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ABSTRACT

Gene set analysis using biological pathways has
become a widely used statistical approach for
gene expression analysis. A biological pathway
can be represented through a graph where genes
and their interactions are, respectively, nodes and
edges of the graph. From a biological point of view
only some portions of a pathway are expected to be
altered; however, few methods using pathway
topology have been proposed and none of them
tries to identify the signal paths, within a pathway,
mostly involved in the biological problem. Here, we
present a novel algorithm for pathway analysis
clipper, that tries to fill in this gap. clipper im-
plements a two-step empirical approach based on
the exploitation of graph decomposition into a
junction tree to reconstruct the most relevant
signal path. In the first step clipper selects signifi-
cant pathways according to statistical tests on the
means and the concentration matrices of the graphs
derived from pathway topologies. Then, it identifies
within these pathways the signal paths having the
greatest association with a specific phenotype. We
test our approach on simulated and two real expres-
sion datasets. Our results demonstrate the efficacy
of clipper in the identification of signal transduc-
tion paths totally coherent with the biological
problem.

INTRODUCTION

Recently much attention has been directed toward the
study of gene sets in the context of microarray data
analysis (hereafter GSA). A microarray experiment typic-
ally provides a list of differentially expressed genes

(DEGs) (1,2) that represent the starting point of a
highly challenging process of result interpretation. The
grouping of genes into functionally related entities is of
great help for interpreting the results. In this context, stat-
istical methods for the identification of groups of function-
ally related genes with moderate, but coordinated,
expression changes are fundamental to help biologists in
the process of results comprehension.
Several GSA tests, both univariate and multivariate,

have been recently developed (3–7). GSA methods can
be divided into two broad categories: (i) methods based
on enrichment analysis performed on a list of genes
selected through a gene-level test; and (ii) methods based
on global and multivariate approaches that define a model
on the whole gene set (8). In general these two approaches
are based on two fundamentally different null hypotheses:
the first type hypothesizes the same level of association of
a gene set with the given phenotype as the complement of
the gene set (say, Q1). The second type only considers the
genes within a gene set and hypothesizes that there is no
gene in the gene set associated with the phenotype (say,
Q2) (9). Goeman and Buhlmann (5) termed these
approaches competitive and self-contained, respectively.
The main drawbacks with competitive methods are (i)
the assumption that genes are independent; and (ii) the
use of a cut-off threshold for the selection of DEGs.
In this way, many genes with moderate but meaningful
expression changes are discarded by the strict cut-off
value, which leads to a reduction in statistical power. On
the other hand, global and multivariate approaches relax
the assumption of independence among genes belonging
to the same gene sets and identify moderate, but
coordinated, expression changes that cannot be detected
by the previous approach without depending from any
arbitrary cut-offs.
In general, the a priori definition of gene sets is obtained

from Gene Ontology (GO) (10) information or from bio-
logical pathways; while genes belonging to a GO category
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do not have any explicit connections among them (apart
from being involved in the same function), genes in the
same pathway are structured in a network with explicit
biological interactions. Almost all of the self-contained
approaches, when applied to biological pathways, use
merely the list of genes belonging to a pathway, and there-
fore, although effective, miss the relevant topological in-
formation contained.
In the last years, little effort has been done to consider

the topological information within the self-contained GSA
methods. The seminal paper by Draghici et al. (4)
proposed an interesting approach (called Impact
Analysis, SPIA (11)) attempting to capture several
aspects of the data: the fold change of DEGs, the
pathway enrichment and the topology of signaling
pathways. In particular, SPIA enhances the impact of a
pathway if the DEGs tend to lie near its entry points.
Recently, Isci et al. (6) proposed a Bayesian pathway
analysis that models each biological pathway as a
Bayesian network and considers the degree to which the
model fits the observed experimental data. Both
approaches test the whole pathway without providing
the user with the portions of the pathway that are effect-
ively associated with the phenotype. This is an essential
information especially when the pathway is large.
To this end, Laurent et al. (12) developed a graph-

structured two-sample test of means for problems in
which the distribution shift is assumed to be smooth on
a given graph and devised branch and bound algorithms
to systematically apply their test to the subgraphs of a
large graph, without enumerating and testing these
subgraphs one-by-one. Alternatively, Massa et al. (13)
introduced an innovative approach based on Gaussian
graphical models that tests both differences in mean and
in covariance matrices between two experimental condi-
tions. In particular, the graphical models context is useful
to decompose the overall graph (obtained from the
pathway) into smaller parts (cliques), that can be
explored and tested in detail.
An alternative approach was proposed by Emmert-

