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Abstract: The rapid rise in the health burden associated with chronic wounds is of great concern to
policymakers, academia, and industry. This could be attributed to the devastating implications of this
condition, and specifically, chronic wounds which have been linked to invasive microbial infections
affecting patients’ quality of life. Unfortunately, antibiotics are not always helpful due to their poor
penetration of bacterial biofilms and the emergence of antimicrobial resistance. Hence, there is an
urgent need to explore antibiotics-free compounds/formulations with proven or potential antimicro-
bial, anti-inflammatory, antioxidant, and wound healing efficacy. The mechanism of antibiotics-free
compounds is thought to include the disruption of the bacteria cell structure, preventing cell division,
membrane porins, motility, and the formation of a biofilm. Furthermore, some of these compounds
foster tissue regeneration by modulating growth factor expression. In this review article, the focus is
placed on a number of non-antibiotic compounds possessing some of the aforementioned pharmaco-
logical and physiological activities. Specific interest is given to Aloe vera, curcumin, cinnamaldehyde,
polyhexanide, retinoids, ascorbate, tocochromanols, and chitosan. These compounds (when alone
or in formulation with other biologically active molecules) could be a dependable alternative in the
management or prevention of chronic wounds.

Keywords: antimicrobial; anti-inflammatory; antibiotics-free; antimicrobial resistance; chronic wounds

1. Introduction

Skin wounds are injuries that compromise or damage the structural integrity and
optimal functioning of the skin and can be grouped into acute and chronic depending on
the skin repair and recovery timeframe. Acute wounds (AWs) can range from skin surface
scratches to deep injuries, with skin repair and recovery achieved following the normal
healing process, which is usually attained within 3 weeks. At AW sites, the body quickly
initiates rapid cell migration, including fibroblast and keratinocytes, whilst modulating
suitable degrees of inflammation, innervation, and angiogenesis. Chronic wounds (CWs)
include diabetic foot ulcers, pressure sores, venous leg ulcers, arterial ulcers, and ischemic
and surgical wounds requiring medical interventions for their management. CWs do not
follow the same cellular and molecular sequence as normal AWs [1–4].

Wound care continues to gain tremendous attention worldwide, both in academia
and industry, and this is attributed to its significance as wounds contribute to major
health burdens [1,5–7]. Globally, nearly 2% of hospitalised patients suffer from chronic
wounds, and this is common in adults with advanced age, which often affects the wound
recovery timeframe due to many factors, including immune suppression [6]. In the UK,
the NHS annual cost for wound management was over £5.6 billion in 2017/2018 [5]. In
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the USA, 8.2 million Medicare beneficiaries suffer from chronic wounds or similar health
burdens, costing over £24 billion in 2014, underscoring the magnitude of this healthcare
challenge [1,7]. Moreover, the management costs for diabetic foot ulcers and surgical
wounds are exorbitant compared to those of other chronic wounds [1].

Several modalities have been recommended for wound care, including wound dress-
ing, surgery, hyperbaric oxygen, and antibiotics. In most cases, antibiotics are employed to
reduce the bacteria loads around the wound site and are sometimes used in combination
with wound dressings, which can foster efficient inflammation and proliferation phases. In
addition, the debridement of the wound site is sometimes effective and, in a worst-case
scenario, a surgical procedure is conducted on the affected region of the body [2,8]. The
skin performs essential roles in the body, including protection against external attacks,
such as invasive microbial infections [5]. Wound infection is known to be dependent on
several factors, including a patient’s immune system, the virulence of the microbe involved,
and the nature of the wound [9–12]. This review focuses on the chronic wound healing
properties of antibiotics-free compounds, including Aloe vera, curcumin, cinnamaldehyde,
polyhexanide, retinoids, ascorbate, tocochromanols, and chitosan. Literature data on the
anti-inflammatory, antimicrobial, and wound healing efficacy of these compounds were
considered when alone or in formulation with other biologically active molecules.

2. Chronic Wounds—Formation and Antimicrobial Resistance (AMR)

The chronicity of wounds is affected by several contributory factors, including hor-
monal imbalances, cytokines, and growth factors. More importantly, bacterial infections
have been implicated as the predominant feature in most chronic wound microenviron-
ments, including Staphylococcus aureus and Pseudomonas aeruginosa [10]. These bacteria
exist in polymicrobial forms forming biofilms that afford them protection against the host’s
immunity and conventional antibiotics. S. aureus biofilms are sometimes present close to
the surface of CWs, while P. aeruginosa biofilms appear deep within wound tissue [9,10].
The recalcitrant disposition of these microbes has been implicated as one of the causalities
of antimicrobial resistance [13].

2.1. Wound Healing Process

The skin is known to afford a variety of important protective functions; however,
whenever its integrity is compromised by injuries, the body initiates a dynamic process at
the wound site, resulting in the recovery of the tissue and restoration of the skin’s barrier
function [14]. Four sequential unique phases are known to be involved in healthy acute
wound healing, including haemostasis, inflammation, proliferation, and remodelling, as
shown in Figure 1 [2]. The haemostasis phase is often observed on injury occurrence, and it
is composed of platelet aggregation, leading to the formation of blood clots [14,15].

This is regarded as the body’s response to protecting its structure by regulating bleed-
ing and fostering the process of wound healing. However, this phase can be impaired if
the patient is suffering from underlying medical conditions, such as diabetes and cancer.
This is followed by the inflammation stage, which promotes the movement of blood cells
(including phagocytic neutrophils and macrophages) to the wound site to afford protection
to this site [15]. In this phase, extraneous particles (such as invasive microbes) are initially
removed by the phagocytic neutrophils and the macrophages eliminate the dead neu-
trophils while fostering the rapid closure of the wound [2,14,16]. In the proliferative stage,
the re-epithelialisation of wounds commences within hours of the injury’s occurrence [14].
This is followed by the formation of new blood vessels, including angiogenesis or neo-
vascularisation, and the re-establishment of the perfusion to sustain the newly formed
tissues [16]. Afterwards, the generation and deposition of fragments of the extracellular
matrix (ECM), including collagen fibres and granulation tissues, is initiated [14,15]. The
final phase involves tissue remodelling and scar tissue formation [14,15]. Moreover, when
the healthy acute wounds fail to adhere to the standard healing time course, it often leads
to chronic wounds (ulcerative skin defect) or hypertrophic scars (excessive scar tissue
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formation), as illustrated by Martin and Nunan [2] in Figure 2. Healthy acute wounds
initiate appropriate modulation of the cellular and molecular sequence required to promote
wound healing within a standard time course. On the other hand, the modulation of
cellular and molecular events in chronic wound is often disrupted by a number of fac-
tors, including invasive microbial infection leading to high infiltration of inflammatory
cells, including neutrophils, and these cells could be phenotypically non-identical to their
corresponding analogues in normal acute wound healing. This is further complicated by
persistent inflammation, unlike AW healing, which initiates well-modulated inflammatory
response resolution. Moreover, the proliferation of keratinocyte gene expression in chronic
wounds is partially activated with deteriorating fibroblasts having a reduced migratory
magnitude [2].
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Figure 1. Wound healing process of healthy acute wounds as shown by Martin and Nunan [2].
Healthy AWs adhere to well-modulated cellular and molecular events, resulting in the rapid clearance
of invasive microbes and subsequent removal of apoptotic neutrophils, with regulated cell migration
promoting early wound contraction and tissue remodelling [2].

