval exposure to the

ecologically realistic esfenvalerate concentrations on all

studied traits not only in the larval but also in the adult

Figure 1 Mortality of Coenagrion scitulum damselfly larvae during the

exposure period as a function of esfenvalerate concentration and popu-

lation type. Numbers above the bars represent the number of container

replicates. Least-square means are given with 1 SE.

454 © 2015 The Authors. Evolutionary Applications published by John Wiley & Sons Ltd 9 (2016) 450–461
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stage, and this despite the long period (ca. 25–30 days, see

Appendix S4) that larvae were able to recover from

pesticide exposure. Esfenvalerate-imposed mortality fits the

pattern of lethal effects imposed by pyrethroids in aquatic

insects (Liess 2002; Beketov and Liess 2005; Rasmussen

et al. 2013), which result from damage to the nervous

Figure 2 Development time of males (A, B) and females (C, D) and mass at emergence of males (E, F) and females (G, H) of the damselfly Coenagrion

scitulum as a function of esfenvalerate concentration, density, and population type. Numbers above the bars represent the number of container repli-

cates. Least-square means are given with 1 SE.
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system (Cold and Forbes 2004). The negative effects of

exposure to esfenvalerate on growth and flight-related traits

likely were mediated by energy shortage as pesticide-

exposed animals need more energy for detoxification and

repair, resulting in less energy allocation toward other

functions (Campero et al. 2007). Note that these esfen-

Figure 3 Flight muscle mass of males (A, B) and females (C, D), fat content of males (E, E) and females (G, H) of the damselfly Coenagrion scitulum

as a function of esfenvalerate concentration, density, and population type. Numbers above the bars represent the number of container replicates.

Least-square means corrected for size are given with 1 SE.
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valerate effects are likely direct effects on the damselfly lar-

vae and no indirect effects working through the Daphnia

food because D. pulex survival was not affected by a 109

higher esfenvalerate concentration and because the pesti-

cide did not affect the abundance of D. pulex in the con-

tainers (Appendix S2).

A key finding was that esfenvalerate negatively affected

body mass, fat content, and relative flight muscle mass,

three traits known to shape flight performance in Coena-

grion damselflies (Gyulav�ari et al. 2014; Therry et al.

2014c). Delayed effects of esfenvalerate across metamor-

phosis have also been documented in the caddisfly Brachy-

centrus americanus where adults that had been exposed to

esfenvalerate in the pupal stage invested less in egg mass

(Palmquist et al. 2008). The pesticide-induced reductions

in the flight-related traits, especially flight muscle mass is a

highly relevant trait for key functions such as flight ability

(e.g., Therry et al. 2014a), and therefore important for

shaping foraging, predator evasion, mating success, and

dispersal ability in damselflies (Stoks and Cordoba-Aguilar

2012).

Edge-core differentiation mediating the effect of the

pesticide

We found some evidence for the expected faster life history

and increased investment in flight morphology in edge

populations. Animals at an expanding range are expected

to show a faster life history because of spatial sorting and r-

selection associated with the initial lower population densi-

ties at the expansion front (Phillips 2009; Burton et al.

2010; Phillips et al. 2010). For the study species this also

includes selection for a fast development to avoid having

less generations per year at the higher latitudes at the

expansion front (Nilsson-€Ortman et al. 2012) which would

slow down the range expansion (Therry et al. 2014b).

Therry et al. (2014b) indeed reported higher growth and

development rates in edge larvae of the study species. In

line with this, we observed that the subset of animals that

were able to emerge before winter were all edge animals.