Streib (7) that proposes to infer the undirected dependency
graphs representing pathways. Briefly, given two groups,
Emmert-Streib (7) infers the dependency structure of
genes belonging to the same GO group using Pearson cor-
relation and partial Pearson correlation independently on
both groups, and then tests the similarity of the inferred
graphs using a graph edit distance and a permutational
approach.
In this work, we take the starting point that pathways

are the best representation of biological experimentally
validated knowledge of a specific process. In fact, the an-
notation of a biological pathway is the result of an exten-
sive effort of hundreds of researchers that manually codify
their experimental knowledge about a specific biological
process into a graphical representation. Therefore, we
decide to consider the topology of the pathway as fixed.
Following Massa et al. (13), we propose an empirical

two-step method, called clipper hereafter, for the
identification of significant signal transduction paths
within significantly altered pathways. In particular:
(i) we generalize the approach of Massa et al. (13) to the

case of P� n (with P number of genes/variables and n
number of samples/replicates), using shrinkage and a
graphical lasso penalty estimators of the covariance
matrices; and (ii) by exploiting the structure of a
junction tree derived from an initial graph, we propose a
procedure to highlight the portions, called signal paths, of
a pathway mostly correlated with the phenotype.

We test our approach on simulated and real expression
datasets of completely different biological problems
(cancer and muscle disorders). The obtained results
provide evidence of the success of our approach in the
detection of altered pathways and, more importantly, in
the identification of novel signal paths. We believe that
clipper could become an important tool for gene ex-
pression data interpretation.

MATERIALS AND METHODS

To implement topology-based GSA using microarray
data, we need first to convert pathways into gene
networks, i.e. into a graphical structure in which a node
represents a simple element like a gene/protein (14). In
fact, whereas pathway nodes might consist of multiple
entities such as protein complexes, gene family members
and chemical compounds, microarrays measure each
single element of complexes and gene family separately.
Here, we used graphite (14), a Bioconductor package
addressing these issues. In general, graphite takes
pathway information from four different databases
(Biocarta; KEGG, (15); NCI/Nature Pathway
Interaction Database, (16); Reactome, (17)) and this in-
formation is interpreted and opportunely coded by follow-
ing specific biologically driven rules. Specifically, given a
pathway structure, graphite converts it into a gene–
gene network. We refer to the manual of the package
for more information on the conversion.

Pathways may be cyclic or acyclic. The number of
pathways with cycles is dependent either on the structure
of the graph or on the number of genes in the array, but
fortunately is quite small. Given that the graphical infer-
ence methods assume to have an acyclic graph we prevent-
ively eliminate self-loops and solve cycles removing the
weakest edge of the cycle based on expression data (with
minimum expression profile correlation between nodes)
(see also (18)).

Then, an acyclic gene network can be read as a Directed
Acyclic Graph (DAG). Most inference methods for a
DAG convert the network to an undirected cycle-free
graph. Such conversion might require some or all of the
following steps: moralization, triangulation, clique identi-
fication and junction tree construction. Briefly, moraliza-
tion inserts an undirected edge between two nodes that
have a child in common and then eliminates directions
on the edges; triangulation inserts edges in the moralized
graph so that in the moralized graph all cycles of size �4
have chords, where a chord is defined as an edge connect-
ing two non-adjacent nodes of a cycle; clique identification
identifies the cliques of the triangulated graph, i.e. the
complete subgraphs having all their vertices joined by an
edge; junction tree construction builds a new hyper-tree
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having cliques as nodes and satisfying the running inter-
section property according to which, for any cliques C1

and C2 in the tree, every clique on the path connecting
C1 and C2 contains C1 \ C2. As an example, consider the
pathway Chronic myeloid leukemia (CML) from KEGG
database, see Supplementary Figure S1.