Efficacious wound care agents are expected to protect wound tissues from bacterial
infection, modulate inflammation, and scavenge free radicals (antioxidant), as well as foster
cell migration and growth to aid in the recovery of damaged tissues [17].
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Figure 2. Biology of chronic wounds as shown by Martin and Nunan [2]. CWs are usually influ-
enced by microbial infections resulting in persistent inflammation due to the recruitment of highly
inflammatory infiltrates and inhibition of tissue regeneration [2].

2.2. Chronic Wounds

A wound is considered to be chronic when it fails to undergo the normal phase for
the recovery and restoration of the structural and functional integrity within 3 months
(Figure 2) [2]. A CW’s microenvironment is characterised by the presence of dead tissue,
and high influx of metalloproteases and pH [2,4,10]. The pH of CWs is known to be alkaline,
as opposed to those of the normal skin and AW environment, which are slightly acidic [18].
This pH change is often attributed to the presence of high bacteria loads, as an alkaline pH
is capable of breeding or encouraging the proliferation of bacteria in wounds [18,19]. A
slightly acidic pH has been shown to foster wound recovery, and this could be one of the
contributing factors in rapid AW recovery, as they are devoid of high bacteria loads [18,19].
Reports by Gray et al., James et al., and Schierle et al. suggested that the CW environment
is capable of fostering the development of high bacteria loads and biofilms, which are
sometimes recalcitrant to antibiotics [19–21]. This causality has been attributed to the
delay in the re–epithelisation of compromised or defective skin [20]. A number of studies
have demonstrated that almost 60% of CWs possess biofilms, representing an almost
10-fold higher association in comparison to AWs [22,23]. Moreover, numerous reports have
shown that the CW microbial environment exists as polymicrobial with the presence of
multiple pathogenic Gram-positive and Gram-negative bacteria (Pseudomonas aeruginosa,
Escherichia coli, and Staphylococcus aureus), and these are potential biofilm formers that often
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account for antimicrobial resistance (AMR) [13,19,24–28]. These biofilms tend to change
the properties of bacteria through their extracellular polysaccharide matrix (EPS), which
affords them a protective shield against host immunity and chemotherapeutic intervention,
including antibiotics. This is often achieved not only by inactivating antibiotics, but also by
the regulation of the pH and metabolic state of the polymicrobial environment, contributing
to the virulence of the bacteria [24–29].

Microbial colonisation and growth resulting in wound infections have been reported
to be a contributory factor to delayed wound healing, which can sometimes lead to dev-
astating effects, including low work productivity, lengthy hospitalisation, amputation,
and death [29,30]. This influences the proper functioning of keratinocytes and fibroblasts
(skin cells) by impairing the inflammation phase of wounds, and this is one of the leading
causatives that influence the chronic wound environment [14,19,20,31]. Moreover, factors
such as an inefficient blood supply at the wound site and inappropriate treatment modal-
ities have been reported to cause non–healing wounds [8–10]. Some of these infections
do not only occur in community setting, but studies have also shown that there has been
an alarming increase in the number of bacterial infections occurring in healthcare facil-
ities. These bacteria mostly infect their hosts through the skin and respiratory tract in
contaminated hospital environments or through contaminated food. Moreover, infections
can occur through the use of contaminated medical devices, including catheters and joint
prostheses [25].

2.3. AMR in Chronic Wounds

Globally, WHO data suggest that AMR accounts for significant morbidity and circa
700,000 mortalities annually [32]. With the rapid rise of AMR contributing to the increased
burden of wound care to the health care community [33,34], it is imperative to explore
antibiotics-free compounds or their combination with antibiotics in the management or
elimination of chronic wounds. Wounds infected by bacteria, including those capable of
forming biofilms, are known to be recalcitrant to host defence and antibiotics, leading
to AMR. The CW microenvironment is a suitable breeding site for bacterial colonisation
and proliferation due to its relatively alkaline nature. This has given rise to AMR bacteria
as a result of their biofilms that encapsulate the bacteria, affording them more defence
against antibiotics. AMR prevalence is often associated with suboptimal administration
of antibiotics, target modification, efflux mechanism, misuse, and the over-prescription of
antibiotic agents [32–34].

Recent studies have shown that antibiotics-free compounds could be a dependable and
reliable strategy in the management of wounds, and this could be due to their mode of ac-
tion, which is unaffected by AMR, unlike antibiotics, which have been shown to sometimes
suffer from AMR, including methicillin-resistant Staphylococcus aureus (MRSA) [33–37].
Interestingly, these antibiotics-free compounds can elicit ideal pharmacological responses
when independently administered with minimal or no adverse reaction. Specifically, they
are active in the disruption of bacterial biofilms by attacking the EPS, known to afford
support to the structural integrity of these biofilms. In addition, they can be employed
as pharmaceutical or cosmetical adjuvants with other compounds, including (natural or
semi-) synthetic antibiotics [38]. The functionalities of antibiotics-free compounds in wound
healing are illustrated in Figure 3.

The classification of antibiotics is based on their mode of action such as the inhibi-
tion of bacterial cell wall synthesis, protein production, DNA replication, and folic acid
metabolism [39,40]. Antibiotics including penicillin, cephalosporins, carbapenems, and
vancomycin function by disrupting bacteria cell wall production [39,40]. Protein biosyn-
thesis inhibitors attack the 30 s or 50 s (spike) subunits of bacterial ribosomes, thereby
preventing the production of bacterial proteins. Drug molecules in this class include chlorte-
tracycline, tetracycline, doxycycline, chloramphenicol, and linezolid [39,40]. Quinolones
(fluoroquinolones) [39,40] work by inhibiting bacterial DNA replication. The folic acid (FA)
metabolism inhibitors, including sulphonamides and trimethoprim, work in synergy with
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the inhibition of the bacteria production pathway, with each drug disrupting each stage of
FA metabolism [39,40].
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Figure 3. Schematic diagram showing the functionalities of antibiotics-free compounds towards
wound healing. The morphology of healthy skin is distinct from that of chronic wounds due to
defects in CWs’ skin anatomy and high invasive bacteria loads. Antibiotics-free compounds can serve
as prophylactic or chronic wound care agents when alone or in formulation with antibiotics.

In addition, the antimicrobial mechanism of action of antibiotics-free compounds is
non-specific, except for the postulations that the phenolic compounds in plant materials
are responsible for their antimicrobial activity [41]. Phenolics are the most prominent
constituents of plant materials implicated in antibacterial activity. These phenolics include
ketones, aliphatic alcohols, terpenes, isoflavonoids, aldehydes, and acids [41]. These com-
pounds act by interacting with the bacterial cell structure, thereby disrupting the membrane
functionality, leading to the deformation of the bacterial cell structure [38]. Moreover, the
activities of these compounds are dependent on the administered concentrations, with
minimal concentrations impairing the bacterium enzymatic functions, while a high dose
is known to destroy bacterial proteins and also inhibit the bacterial metabolic pathway.
Furthermore, some of these phenols work in synergy, which can influence their antibac-
terial activity in the disruption of bacterial peptidoglycans and the outermost membrane
composed of lipopolysaccharides and proteins [38,41]. For instance, the antimicrobial mech-
anism of action of cinnamaldehyde (cinnamon) has been proposed to exhibit bacteriostatic
or bactericidal actions by altering the bacterial cell membrane, preventing cell division,
membrane porins, motility, and the formation of the biofilm [29,38].