Yet, within the subset of larvae that overwintered (hence

those that were used in the spring exposure experiment),

no faster life history in edge animals was observed. The lat-

ter may be a result of the fastest animals already emerging

before winter. Moreover, the higher mortality during win-

ter in edge populations (see methods) may have mainly

removed the faster growing larvae. Indeed, rapid growth

has been associated with reduced energy storage (Stoks

et al. 2006) and reduced cold resistance (Stoks and De

Block 2011) in damselflies, which may have reduced the

ability to survive winter. More general, a faster life history

has been associated with a higher mortality in damselfly

larvae (De Block et al. 2008; Sniegula et al. 2014). Edge

animals are also expected to have a higher relative flight

muscle mass as only the best dispersers may reach the

expansion front (Shine et al. 2011). Indeed, edge popula-

tions of poleward-moving insects, including the study spe-

cies (Therry et al. 2014c), show a higher investment in

flight muscle mass (reviewed in Hill et al. 2011). Yet, in

current study this was only observed at high density (in the

control without the pesticide) suggesting that the higher

investment in flight muscles in edge populations may be

density-dependent.

Our data suggested that edge animals had a higher vul-

nerability to the pesticide in term of a higher mortality at

the high esfenvalerate concentration. Note that this higher

vulnerability in edge populations did not occur at the low

pesticide concentration as at the low concentration our

contrast analysis suggested no significant difference of mor-

tality between edge and core populations. Notably, we

observed the higher vulnerability to the pesticide in edge

populations despite no indication of a faster life history in

the overwintered larvae that were exposed to the pesticide

and without a consistent higher investment in flight mor-

phology. Edge populations, however, are expected to show

rapid evolutionary changes in a wide range of traits, includ-

ing life history, morphology, behavior, and physiology

(Phillips 2009; Burton et al. 2010; Phillips et al. 2010; Shine

et al. 2011; Brown et al. 2015) that all require a higher allo-

cation of energy and therefore are expected to be traded off

against investment in detoxification and repair (Sibly and

Calow 1989; Congdon et al. 2001). For example, the edge

animals may have invested more in immune function to

avoid parasite-driven reductions in dispersal ability, as has

been observed in the study species (Therry et al. 2014b; K.

V. Dinh, L. Janssens, L. Therry, L. Bervoets and R. Stoks,

unpublished data). Additionally, in another outdoor con-

tainer experiment (L. Therry, and R. Stoks in prep.) edge

larvae of the study species showed a faster growth during

the winter period and as a result had a lower fat content

after winter, which may have made them more vulnerable

to the pesticide. Whatever the mechanism, our results sug-

gest that evolutionary changes associated with range expan-

sion, made edge populations more vulnerable to

esfenvalerate during spring application. Admittedly, the

increase in pesticide-induced mortality in edge compared

to core populations was relatively small (ca. 17%), yet will

translate into extra reductions in population growth rates if

edge populations are exposed to pesticides.

Larval density mediating the effects of the pesticide

While the high-density treatment did not influence larval

survival and growth during the pesticide exposure period,

larvae reared at high density showed longer larval develop-

ment times, and reductions in mass at emergence, flight
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muscle mass, and fat content. These negative density effects

are in line with a higher exploitation competition for food

at the high-density treatment. Additionally, at high densi-

ties there may have been more physical encounters among

larvae, thereby imposing stress; this is especially likely in

damselfly larvae as they are cannibalistic and impose preda-

tor stress on each other (De Block and Stoks 2004).

Another important finding was that high density only

reduced flight muscle mass in core adults but not in edge

adults which is in line with the hypothesis of a stronger

selection for flight performance in edge populations (Hill

et al. 2011; Therry et al. 2014c). Negative effects of larval

competition on adult flight muscle mass have not previ-

ously been documented and provide a rare empirical exam-

ple of how the conditions encountered during the larval

stage may shape the adult dispersal ability (Benard and

McCauley 2008). In males, the pesticide-induced reduction

in fat content was stronger at high density than at low den-

sity; this is in line with the stronger negative effect of pesti-

cides at higher density in other aquatic animals (e.g., Jones

et al. 2011; Knillmann et al. 2012).