STEP 1: TESTING THE WHOLE PATHWAY

In specific conditions, the strength of molecular inter-
actions within a pathway could be altered, making the
pathway a dynamic entity. It is therefore reasonable to
test its dynamic perturbation by statistically testing
equality of concentration matrices and mean vectors.
Here, we assume to have two classes of samples (say
cases and controls) and we suggest to model the data in
the two experimental conditions with two graphical
Gaussian models with the same undirected graph G:

M1ðGÞ ¼ fY � NPð�1, �1Þ,K1 ¼ ��11 2 S+ðGÞg,

M2ðGÞ ¼ fY � NPð�2, �2Þ,K2 ¼ ��12 2 S+ðGÞg,
ð1Þ

where P is the number of genes (vertices of the graph), K1

and K2 are the concentration matrices (inverse of the co-
variance matrices) of the two models and S+ðGÞ is the set
of symmetric positive definite matrices with null elements
corresponding to the missing edges of G. Here, G is the
graph obtained after transforming the network obtained
from graphite first into a DAG, and, then, into its
moral graph.

In Massa et al. (13), two tests were proposed, one
for the comparison of the strength of the links between
genes in the two experimental conditions and another
one to test the differential expression of the pathway.
In the first case, the hypothesis to be tested is
H0 : K1 ¼ K2 versus H1 : K1 6¼ K2: Testing the dif-
ferential expression of the pathway is achieved by
checking equality of means, i.e. H0 : �1 ¼ �2 versus
versus H1 : �1 6¼ �2: Such test has a different structure
according to whether the two graphical Gaussian models
M1ðGÞ and M2ðGÞ are homoschedastic, i.e. they have the
same covariance matrix, or not.

Once the graph G is known, the null elements in the
concentration matrices are identified. On the contrary,
�1,�2, �1, �2 are not known and need to be estimated
from the data. Here, �1 and �2 are estimated with the
corresponding sample means. The maximum-likelihood
estimates of �1 and �2 can be obtained by using the
Iterative Proportional Scaling algorithm (IPS, see (19,
p.134)) and by taking the sample covariance matrices as
starting values. The IPS guarantees that the estimated
matrices belong to S+ðGÞ. In this case, a necessary condi-
tion for the existence of the maximum-likelihood estimate
is that the number of samples is greater than the cardin-
ality, i.e. the number of nodes of the largest clique (19,
p. 133), a setting that is easily missed in case of gene ex-
pression data (a typical microarray experiment does not
exceed the few tens of samples per class, and with the
advent of deep-sequencing technology, this dimension is
further reduced to few units). In Supplementary Figure S2,

we report the distribution of the cardinality of the largest
clique per pathway in four different databases. It is worth
noting that there are several pathways with clique cardin-
ality of several tens of nodes that would not be processed
by the standard IPS algorithm.
To estimate the covariance matrix in such circum-

stances, clipper applies a shrinking procedure in the
estimation of the sample covariance matrices. Apart
from increased efficiency, the shrunken estimates have
the additional advantage of being always positive
definite and well conditioned. Here, we use a James–
Stein-type shrinkage estimator, as implemented in
corpcor R package (20,21).
The shrunken estimates are passed on to the IPS algo-

rithm. The use of a shrinkage estimator, however, pre-
cludes the use of the asymptotic distribution of the log-
likelihood ratio test which, in standard settings, has a �2r+P
distribution under the homoschedasticity hypothesis,
where r is the number of edges and P the number of
nodes of the graph. Here, we will use a permutational
approach on the samples.
Even if the IPS algorithm implemented in qpgraph

(22) is one of most computationally efficient, in some
cases (very large and complex pathways) it is highly com-
putationally demanding (e.g. for diverse pathways the IPS
algorithms takes even several days to converge) and some-
times it has problems of convergence. Therefore, with
clipper, we have also investigated the possibility of
computing the maximum-likelihood estimate of the co-
variance matrices using the approach of Friedman et al.
(23), implemented in the R package glasso, where we
have specified the indices of entries of the inverse covari-
ance matrix to be constrained to zero and set the regular-
ization parameter equal to zero.
As expected, the estimates of the covariance matrices

obtained by glasso with no regularization and with
the IPS algorithm are the same. However, we do not
find significant improvement in the computational effi-
ciency and both approaches show the same average com-
putation time.
To compare portions of the pathways, with the aim of

identifying subgroups of genes which appear to drive dif-
ferences (deregulations) of the entire structure, clipper
performs the above described tests on each single clique.
To this end, the moral graph is first triangulated (if
needed). As the cliques are complete connected subgraphs,
the IPS algorithm is not required to estimate covariances.