Antibiotics-free compounds not only have the potential to reduce the invasive bacterial
load and persistent inflammation of chronic wounds, but also modulate growth factor
expression, which is necessary for tissue regeneration at the wound’s site, Figure 3.
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3. Natural and Semi-Synthetic Compounds for Wound Healing

The management of the microbial infection bioburden and tissue remodelling is a
crucial aspect of wound care. Compounds with wound healing properties are effective
under certain conditions, including low concentrations [42,43]; however, a lethal concentra-
tion has been reported to have safety concerns, ranging from prooxidant effects to DNA
damage [43,44].

3.1. Curcumin

Curcumin (Figure 4) is a lipophilic, bioactive compound obtained from the rhizome of
the Curcuma longa Linnean plant, [45]. It is a phenolic dye with a bright yellow coloura-
tion constituting the major component of the curcuminoid of turmeric (Curcuma longa),
accounting for the yellow colouration observed in turmeric [45]. Traditionally, it is used
as an adjuvant (E100) in the food industry as a colouring and flavouring agent [45]. Be-
yond its traditional applications, the polyphenolic component of curcumin is known to
actively regulate several signalling pathways and elicit a broad range of pharmacological
activities [46], including anti-inflammatory [47–49], antioxidant [47,50], anticancer [51,52],
antidiabetic [53], antiviral [54,55], and antibacterial activities [36,56–61]. Additionally, cur-
cumin has been explored in the management of skin diseases, including psoriasis [62,63].
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Figure 4. Molecular structure of (1E,6E)–1,7–Bis(4–hydroxy–3–methoxyphenyl)hepta–1,6–diene–3,5–
dione (Curcumin).

Curcumin possesses sparing to low aqueous solubility and poor stability, and this has
limited its broad applicability when administered alone [64]. Moreover, the stability of
curcumin is pH-dependent, with pH 7 to 8 accounting for about 90% of its degradation
and a slightly acidic pH of 3 to 6.5 affording better stability in comparison to pH 7 to
8 [65]. Interestingly, some of its metabolites have been demonstrated to possess fascinating
pharmacological dispositions, including anti-inflammatory, antimicrobial, anticancer, and
cardioprotective properties [47,51,66]. The incorporation of curcumin with nanomaterials,
micelles, and their micronised forms has been reported to exhibit improved solubility
compared to it pristine form [67,68].

In vitro data have demonstrated the antibacterial and wound healing potential of cur-
cumin [60,61,69]. In vitro study data of curcumin against Escherichia coli and Bacillus subtilis
FtsZ demonstrated significant efficacy [60,61]. Comotto and co-workers explored curcumin
in combination with t–resveratrol in the fabrication of an alginate-based breathable hydro-
gel dressing for the treatment of infected wounds; this combination was found to exhibit
pivotal bactericidal activity [69]. The rising preclinical data on curcumin’s medicinal dis-
position have endeared the interest of researchers both in academia and industry to the
exploration of its potential clinical administration in the management of diverse disease
conditions [42,48,56,66]. The potential of curcumin in wound care was evaluated using
various models, including rats, and curcumin was shown to be instrumental in improving
epithelialisation, fibroblast proliferation, vascular density, collagen deposition, and reorgan-
isation [70–74]. This was demonstrated in a study by Mehrabani et al. where curcumin was
shown to foster wound healing by quenching free radicals and the subsequent modulation
of inflammation through the inhibition of nuclear factor-B. Furthermore, it accelerates
the regulation of collagen deposition and fibroblast migration by inducing transforming
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growth factor-β and stimulating angiogenesis and extracellular matrix accumulation, which
are essential for tissue regeneration [70]. In another study by Miah et al., curcumin was
applied to surgical wounds of Bengal goats, and it showed better wound recovery com-
pared to the untreated groups [73]. The combination of curcumin in formulation with
other molecules has proven to be advantageous in improving its solubility and efficacy. A
recent study by Schiborr and co-workers demonstrated the improved solubility of curcumin
when it was incorporated with polysorbate [68]. Moreover, enhanced antibacterial and
wound care efficacy of curcumin has been reported when combined with hyaluronic or
t-resveratrol [69,72,75]. This was shown in a study conducted by Sharma et al., where
curcumin combined with hyaluronic acid was tested against bacteria and diabetic mice,
and it exhibited bactericidal activity and rapid wound healing efficacy when compared
with the untreated groups [72].

The anti-inflammatory mechanism of action (MOA) of curcumin could be due to its
regulation of the gene expression of inflammatory cytokines capable of releasing high influxes
of tumour necrosis factor (TNF), interleukin-6 (IL-6), and nitric oxide (NO), which could
cause persistent inflammation [66]. Moreover, its non-specific antimicrobial MOA against
bacteria likely works by binding to the FtsZ proteins, leading to the inhibition of the FtsZ
protofilaments assembly, thereby suppressing bacterial growth and proliferation. In addition,
its mode of action may be attributed to its disruption of the mecA gene transcription, resulting
in a decrease in penicillin-binding protein-2α expression. For instance, this is demonstrated
when curcumin binds with the peptidoglycan on the S. aureus cell wall, making it unavailable
for the production of the new peptidoglycan, affecting the strength of the peptidoglycan
layer, and triggering the breakdown of the bacterium [42,56]. The MIC (values in bracket,
Table 1) of curcumin against Staphylococcus aureus, Porphyromonas gingivalis, Escherichia coli,
Staphylococcus epidermidis, Pseudomonas aeruginosa, Streptococcus mutans, Proteus mirabilis,
Serratia marcescens, and Bacillus subtilis [42] is summarised in Table 1.

Table 1. Minimum inhibitory concentration (MIC) of curcumin and PHMB on various species of
bacteria [42,76].