Implications for ecological risk assessment and range

expansions

Current ecological risk assessment (ERA) of pesticides is not

effectively protecting biodiversity as strong losses in biodi-

versity are being detected at concentrations that current leg-

islation considers as environmentally protective (Beketov

et al. 2013; Malaj et al. 2014). Our study adds to this by

identifying two reasons why current ERA may underesti-

mate the impact of pesticides, and thereby points to concrete

actions to improve legislation to make toxicity testing more

effective toward management and protection of freshwater

biodiversity under global warming. Firstly, we build further

on previous insights that standard toxicity testing limited to

one life stage may not capture the full impact of a pesticide

(see, e.g., Campero et al. 2008; Distel and Boone 2010; Jans-

sens et al. 2014). We thereby made an important extension

by providing evidence that larval exposure to ecologically

relevant concentrations of pesticides may negatively affect

locomotory performance in the adult stage. This ignored

delayed effect of pesticides may have major fitness conse-

quences as locomotion is crucial for key functions such as

foraging, escaping predation, securing matings, and disper-

sal (Stoks and Cordoba-Aguilar 2012). Secondly, we provide

the first test and some supporting evidence that edge popu-

lations at an expanding range front are more vulnerable to

high pesticide concentrations than core populations in term

of a higher pesticide-induced mortality, thereby adding an

evolutionary component to the emerging insight that we

need spatially explicit ERA (Van den Brink 2008; Clements

et al. 2012; Dinh Van et al. 2014).

Both the effect of larval pesticide exposure on mortality

and its delayed effects on adult flight-related traits also are

highly relevant to understand the impact of global warming

on organisms as they highlight two overlooked pathways of

how pesticides may slow down range expansions. Firstly,

exposure to esfenvalerate at ecologically realistic concentra-

tions caused mortality and thereby decreases in population

growth rates, hence it is expected to reduce the rate of fur-

ther range expansion. In addition, our data indicated rapid

evolution of a slightly increased pesticide-induced mortal-

ity at the range front, which has the potential to magnify

this effect, and thereby to slow down the range expansion

even more. As species may show considerable population

declines in core regions under global warming, researchers

highlighted the need for direct conservation efforts toward

leading-edge populations for spearheading future range

shifts (Razgour et al. 2013). Our results thereby underscore

the importance of considering pesticide exposure in such

conservation programs. Secondly, esfenvalerate negatively

affected three flight-related traits (body mass, relative flight

muscle mass, and fat content) known to shape flight per-

formance in Coenagrion damselflies (Gyulav�ari et al. 2014;

Therry et al. 2014c), thereby reducing the dispersal ability.

Any reductions in dispersal rates may have major implica-

tions as there is increasing concern that poleward range

expansions do not allow timely tracking of the moving cli-

mate niche (La Sorte and Jetz 2012). These two overlooked

mechanisms how pesticides may slow down range expan-

sion, together with the expected increase in pesticide appli-

cation at higher latitudes under global warming

(Kattwinkel et al. 2011), raise concern about the potential

for edge populations to act as potent sources for further

range expansion in a polluted world.

Despite recent progress in identifying factors underlying

species differences in range expansion rates (Angert et al.

2011; Mair et al. 2014), it is largely unknown why there is

so much variation in the rates at which different species’

geographic ranges expand in response to climate warming

(Moritz and Agudo 2013). Yet, this information is crucial

to identify species that may potentially be too slow to track

their moving climate niche, thereby being more at risk

under global warming and to understand the likely success

of different conservation strategies for facilitating range

shifts (Moritz and Agudo 2013; Mair et al. 2014). Some of

the current models predicting future ranges already include

estimates of dispersal ability to predict which species may

be better at tracking their climate envelope (e.g., Thomas

et al. 2001; Hughes et al. 2007). Species may differ consid-

erably in their sensitivity to pesticides (e.g., Beketov 2004;

Rasmussen et al. 2013; Weston et al. 2013). Our results

therefore generate the hypothesis that besides dispersal

ability also the degree to which survival and dispersal abil-

ity are affected by widely used contaminants and how the
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vulnerability to pesticides evolves at expanding range fronts

may be key factors in shaping species differences in range

expansion in a polluted world.
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esfenvalerate concentration, density and population type.

Appendix S5. Mortality and growth rate of damselfly larvae during

the exposure period.

Figure S4. Mortality (A, B) and growth rate (C, D) of Coenagrion scit-

ulum damselfly larvae during the exposure period as a function of esfen-

valerate concentration, density and population type.
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