STEP 2: IDENTIFICATION OF RELEVANT SIGNAL
PATHS

Using the structure of the junction tree as a backbone,
clipper empirically identifies the portions of the tree
mostly associated to the phenotype. For each pathway
and the corresponding moralized graph, our approach is
based on three main steps: (i) construction of the junction
tree; (ii) identification of paths and corresponding
sub-paths; and (iii) computation of the relevance of the
sub-paths as specified below.
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We define a path as the path connecting the root clique
with a leaf clique [identified by maximum cardinality
search (mcs) algorithm]. For each clique along the paths,
we consider the P-value of the test on homoschedasticity
as weight w of the clique. From now on, such quantities
will loose their probability interpretation although they
will still reflect the importance of the clique difference
between the experimental conditions. A weight will be
considered to be meaningful if it is <�. In our analysis
we set � ¼ 0:05; however, different cut-offs can be used.
On each path, we select the portions of the path composed
by consecutive meaningful cliques containing at most one
non-meaningful clique. Such portions define the so called
sub-paths.
An example of the above described steps is given in

Figure 1. Panel A represents a junction tree with root
clique c1 and three leaf cliques, i.e. c8, c10 and c12.

Meaningful cliques are highlighted in red. Panel B repre-
sents the three paths derived from the junction tree. Panel
C reports the four sub-paths which can be extracted from
the path.

The relevance of each sub-path is computed as follows.
Let Lj be the length of sub-path j, with j=1, . . . , J. Given
the weight wij of each clique i in the sub-path j,
i 2 f1 . . .Ljg, the relevance is calculated according to
Equation (2). Respecting the ordering of the cliques in
the sub-path, for each clique i in sub-path j, we compute
the quantity

Sij ¼
Xi
k¼1

�kj, i ¼ 1, . . . ,Lj ð2Þ

where �kj is defined as

�kj ¼
� logðwkjÞ wkj � �
logð1� wkjÞ wkj > �:

�
ð3Þ

Then, the relevance Rj of sub-path j is defined to be the
maximum of Sij, i ¼ 1, . . . ,Lj. To compare the relevance
of sub-paths of different lengths, we introduce the
standardized relevance SRj

SRj ¼
maxiðSijÞ �m

Lj
ð4Þ

where m is the position of the maxiðSijÞ along the sub-path
j. Finally, for each path, the sub-path with the maximum
SRj is selected as its relevant signal path. At the end of this
procedure, a relevant signal path is identified for each
path.
clipper results consist of a number of relevant signal

paths. In most of the cases, paths and sub-paths are highly
overlapping (see, e.g., sub-paths 1b, 2 and 3 in Figure 1).
Thus, clipper implements a pruning procedure using a
cluster analysis approach. We define the dissimilarity
measure between sub-paths A and B, d(A, B), as

dðA,BÞ ¼
jA�Bj
jAj jA� Bj � jB� Aj
jB�Aj
jBj jA� Bj > jB� Aj

(
ð5Þ

where A and B are the sets of genes composing sub-paths
A and B, jA� Bj is the cardinality of sets difference and
jAj is the cardinality of the set A (similarly are defined
jB� Aj and jBj). We perform a cluster analysis and
collapse sub-paths with dðA,BÞ < e (taking the sub-path
with the highest relevance). For our analysis, we set
e ¼ 0:1; however, clipper allows the selection of a dif-
ferent threshold. For a numerical example, see panel E of
Figure 1.

RESULTS

Rationale

Different experimental conditions are usually compared in
terms of their gene expression mean differences. In the
univariate case, if a gene increases or decreases signifi-
cantly its mean expression in one condition with respect
to the other, it is said to be differentially expressed and it is

Figure 1. Toy example of step 2 clipper approach. Panel A, the
construction of the junction tree with significant cliques in red.
Panel B, identification of the paths in the tree. Panel C, identification
of all the sub-paths within each path. Panel D, selection of the best
sub-path for each path and cluster analysis for sub-path collapse.
Panel E Final sub-path selected.
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assumed to be involved in the biological process under
study. It is easy to generalize the previous concept to the
multivariate setting; if a gene set changes significantly its
multivariate mean expression in one condition with
respect to the other, it is said to be differentially expressed.
However, the difference in mean expression levels does not
necessarily result in a change of the interaction strength
among genes. In this case, we will have pathways with
significant altered mean expression levels but unaltered
biological interactions.