Curcumin (MIC Values in %)

S. aureus P. gingivalis E. coli S. epidermidis P. aeruginosa S. mutans P. mirabilis S. marcescens B. subtilis
0.0188 0.0125 0.0192 0.0175 0.0192 0.0175 0.0192 0.0384 0.0100

PHMB (MIC Values in %)

S. aureus P. gingivalis E. coli S. epidermidis P. aeruginosa M. luteus M. smegmatis S. enterica typh B. subtilis S. griseus
0.0002 0.0010 0.0002 0.0001 0.0010 0.0010 0.0012 0.0004 0.0005 0.0005

3.2. Poly(hexamethylene biguanide)

PHMB (polyhexanide, Figure 5) is a known antiseptic with proven activity in the
management of microbial infections. An increase in the polymer chain length of PHMB
often leads to an improvement in its antimicrobial activity, and this structural chain length
can be repeated 2 to 30 times [21,77]. PHMB has demonstrated high efficacy over a broad
spectrum of microbes, including certain viruses [78,79], Gram-positive and Gram-negative
bacteria [28,80], fungi [28,81], and certain parasites, particularly Acanthamoeba [82,83]. Its
application has evolved beyond its traditional use as a multi-purpose disinfectant and
deodoriser. Recent application of PHMB has been demonstrated in cosmetics and personal
hygiene products as preservatives, with a concentration limited to 0.1% [43]. It is a synthetic
polymer composed of a biguanide and hexamethylene moieties with structural similarity
to naturally occurring antimicrobial peptides, giving it ease of penetrating bacterial cell
membranes and eliciting bactericidal activity [84].
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Specifically, it is known to mainly target the outer and cytoplasmic membranes. PHMB
binds to the DNA and other nucleic acids of the cell membrane, leading to the destruction
or inactivation of the bacterial DNA [21,85]. There is growing evidence of its wound heal-
ing efficacy when alone and incorporated in wound care products, including cleansing
solutions, hydrogels, and dressings [21]. Preclinical data have suggested that PHMB pos-
sesses efficacy against wound–colonising bacteria, including MRSA and other pathogenic
bacteria [86]. The PHMB MIC values against various pathogenic bacteria are listed in
Table 1 [76].

Numerous studies have shown PHMB’s therapeutic activity in wound care man-
agement [12,87]. Wound-care products containing PHMB were found to exhibit anti-
inflammatory dispositions by decreasing wound pain and malodour [12,87,88]. Moreover,
it increases keratinocyte and fibroblast activity with improvement in granulation tissue
formation and the elimination of dead tissues in the wound [12,89,90]. In a study by
Lenselink and co-workers, 28 volunteers with critically colonised wounds were recruited
and placed on PHMB-containing formulations. An increase in tissue granulation was
observed within 24 weeks, and this was attributed to the antioxidant, anti-inflammatory,
and antibacterial efficacy of PHMB [91]. In another study by Elzinga and co-workers, the
tolerability and healing efficacy of PHMB were evaluated, and it was demonstrated to be
well-tolerated and afford pain-free wounds with a good recovery timeframe [92]. However,
PHMB has been reported to have detrimental effects at high concentrations, including fever
and a generalised exanthema, which is thought to be the promotion of high nitric oxide
by PHMB [93]. According to the ECHA, 0.1% PHMB is considered safe for application in
cosmetics formulations [43].

3.3. Vitamin A

Retinoids are a group of compounds with a lipophilic non-aromatic β-ionone ring
having an unsaturated isoprenoid side chain (Figure 6). This class of chemical compounds
consists of retinol and its derivatives, which are known for their pharmacological and phys-
iological roles. These include the treatment of vision impairment and skin disorders, such
as photodamage, acne vulgaris, wrinkles, and psoriasis [94–97]. Furthermore, they have
demonstrated efficacy in the management of other skin abnormalities, such as disordered
fibrotic proliferation, including hypertrophic scars, keloids, and scleroderma [97,98]. They
continue to play an essential role in efficient epithelial keratinisation through the regulation
of the proliferation and differentiation of several cell types within the skin, including
keratinocytes and fibroblasts [97,99]. Additionally, they have been shown to modulate gene
transcription by controlling the extracellular matrix (ECM) through elevated collagen and
fibronectin generation coupled with decreased collagenase activity and the recruitment of
local inflammatory mechanisms to foster wound healing [97]. Moreover, retinoid offers
protection against ultraviolet–B (UVB)-induced DNA damage [100–103]. Retinoids’ crucial
functionality in the epithelialisation and subsequent wound healing of compromised skin
tissues is well documented [97]. Retinoids can be classified into four generations [96],
which are listed as follows: (i) retinol, retinaldehyde (retinal), retinoic acid (tretinoin),
isotretinoin, and alitretinoin belong to the first-generation class of retinoids, (ii) etretinate
and its metabolite acitretin are the second generation, and (iii) the third-generation class
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includes bexarotene, tazarotene, and adapalene. Finally, (iv) the fourth generation includes
trifarotene. However, the focus of this review will be on the first-generation retinoids, with
particular emphasis on retinol, retinal, and retinoic acid (Figure 6).
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According to Törmä and co-workers, 90% of the retinoids in the skin are made up of
retinyl ester, and retinol accounts for only 10% [104]. They have been reported to have a
high capacity to absorb ultraviolet beam (UVB) radiation ranging from 300 to 350 nm [104].
This was demonstrated in a study by Antille and co-workers, where they investigated the
skin photo-protection capacity of retinyl palmitate in the presence of high UVB radiation
exposure. The outcome of the findings corroborated the photo-protection of the epidermis
and anti-photocarcinogenic properties of retinyl ester [105].

Moreover, in a study by Pechère and co-workers where retinol and its natural derivates
(retinal and retinoic acid) were tested against bacterial strains, only retinal and retinoic acid
demonstrated inhibitory activity against S. aureus or P. acnes, with retinal affording more
potent antibacterial activity compared to retinoic acid. The MIC of retinal against various
Gram-positive bacteria (strains) is presented in Table 2 [106,107].

Table 2. Minimum inhibitory concentration (MIC) of retinoids against various strains of Gram-
positive bacteria [106,107]. Methicillin-sensitive S. aureus (MSSA) and methicillin-resistant S. aureus
(MSSA). Not active (NA).

P. acne Strains S. aureus Strains

CIP179 CIP53119 CIP53117 MSSA MRSA

Retinal 0.0004% 0.0004% 0.0008% 0.0008% 0.0004%
Retinoic acid 0.0128% NA
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However, a recent study by Harris et al. showed that retinol can serve as a good agent
in the prevention of microbial infections, particularly against S. pyogenes. [108]. The antimi-
crobial mechanism of action of retinal is thought to be the interaction of the adamantane
component of retinal with the lipophilic layer of the bacterial cell membrane, thereby caus-
ing the disruption of its biosynthetic pathway [96]. Retinoic acid has been demonstrated to
inhibit inflammatory reactions at the homeostasis phase by regulating the gene expression
of inflammatory infiltrates and proinflammatory cytokines (tumour necrosis factor (TNF),
interleukin-6 (IL-6), and nitric oxide (NO)) that could cause persistent inflammation [109].
Essentially, it can be postulated that there is a synergy in the pharmacological and physio-
logical actions of retinol and its metabolites for wound healing; the retinal component has
been proven to inhibit bacterial growth and proliferation, with retinoic acid modulating
the homeostasis phase by regulating the influx of inflammatory infiltrates responsible for
persistent inflammation and retinol modulating the growth factor expression essential for
tissue regeneration [97,106–109].