On the contrary, if transcripts abundances ratios are
altered, we expect a significant alteration not only of
their mean expression levels, but also of the strength of
their connections, resulting in pathways with completely
corrupted functionality. Therefore, to look for pathways
strongly involved in a biological process, we should look
at pathways with both mean and variance significantly
altered.
clipper is based on a two-step approach: (i) it selects

pathways with both covariance matrices and means sig-
nificantly different between experimental conditions; and
(ii) on such pathways, it identifies the sub-paths mostly
associated to the phenotype. clipper is freely available

as an R package at http://romualdi.bio.unipd.it/ in
Software section.
In this section, we provide (i) a simulation study to test

the specificity of our approach; and (ii) an application of
clipper on two real datasets along with a comparison
with GSEA (3) (non-topological method), SPIA (11) and
BPA (6) (topological methods). Differently from BPA,
SPIA requires a list of DEGs. Here, we used empirical
Bayes test (1) to identify DEGs (implemented in limma
Bioconductor package). On real datasets, clipper step 2
will be applied to one of the pathways identified in step 1.

Simulation

As some paths may be declared relevant by clipper step
2 simply as a consequence of type I errors in clipper
step 1, we developed a simulation study. For 10 000 runs,
we generated two samples, one for each condition, from
the same graphical model MðGÞ ¼ fY � N23ð�, �Þ,
��1 2 S+ðGÞg and tested equality of concentration
matrices and mean vectors for the whole pathway and
all the cliques. Under this scenario, at the nominal level
� ¼ 0:05, we expected: (i) for each test, a number of re-
jections around 5%; (ii) a scattered location along the

Table 1. KEGG significant pathways of according to the test on the means and the test on the concentration matrices

ID Pathway name Adj. P-values test 1a Adj. P-values test 2b SPIA$ BPA$ GSEA$

1 Adherens junction 0 0.00e+00 Yes
2 Cell cycle 0 0.00e+00 Yes
3 Dilated cardiomyopathy 0 0.00e+00
4 Measles 0 0.00e+00
5 Prostate cancer 0 0.00e+00 Yes
6 Regulation of actin cytoskeleton 0 0.00e+00 Yes
7 Vascular smooth muscle contraction 0 0.00e+00
8 Wnt signaling pathway 0 0.00e+00 Yes Yes
9 Natural killer cell-mediated cytotoxicity 0 5.76e� 14
10 Bacterial invasion of epithelial cells 0 7.68e� 14
11 Melanogenesis 0 1.54e� 13 Yes
12 Tight junction 0 8.34e� 12 Yes
13 Toll-like receptor signaling pathway 0 1.68e� 10 Yes
14 Viral myocarditis 0 2.63e� 10 Yes
15 Axon guidance 0 1.31e� 09
16 Basal cell carcinoma 0 5.90e� 09 Yes Yes
17 Insulin signaling pathway 0 1.39e� 08 Yes
18 Acute myeloid leukemia 0 2.44e� 08
19 Neurotrophin signaling pathway 0 6.69e� 08
20 Glycolysis/gluconeogenesis 0 8.00e� 08
21 Shigellosis 0 2.04e� 07
22 TGF-beta signaling pathway 0 3.71e� 07
23 Leukocyte transendothelial migration 0 9.40e� 07 Yes
24 T cell receptor signaling pathway 0 3.37e� 06
25 Chronic myeloid leukemia 0 4.40e� 06
26 Leishmaniasis 0 1.65e� 05
27 Fructose and mannose metabolism 0 1.78e� 05
28 Systemic lupus erythematosus 0 6.32e� 05
29 Pyruvate metabolism 0 1.71e� 04
30 Fc gamma R-mediated phagocytosis 0 6.34e� 03 Yes
31 RIG-I-like receptor signaling pathway 0 7.03e� 03 Yes
32 Pathogenic Escherichia coli infection 0 8.13e� 03 Yes Yes
33 B cell receptor signaling pathway 0 2.77e� 02

In red those pathways including BCR and/or ABL genes, in blue those pathways coherent with experimental evidences.
aTest on the mean with Bonferroni correction.
bTest on the concentration matrices with Bonferroni correction.
$SPIA, BPA and GSEA results using raw P-value� 0:1.
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Figure 2. clipper results on chronic myeloid leukaemia (CML) KEGG pathway. Panel A, junction tree with significant cliques in blue. The highest
scored sub-path is highlighted with blue border. Panel B, CML pathway with genes belonging to significant cliques in red or green according to their
expression mean differences (translocation positive versus negative patients). Panel C, the original KEGG CML layout with complexes belonging to
the sub-path identified colored according to their expression.
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junction tree of the statistically significant cliques.
(ii) implies that the length of significant paths identified
by clipper step 1 should be rarely (about 5%) longer
than 1. Results shown in Supplementary Table S1 demon-
strate that our procedures have an excellent control of
type I error in step 1 and very appreciably respond to
expectations in step 2, even with exceptionally low
sample sizes.

Application: ALL dataset

The dataset we use for this comparison was published by
Chiaretti et al. (24) and characterizes gene expression sig-
natures in acute lymphocytic leukemia (ALL) cells
associated with known genotypic abnormalities in adult
patients. Several distinct genetic mechanisms lead to
ALL malignant transformations deriving from distinct
lymphoid precursor cells that have been committed
to either T-lineage or B-lineage differentiation.
Chromosome translocations and molecular rearrange-
ments are common events in B-lineage ALL and reflect
distinct mechanisms of transformation. The relative
frequencies of specific molecular rearrangements differ in
children and adults with B-lineage ALL. The BCR break-
point cluster region and the c-abl oncogene 1 (BCR/ABL)
gene rearrangement occurs in about 25% of cases in adult
ALL, and much less frequently in pediatric ALL.

Data are available at the Bioconductor site (http://
www.bioconductor.org/help/publications/2003/Chiaretti/
chiaretti2/). Expression values, appropriately normalized
according to robust multiarray analysis (rma) and
quantile normalization, derived from Affymetrix single
channel technology, consist of 37 observations from one
experimental condition (n1 ¼ 37, BCR; presence of BCR/
ABL gene rearrangement) and 41 observations from
another experimental condition (n2 ¼ 41, NEG; absence
of rearrangement). Probes platform have been annotate
using EntrezGene custom CDF version 14 (25).

Step 1 results
Given the presence of the BCR/ABL chimera, we expect
that all the pathways including BCR and/or ABL1 will be
impacted. The KEGG pathways found to be significantly
involved (Bonferroni adjusted P-value� 0:05) in the
difference between translocation positive and negative

patients by clipper step 1 analysis are reported in
Table 1. Firstly, it is worth noting that with an adjusted
P-value� 0:05 clipper identifies as significantly dereg-
ulated almost all (7 out of 9 P-value=3.279616e–06)
pathways including BCR and/or ABL genes (in red
Table 1). On the contrary, GSEA, SPIA and BPA did
not find any significantly altered pathways using
Bonferroni adjusted P-value� 0:05. However, if uncor-
rected P-value� 0:1 is considered, SPIA and GSEA
identify 2 out of 9 (P-value=0.18) pathways, including
either ABL and/or BCR genes (Table 1), while BPA
identifies only one.

Moreover, most of the other pathways identified by
clipper are strongly coherent with experimental
findings on BCR/ABL mechanism. In fact, many signaling
proteins have been shown to interact with BCR/ABL
through various functional domains/motifs (e.g. GRB2,
CRKL, CRK, SHC, 3BP2, ABL-interacting protein 1
and 2, and CRK-associated substrate (CAS)), and/or to
become phosphorylated in BCRABL-expressing cells (e.g.
CRKL, CRK, SHC, GAB2, CBL, CAS, the p85 subunit
of PI3K, FES, paxillin and talin). These proteins, in turn,
activate a range of signaling pathways identified by
clipper (in blue Table 1) that activate proteins such as
RAS, PI3K,A KT, JNK, SRC family kinases, protein and
lipid phosphatases, and their respective downstream
targets, as well as transcription factors such as the
STATs, nuclear factor-kB and MYC. Most of these
findings were observed from experiments in vitro
systems, or from studies of the properties of cells derived
from leukaemia patients with particular stages of
disease (26).