3.3.1. Retinol

Retinol was first isolated from Scombresox saurus liver oil by Karrer in 1931 [110]
(Figure 6). The compound is naturally found in animal products, and as chemical pre-
cursors in fruits and vegetables. Retinol is a fat-soluble molecule with antioxidant and
wound-healing dispositions. Retinol, in comparison to its metabolites, does not have the
same profound pharmacological and physiological properties [111]. Excessive adminis-
tration of retinol could lead to skin irritation, such as erythema, dryness, peeling, pruritis,
and stinging/burning [112]. For retinol to exert similar pharmacological and physiological
responses comparable to those of its metabolites, a higher dose of retinol may be required,
which could lead to adverse effects [113]. These adverse effects could be due to the ex-
cessive stimulation of epidermal turnover and cell proliferation, leading to hyperplasia
and spongiosis (localised swelling of the epidermis) [114]. The ideal concentration of
retinol can cause an increase in the epidermal thickness [115], which can occur through
several processes. This could occur by the upregulation of genes related to collagen type
I (COL1A1) and III (COL3A1), which in turn increase the protein expression of procol-
lagen I and III [113]. The improved collagen production can reduce fine wrinkles and
scar formation [103]. Using a 1% topical retinol application, increased fibroblast growth,
increased collagen synthesis, and a reduction in matrix metalloproteinases were observed,
all of which counteract the effects of photoageing or natural ageing in the skin [100]. As
well as having a direct effect, retinol can increase the expression of cellular retinoic acid-
binding protein II (CRABPII) [115], cellular retinol-binding protein (CRBP) mRNA, and
protein [113]. The skin thickening disposition of retinol was demonstrated in a study by
Kang and co-workers, where they applied all-trans-retinol to the healthy human epidermis,
and it fostered epidermal thickening and elevated the mRNA expression of cellular retinoic
acid and retinol-binding protein [114]. In another study by Varani and co-workers, the
topical administration of retinol was found to decrease matrixins expression and elevate fi-
broblast proliferation and the production of collagen in naturally aged skin, as performed in
photoaged skin [100,111]. Matrixins, also known as matrix metalloproteinases, are enzymes
capable of degrading ECM and they play vital roles in cell growth, migration, differentia-
tion, angiogenesis, apoptosis/necrosis, and host defence [116]. Essentially, they have been
reported to influence the physiological or pathological functioning of the biological system,
including metastasis, inflammation, and wound healing (tissue remodelling—angiogenesis,
and epithelialisation) [116,117].

Retinol deficiency can lead to a general impairment of wound healing, characterised
by delayed epithelialisation [97], and can lead to abnormal epithelial keratinisation [99].
This has been proven in a rat model [118]. Steroids are known to contribute to wound
healing delay. In a study by Ehrlich and co-workers, the inhibitory activity of retinol against
anti-inflammatory steroids was demonstrated, which could play a profound role in the
wound recovery timeframe [119].
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3.3.2. Retinal

Retinal was first isolated in 1934 by Wald and, in 1944, Morton suggested that the
compound in question was vitamin A aldehyde, linking it to the previously recognised
retinol [120] (Figure 6). Retinal is obtained by the hydrolysis of β-carotene, a retinoid
precursor that is found in many fruits and vegetables.

The antibacterial activity of retinal was demonstrated by Pechère et al. where 0.05% of
retinal was topically administered against Propionibacterium acnes and significant bacterici-
dal activity was observed [106]. Retinal showed significant in vitro antibacterial activity
against Gram-positive bacteria; however, there was no observed activity found against
Gram-negative bacteria. It is hypothesised that the antibacterial effect is, in part, due to the
aldehyde group in the lateral chain [106].

Much of the other effects of retinal are indirect, such that the functionality is from
nuclear receptor binding, hence leading to gene modulation [107].

3.3.3. Retinoic Acid

Retinoic acid (Figure 6) is highly reactive and hence possesses low stability. The
half-life of retinoic acid is approximately 1 h, which is in part due to CYP metabolism
performing hydroxylation [121]. There are several known isoforms of retinoic acid. The
most common retinoic acid with physiological activity is an all-trans-retinoic acid [122].
There are two other well-known isoforms, such as 9-cis-retinoic acid and 13-cis-retinoic
acid (Figure 7).
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Before the retinoic acid can bind to the receptors, to elicit the desired effect, they must
first be transported to the correct location within the cell. Cellular retinoic acid-binding
proteins (CRABPs) bind to the all-trans-retinoic acid, with high affinity, and can then be
transported into the nucleus [122].

Retinoic acids mainly regulate gene expression via interaction with both nuclear and
cytosolic receptors [97]. There are specific retinoic acid receptors (RARs) that are important
regulators for development. There are three characterised RAR-coding genes: -α, -β,
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and -γ, and retinoid X receptors (RXRs). These receptors are expressed in fibroblasts and
keratinocytes, and the expression of these receptors is even regulated by retinoic acid [122].
Retinoic acid can block collagenase activity, the enzymes that break down collagen, hence
preventing collagen degradation [113]. Retinoic acid can regulate gene expression in both
the epidermis and dermis. The genes are modulated concerning translation, transcription
factors, RNA metabolism, receptor expression, and apoptosis. All-trans-retinoic acid is
used in the treatment of skin cancer and acute promyelocytic leukaemia (APL). Conversely,
a deficiency of retinoic acid has been associated with cancer progression and various
dermatological diseases [122].

Similar to retinol, retinoic acid is also commonly used to treat acne and wrinkles/ageing [122].
This is due to the impact of retinoic acid on increased epithelial cell differentiation and
proliferation, as well as the proliferation of keratinocytes and fibroblasts [97].

All trans-retinoic acid has been shown to have fungistatic effects, which can be used
for psoriasis patients possessing a predisposition to fungal infections [123].

3.4. Vitamin C

Vitamin C (VTC, also known as ascorbic acid (Figure 8)) is a hydrophilic molecule
with potent pharmacological and physiological activities, including antioxidant, anti-
inflammatory, antimicrobial, and wound healing efficacy [124–127]. Plant sources are
known to possess an abundant amount of VTC, including vegetables and fruits. Tradi-
tionally, they have been explored as antioxidants in food supplements, preservatives [128],
and the management or prevention of scurvy [125]. The immunomodulatory activity of
VTC in influencing the signalling pathway for cell differentiation and proliferation is well
documented [129–131]. VTC is a gluconic acid lactone obtained from glucuronic acid
and hydrophilic keto-lactone having two ionisable hydroxyl moieties [132]. VTC mostly
exists in two equal enantiomers, including D-ascorbic acid and L-ascorbic acid which are
mutually interchangeable [132]; however, the most common and bioactive isomer of VTC
is L-ascorbic acid.
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Dehydroascorbic acid (DHAA) is an oxidised form of ascorbic acid (AA), and it can
be converted to AA in the presence of a reducing agent [132]. AA and DHAA have been
applied as active ingredients in cosmetic formulations and antimicrobial agents in phar-
maceutical products [133–137], especially in skin tanning and the treatment or prevention
of gingivitis, respectively [133–135]. Numerous studies have demonstrated the antimicro-
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bial activity of VTC against both Gram-negative and Gram-positive bacteria, including
S. mutans, P. gingivalis, S. aureus, H. pylori, B. subtilis, and M. tuberculosis, and fungi including
C. albicans, Aspergillus niger, and A. flavus [138–143]. In a dose-dependent study by Verghese
and co-workers, VTC was found to inhibit the growth of uropathogenic Escherichia coli and
K. pneumoniae at a MIC value of 1% [138]. Moreover, Isela et al. demonstrated MIC values of
VTC against S. mutans, S. aureus, P. gingivalis, C. albicans, and E. faecalis and their biofilms of
1% and 2%, respectively [141]. According to Mousavi et al., the MIC of VTC against C. jejuni-
infected mice was found to be 0.1409% at pH 7.3 [126]. Moreover, a number of studies have
demonstrated the disruption of bacterial biofilms at low VTC concentrations [142,144]. The
prevention or inhibition of bacterial biofilm formation by VTC is attributed to its bacterial
anti-quorum-sensing properties and the disruption of extracellular polymeric substance
(EPS) biosynthesis. The EPS matrix is mainly made up of polysaccharides, proteins, and
extracellular DNA, which affords defence to bacterial biofilms against host immunity and
antibiotics from attacking bacteria [29,126]. This antibiofilm-formation property of VTC
could be explored with other molecules (antibiotics) that can directly attack and eliminate
AMR recalcitrant planktonic bacteria, including P. aeruginosa and MRSA [126].