Step 2 results
Focusing on CML pathway that contains exactly BCR/
ABL fusion gene, clipper identifies a sub-path that fits
perfectly with experimental findings. In particular, the
highest scoring sub-path is that one starting from BCR/
ABL toward the oncogene TP53 (Figure 2). It is known, in
fact, that the BCR/ABL fusion protein in CML cells,
promotes the accumulation of p53 and that, in contrast
to the activation of p53 by c-Abl, its oncogenic form,
BCR/ABL, counteracts the growth inhibitory activities

Table 2. List of significant KEGG and Reactome pathways according to the test on the means and the test on the concentration matrices

Pathway name Adj. P-values test 1a Adj P-values test 2b

1 KEGG: RIG-I-like receptor signaling pathway 0 5.68e� 13
2 Reactome: GRB2:SOS provides linkage to MAPK signaling for integrins 0 3.22e� 13
3 Reactome: DCC-mediated attractive signaling 0 8.50e� 09
4 Reactome: Intrinsic pathway for apoptosis 0 1.07e� 06
5 Reactome: p130Cas linkage to MAPK signaling for integrins 0 1.37e� 06
6 Reactome: TRAIL signaling 0 1.50e� 02
7 Reactome: signal regulatory protein (SIRP) family interactions 0 2.00e� 02
8 Reactome: activation of BH3-only proteins 1 2.16e� 03

BPA cannot be performed on Reactome database and GSEA does not identify significantly deregulated pathways, neither with Bonferroni adjusted
P-values nor with nominal P-values.
aTest on the mean with Bonferroni correction.
bTest on the concentration matrices with Bonferroni correction.
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of p53 by modulating the p53-MDMD2 loop. Thus, it
appears that by modulating the p53-MDMD2 loop,
c-Abl and its oncogenic forms critically determine the
type and extent of the cellular response to DNA
damage (27).

It is worth noting that the signal path obtained by
clipper would have not been identified using just the
list of DEGs belonging to this pathway. Only ABL1 and
NFKBIA, in fact, are identified by empirical Bayes test (1)
as differentially expressed with FDR � 0:1.

Application: LGMDs dataset

Limb girdle muscular dystrophies (LGMDs) are a group
of muscular diseases with heterogeneous clinically and
genetically features. Globally, they present progressive
muscle weakness caused by progressive muscle waste
combined with an increase of muscle connective tissue.
We analyse a dataset containing 10 LGMD type 2A
(LGMD2A) and 10 type 2B (LGMD2B) samples (28).
LGMD2A is caused by a mutation in the gene calpain3

(29) that codes for a cysteine protease that cleaves
cytosckeletal and myofibrillar proteins and serves to
maintain proper functions and structure of the sarcomere

(30). LGMD2B is caused by a mutation in the gene
dysferlin that codes for a sarcolemma protein involved
in membrane repair and muscle regeneration (31).
Together with desmoyokin (AHNAK), dysferlin forms
the dysferlin protein complex involved in the maintenance
of the sarcolemma integrity (32). AHNAK is also a sub-
strate of calpain3, and after the cleavage AHNK is not
able to bind dysferlin anymore confirming the mutual in-
fluence that calpain3 and dysferlin protein exert each other
(32). Thus, we expect few molecular differences between
these pathologies.

Step 1 results
In the analysis for LGMDs, we used Reactome and
KEGG databases stored in graphite. Firstly, we identify
the involvement of Apoptosis (e.g. pathways 1 and 4 in
Table 2). In case of stress signals, proapoptotic BCL-2
family proteins are activated and subsequently interact
with and inactivate antiapoptotic BCL-2 proteins. This
interaction leads to the destabilization of the mitochon-
drial membrane and release of apoptotic factors that
reduce muscle cell survival in LGMD2A (33). Moreover,
clipper results help in formulating novel hypothesis on
this case study. Specifically, we found many pathways
referred to MAPK signaling (e.g. pathways 2 and 5 in
Table 2). Our results seem in agreement with (34) that
recently showed the role of MAPK signaling pathway in
the LMNA-associated degenerative process and the simi-
larity of the regulatory processes between LGMD2A,
LGMD2B and LMNA-associated muscular dystrophy re-
gardless of the causative gene.

Step 2 results
With the step 2 of clipper analysis, we are able to reach
an even deeper level of accurateness. We focused on
Intrinsic pathway of apoptosis. Figure 3 shows that the
signal sub-path identified by clipper include BAX,
BID, BCL2 and BAD that play a central role in leading
to apoptosis.

CONCLUSIONS

Here, we present clipper, a novel two-step empirical
method for pathway analysis able to dissect the complex-
ity of a pathway identifying the portions mostly associated
to the biological process studied.

Our empirical approach is fundamentally different from
previous ones for two reasons. We take into account not
only expression changes but also differences in transcript
concentrations, allowing the identification of pathways
with their functionality completely corrupted. We are
able to go to the finest details of the pathway structure,
identifying the signal transduction path that is the princi-
pal cause of the pathway deregulation.
clipper efficacy has been validated on two expression

datasets of completely different biological problems
(cancer and muscle disorders). In both cases, we
obtained interesting results strongly coherent with

Figure 3. Intrinsic pathway of apoptosis. Panel A, junction tree with
significant clique in blue. The highest scored sub-path is highlighted
with blue border. Panel B, native pathway with genes belonging to
significant cliques in red or green according to their expression mean
differences (LGMD2A versus LGMD2B).
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experimental findings available in literature. Moreover,
our results demonstrate the utility of clipper not only
in the result comprehension but also in driving the experi-
menter in formulating new hypothesis. We therefore
believe that clipper would become an important tool
for gene expression data interpretation.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Table 1 and Supplementary Figures 1
and 2.
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APPENDIX

Gaussian graphical models

We report here a concise review of Gaussian Graphical
Models theory. A graph G is a pair G ¼ ðV,EÞ, where V is
a finite set of vertices and the set of edges E � V	 V is the
set of ordered pairs of distinct vertices. If both ðu, vÞ 2 E
and ðv, uÞ 2 E, the edge (u, v) is said to be undirected. If
ðu, vÞ 2 E but ðv, uÞ 62 E, the edge (v, u) is said to be
directed.
A DAG is a directed graph without cycles. Given a

DAG, a moral graph is the undirected graph obtained
from the DAG by adding undirected edges between all
pairs of vertices that have a child in common (if they
are not already present) and then by rendering all edges
undirected.
If G is undirected, then a subgraph is complete if all its

vertices are joined by an edge. Any complete subgraph is a
clique. A maximal complete subgraph (with respect to �)
is a maximal clique. In a graphical models context only
maximal cliques are relevant in estimation problems and
therefore we will always use the term clique with the
meaning of maximal clique.
A triple (A, B, C) of disjoint subsets of V of an undir-

ected graph G is a decomposition of G if V ¼ A [ B [ C, C

is a complete subset of V and C separates A and B. An
undirected graph is decomposable if either it is complete or
it possesses a proper decomposition (A, B, C) such that
both subgraphs GA[B and GB[C are decomposable.

A triangulated graph (or chordal graph) is an undirected
graph with the property that every cycle of length n � 4
has two non-consecutive vertices that are adjacent. An
important result is that an undirected graph is decompos-
able if and only if it is triangulated (19, p. 9). If a graph is
not triangulated, it is possible to add extra edges so that
the resulting graph is triangulated. It is well known that
the problem of obtaining an optimal triangulation (i.e.
finding the smallest number of edges to be added) is
NP-hard and therefore we rely on the heuristic algorithm
developed in the R package gRbase, implemented in the
function triangulate.

A junction tree of cliques for a graph G is a tree having
the cliques of G as nodes and satisfying the running inter-
section property according to which, for any cliques C1

and C2 in the tree, every clique on the path connecting
C1 and C2 contains C1 \ C2. Decomposability is a neces-
sary and sufficient condition for the existence of a junction
tree. We build a junction tree by finding a running inter-
section property ordering of the cliques via the maximum
cardinality search algorithm (mcs, implemented in the rip
function of the gRbase R package).

A Gaussian graphical model with dependence graph
G=(V, E) where jVj ¼ P can be defined as the multivari-
ate normal distribution MðGÞ ¼ fY � NPð�, �Þ,
K ¼ ��1 2 S+ðGÞg where S+ðGÞ is the set of symmetric
positive definite matrices with null elements corresponding
to the missing edges of G.
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