VTC is innocuous against skin cells, making it suitable for topical cosmetical formula-
tions [136,137]. The physiological role of VTC is imperative due to its crucial activity in skin
fibroblast growth and migration, as well as the production of collagen and elastin, which are
vital for wound healing or contraction [145–147]. It also possesses the capability to prevent
changes associated with photoageing [130,131,147]. The wound healing efficacy of VTC
was proven by Bikkera et al., where they investigated the impact of AA on wound healing
in surgical patients, and it was found that AA deficiency impairs wound healing [124]. The
wound care efficacy of VTC is attributed to its antioxidant, anti-inflammatory, antimicro-
bial, and collagen synthesis properties [124,125,127,147]. Several studies have shown the
anti-inflammatory activity of VTC, and this follows its capacity for the downregulation of
proinflammatory cytokines causing persistent inflammation [126,148].

A report by Lykkesfeldt et al. demonstrated the capability of VTC in the regeneration
of vitamin E (tocopherols) from its oxidised form (tocopheroxyl radical), thereby affording
VTC to indirectly inhibit lipid peroxidation [125]. Moreover, the combination of VTC and
vitamin E has been demonstrated to afford maximum photoprotection of the skin, thereby
limiting photoageing [149–153].

3.5. Vitamins E

Vitamin E (VTE, also known as tocochromanol) is composed of two major hydrophobic
low-molecular-weight compounds grouped as tocopherols and tocotrienols. Tocopherols
and tocotrienols are structurally identical with their chromanol rings (Figure 9), but have
differences in their side chain, with the former having a long, saturated chain (phytyl) and
the latter showing an unsaturated chain (farnesyl) with double bonds at positions 3′, 7′,
and 11′, [154].

Both tocochromanols have eight subgroups, with each group accounting for four “isomers”
each, existing as alpha (α), beta (β), delta (δ), and gamma (γ) [154–156]. VTE possesses
anti-inflammatory, antioxidant, antibacterial, and wound-healing properties [154,156–161].
Furthermore, vitamin E is capable of preventing biofilm formation [162]. VTE is mostly
obtained from natural sources, including plant seeds, nuts, corn, soybean, fruits, and
vegetables [155,156,163–165]. α–Tocopherol is the major vitamin E component in humans
with bioactivity [156,166,167], and its regulation of metabolic processes has been well
documented [156,157,159,160]. α–Tocopherol has been used as a dietary supplement and
as a component of skincare formulations [168,169].
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while tocotrienol possess unsaturated side chain (double bond) at positions 3′, 7′, and 11′.

Tocopherols are lipid-soluble molecules with ease of skin penetrability due to their low
molecular weight, and they have been applied when alone or in combination with other
molecules. Their antioxidant activity is devoid of skin irritation and they are capable of inhibit-
ing allergic epidermal reactions, making them suitable for topical application [131,170,171].
In a study by Kuriyama et al., the topical administration of tocopherol was found to inhibit
the irritation and allergic reaction often associated with contact dermatitis by regulating
the keratinocytes [170]. Its antioxidant activity functions by transferring hydrogen to free
radicals, including peroxyl, oxygen, and superoxide anions, thereby scavenging the radi-
cals, affording protection to polyunsaturated fatty acids (PUFAs) from oxidation, inhibition
of lipid peroxidation, and reduction of the skin ageing rate [171,172]. Moreover, tocopherol
has been reported to have the capacity to regulate T-cell proliferation and interleukin-2
generation [161,173–175]. Furthermore, it has been shown to serve as an enzyme activ-
ity modulator, including protein kinase C (PKC), responsible for cell-mediated immune
responses and cell proliferation, such as smooth muscle growth. It plays a role in the
deactivation of PKC by inhibiting smooth muscle growth [174,176,177]. Tocopherols have
been shown to possess potent biological activity in preventing infectious diseases [175].
Tocopherol by itself or when combined with antibiotics has demonstrated antibacterial
activity [161,178]; however, its interaction with other molecules has been proven to have
broad applicability [179,180]. To obtain the water-soluble or amphiphilic form of toco-
pherol, the esterification of the tocopherol derivative (D-α-tocopheryl succinate) with
polyethene glycol 1000 results in D-α-tocopheryl polyethene glycol 1000 succinate (TPGS)
(Figure 10) [181]. TPGS, a hydrophilic form of tocopherol, is made up of a lipophilic
α-tocopherol and a hydrophilic PEG chain [181].



Pharmaceutics 2022, 14, 1021 16 of 31

Pharmaceutics 2022, 14, x FOR PEER REVIEW 16 of 32 
 

 

Tocopherols are lipid-soluble molecules with ease of skin penetrability due to their 

low molecular weight, and they have been applied when alone or in combination with 

other molecules. Their antioxidant activity is devoid of skin irritation and they are capable 

of inhibiting allergic epidermal reactions, making them suitable for topical application 

[131,170,171]. In a study by Kuriyama et al., the topical administration of tocopherol was 

found to inhibit the irritation and allergic reaction often associated with contact dermatitis 

by regulating the keratinocytes [170]. Its antioxidant activity functions by transferring hy-

drogen to free radicals, including peroxyl, oxygen, and superoxide anions, thereby scav-

enging the radicals, affording protection to polyunsaturated fatty acids (PUFAs) from ox-

idation, inhibition of lipid peroxidation, and reduction of the skin ageing rate [171,172]. 

Moreover, tocopherol has been reported to have the capacity to regulate T-cell prolifera-

tion and interleukin-2 generation [161,173–175]. Furthermore, it has been shown to serve 

as an enzyme activity modulator, including protein kinase C (PKC), responsible for cell-

mediated immune responses and cell proliferation, such as smooth muscle growth. It 

plays a role in the deactivation of PKC by inhibiting smooth muscle growth [174,176,177]. 

Tocopherols have been shown to possess potent biological activity in preventing infec-

tious diseases [175]. Tocopherol by itself or when combined with antibiotics has demon-

strated antibacterial activity [161,178]; however, its interaction with other molecules has 

been proven to have broad applicability [179,180]. To obtain the water-soluble or am-

phiphilic form of tocopherol, the esterification of the tocopherol derivative (D-α-to-

copheryl succinate) with polyethene glycol 1000 results in D-α-tocopheryl polyethene gly-

col 1000 succinate (TPGS) (Figure 10) [181]. TPGS, a hydrophilic form of tocopherol, is 

made up of a lipophilic α-tocopherol and a hydrophilic PEG chain [181].  

 

Figure 10. Structure of α-tocopheryl polyethene glycol 1000 succinate. 

Studies have shown that TPGS has high bioavailability in comparison to hydrophilic 

tocopherol formulations in children with chronic cholestasis, indicating the potential of 

TPGS to serve as an alternative to tocopherol in order to avoid the injection of vitamin E 

formulations in chronic cholestasis [181,182]. TPGS is generally classified by USFDA as a 

safe substance, which has given it applicability in the pharmaceutical industry as an ad-

juvant to enhance drug molecules’ solubility, absorptivity, stability, and bioavailability 

[181]. A number of studies have shown the improvement in the oral absorptivity of van-

comycin hydrochloride and talinolol in animals when in formulation with TPGS [183,184]. 

TPGS has been successfully used as a nano-vehicle for the delivery of drug molecules with 

low solubility and poor permeability [179,180]. A known example is cisplatin, a potent 

antineoplastic agent with poor hydrophilicity; however, upon combination with TPGS, 

there was a remarkable improvement in its physicochemical disposition [179,180]. TPGS 

has been reported to possess antitumorigenic activity when alone and in combination with 

other drug molecules, and this is evidenced by its improved pharmacological response in 

formulation with cisplatin [179,180]. Vitamin E or TPGS have been reported to synergisti-

cally elicit antibacterial activity when combined with other molecules (e.g., antibiotics) by 

downregulating efflux pump gene expression, leading to the lowering of the bacterial ef-

flux pump activity, allowing the effective dose of antibiotics to reach the target bacterial 

Figure 10. Structure of α-tocopheryl polyethene glycol 1000 succinate.

Studies have shown that TPGS has high bioavailability in comparison to hydrophilic
tocopherol formulations in children with chronic cholestasis, indicating the potential of
TPGS to serve as an alternative to tocopherol in order to avoid the injection of vitamin E
formulations in chronic cholestasis [181,182]. TPGS is generally classified by USFDA as a
safe substance, which has given it applicability in the pharmaceutical industry as an adju-
vant to enhance drug molecules’ solubility, absorptivity, stability, and bioavailability [181].
A number of studies have shown the improvement in the oral absorptivity of vancomycin
hydrochloride and talinolol in animals when in formulation with TPGS [183,184]. TPGS
has been successfully used as a nano-vehicle for the delivery of drug molecules with
low solubility and poor permeability [179,180]. A known example is cisplatin, a potent
antineoplastic agent with poor hydrophilicity; however, upon combination with TPGS,
there was a remarkable improvement in its physicochemical disposition [179,180]. TPGS
has been reported to possess antitumorigenic activity when alone and in combination
with other drug molecules, and this is evidenced by its improved pharmacological re-
sponse in formulation with cisplatin [179,180]. Vitamin E or TPGS have been reported to
synergistically elicit antibacterial activity when combined with other molecules (e.g., an-
tibiotics) by downregulating efflux pump gene expression, leading to the lowering of the
bacterial efflux pump activity, allowing the effective dose of antibiotics to reach the target
bacterial cells [161,178,185]. Moreover, vitamin E or TPGS can enhance the penetration
of antibiotics into bacterial cells, making them a suitable pharmaceutical adjuvant for
antibiotics [186]. There is growing research demonstrating that other forms of VTE possess
similar or superior biological activity in comparison to α-tocopherol [187]. In particular, the
superior functionality of tocotrienols results in more effective penetration and distribution
in the lipid layers of the cell membrane due to their unsaturated side chains having a
higher affinity for the saturated lipid layers of biological tissues, including the brain and
liver [187–189]. Tocopherols and tocotrienols (Figure 9) only differ in their side chains,
with the latter having double bonds (unsaturated) at positions 3′, 7′, and 11′, as mentioned
earlier. However, both have four different forms each, often classified as α, β, δ, and
γ [189,190]. For instance, tocotrienols have been reported to exhibit superior antioxidant,
analgesic, anti-inflammatory, antibacterial, anti-cancer, neuroprotective, and cholesterol
modulation properties in comparison to those demonstrated by tocopherols [154,187,189].
Studies by Pearce and co-workers demonstrated the efficacy of tocotrienol at micromolar
concentrations in inhibiting the enzyme in the liver (HMG-CoA reductase) responsible for
the synthesis of cholesterol [191,192].

Overall, both tocopherols and tocotrienols possess significant biological activities,
including antioxidant, anti-inflammatory, and antibacterial dispositions, which could be
responsible for their wound healing efficacy. As demonstrated by several researchers,
the wound healing efficacy of tocochromanols, when combined with antibiotics, is quite
profound for preclinical data with clinical potential in humans [154,193,194]. In many
studies, the oral and topical administration of tocochromanols was found to elicit wound
healing efficacy. All of the findings regarding tocochromanols, when alone or in formu-
lation with other molecules, demonstrated them fostering angiogenesis, epithelisation,
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granulation, and collagen production, accounting for rapid wound contraction and tissue
regeneration [158,195–199].

3.6. Chitosan

Chitosan (CTN, Figure 11) is a biocompatible linear amino polysaccharide consisting
of glucosamine and N-acetyl glucosamine units connected through β-(1→4) glycosidic
bonds [7,200]. CTN is obtained from chitin, which is mostly found in crustaceans and
shellfish. The versatility of CTN has earned it applicability in several industries, including
medicine, pharmaceutical, cosmetics, agrochemistry, food, and beverage [7,200].

Pharmaceutics 2022, 14, x FOR PEER REVIEW 17 of 32 
 

 

cells [161,178,185]. Moreover, vitamin E or TPGS can enhance the penetration of antibiot-

ics into bacterial cells, making them a suitable pharmaceutical adjuvant for antibiotics 

[186]. There is growing research demonstrating that other forms of VTE possess similar or 

superior biological activity in comparison to α-tocopherol [187]. In particular, the superior 

functionality of tocotrienols results in more effective penetration and distribution in the 

lipid layers of the cell membrane due to their unsaturated side chains having a higher 

affinity for the saturated lipid layers of biological tissues, including the brain and liver 

[187–189]. Tocopherols and tocotrienols (Figure 9) only differ in their side chains, with the 

latter having double bonds (unsaturated) at positions 3′, 7′, and 11′, as mentioned earlier. 

However, both have four different forms each, often classified as α, β, δ, and γ [189,190]. 

For instance, tocotrienols have been reported to exhibit superior antioxidant, analgesic, 

anti-inflammatory, antibacterial, anti-cancer, neuroprotective, and cholesterol modula-

tion properties in comparison to those demonstrated by tocopherols [154,187,189]. Studies 

by Pearce and co-workers demonstrated the efficacy of tocotrienol at micromolar concen-

trations in inhibiting the enzyme in the liver (HMG-CoA reductase) responsible for the 

synthesis of cholesterol [191,192].  

Overall, both tocopherols and tocotrienols possess significant biological activities, in-

cluding antioxidant, anti-inflammatory, and antibacterial dispositions, which could be re-

sponsible for their wound healing efficacy. As demonstrated by several researchers, the 

wound healing efficacy of tocochromanols, when combined with antibiotics, is quite pro-

found for preclinical data with clinical potential in humans [154,193,194]. In many studies, 

the oral and topical administration of tocochromanols was found to elicit wound healing 

efficacy. All of the findings regarding tocochromanols, when alone or in formulation with 

other molecules, demonstrated them fostering angiogenesis, epithelisation, granulation, 

and collagen production, accounting for rapid wound contraction and tissue regeneration 

[158,195–199].  

3.6. Chitosan 

Chitosan (CTN, Figure 11) is a biocompatible linear amino polysaccharide consisting 

of glucosamine and N-acetyl glucosamine units connected through β-(1→4) glycosidic 

bonds [7,200]. CTN is obtained from chitin, which is mostly found in crustaceans and 

shellfish. The versatility of CTN has earned it applicability in several industries, including 

medicine, pharmaceutical, cosmetics, agrochemistry, food, and beverage [7,200].  

 

Figure 11. Structure of chitosan. 

CTN pharmaceutical and medical applications have demonstrated its pharmacolog-

ical and physiological roles, including its antioxidant, anti-inflammatory, antimicrobial, 

and wound healing efficacy [7,201–206]. Its potency in fostering chronic wound healing 

has been explored in various forms, including as powders, hydrogels, sponges, nanopar-

ticles, bandages, and films [7,206]. Several authors have reported the antimicrobial and 

wound healing efficacy of CTN when incorporated in bandages alone or in combination 

with antibiotics [206–209]. This was proven when bandages containing only CTN were 

administered on bleeding wounds, leading to the rapid inhibition of haemorrhaging 

[7,206–210]. This observation could be attributed to the positively charged polysaccharide 

amine of CTN attracting negatively charged red blood cells (RBC), fostering blood clotting 

Figure 11. Structure of chitosan.

CTN pharmaceutical and medical applications have demonstrated its pharmacological
and physiological roles, including its antioxidant, anti-inflammatory, antimicrobial, and
wound healing efficacy [7,201–206]. Its potency in fostering chronic wound healing has
been explored in various forms, including as powders, hydrogels, sponges, nanoparticles,
bandages, and films [7,206]. Several authors have reported the antimicrobial and wound
healing efficacy of CTN when incorporated in bandages alone or in combination with
antibiotics [206–209]. This was proven when bandages containing only CTN were adminis-
tered on bleeding wounds, leading to the rapid inhibition of haemorrhaging [7,206–210].
This observation could be attributed to the positively charged polysaccharide amine of
CTN attracting negatively charged red blood cells (RBC), fostering blood clotting through
the electrostatic interaction of the CTN and RBC [7,206–209]. In a study by Nimal et al.,
they demonstrated the remarkable efficacy of CTN bandages containing antibiotics with
sustained release of the antibiotics for two weeks, leading to a significant reduction in the
bacterial loads of the various polymicrobial cultures tested, including C. albicans, E. coli,
and S. aureus [201]. In another study by Marangon et al., it was further established that
the incorporation of CTN with rhamnolipid not only improved the antibacterial activity
of the antibiotic agent against diverse strains of Staphylococcus, but also stabilised the
CTN, showing the effective synergy between the two molecules [202]. Furthermore, stud-
ies by several authors have demonstrated the effectiveness of CTN in promoting tissue
remodelling, with a reduction of scar tissue and an increase in the wound healing effi-
cacy [7,203–206,210,211]. This is evidenced by a study conducted by Baxter and co-workers,
in which a chitosan dressing was applied to a third-degree burn (mice model) leading
to wound contraction [203]. The chitosan modulation of transforming growth factor-β1
(TGF-β1) and collagen III deposition in the wounds facilitated tissue remodelling and a
subsequent reduction in TGF-β1, preventing the formation of a scar at the wound site. This
is coupled with the recruitment of fibroblasts and the inhibition of inflammatory cytokines
release, affording limited-pain wound healing [203]. Moreover, antimicrobial and wound
healing study conducted by Dai et al. on mice infected burn, demonstrated the efficacy of
CTN in the rapid bactericidal activity against pathogenic bacteria whilst promoting wound
recovery [210].

CTN works by modulating the various cellular processes involved in wound healing
by reducing the microbial loads and regulating growth factor expression (such as epidermal
growth factor and TGF-β1) during wound healing phases [201–204]. In chronic wounds,
CTN is thought to reduce the bacterial load by inhibiting or eliminating polymicrobial
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growth in infectious wounds. This antibacterial activity of CTN is achieved when the
positively charged component of CTN interfaces with the negatively charged component
of the bacterial cell membrane [201–204]. This coherence results in the inhibition of the
bacterial cell membrane’s protein biosynthesis and translation. CTN is efficacious against
both Gram-positive and Gram-negative bacteria [204]. However, it is more potent against
Gram-negative bacteria, and this is adduced to the highly negatively charged envelope
that the cell wall of Gram-negative bacteria possesses, which has a greater affinity for the
positively charged polysaccharide amine group of CTN [204]. Furthermore, it fosters the
efficient migration of neutrophils with the subsequent proliferation of fibroblasts. This
is followed by its facilitation of macrophages and neutrophil infiltration and migration
at the wound site, leading to the elimination of extraneous matters and promotion of
granulation/fibrous tissue and re-epithelialisation. Its antimicrobial characteristics make
it ideal for the prevention of wounds’ microbial infection or the inhibition of microbial
growth in infected wounds [7,201,202,204,210]. Moreover, the tissue regeneration capacity
of CTN is essential for wound contraction and re-epithelialisation [7,203–207,210]. CTN
has been explored alone and in combination with other molecules or as a pharmaceutical
excipient [7,200,212], and it is well tolerated and biocompatible [174,213,214]. CTN could
serve as an ideal gelling agent and adjuvant for the controlled release of active ingredi-
ents for topical cosmetic formulations due to its biocompatibility, biodegradability, and
compatibility with other cosmetic active ingredients, including vitamins [7,207,215,216].

3.7. Aloe vera

Aloe vera, from the Liliaceae family, has proven pharmacological activities against dry
skin, burns, acne, psoriasis, and wounds [217–220]. It has been well applied in several
industrial applications, including cosmetics, food, and beverages. Its use in cosmetic
topical application could be attributed to its moisturising and soothing effect [221,222]. The
phytoconstituents of Aloe vera include water, vitamins (A–C and E), minerals (Na, K, Fe,
and Zn), phenolics, and amino acids (folic acid). Interestingly, these components have been
demonstrated to possess therapeutic activity, such as antimicrobial, anti-inflammatory, and
wound healing [217–220]. Reports have exhibited the antibacterial disposition of Aloe vera
against both Gram-positive and Gram-negative bacteria, with MIC of ≤ 0.000625% for
Pseudomonas aeruginosa, Bacillus subtilis, and ≤0.005% for Staphylococcus aureus [223]. In
another study by Goudarzi et al., Aloe vera was found to be efficacious against P. aeruginosa
strains from burn wounds with an MIC value of 0.02% [224]. The antibacterial activity
of A. vera may be due to its anthraquinone phytoconstituents [223,224]. Furthermore,
the anti-inflammatory and wound healing efficacy of A. vera has been shown by many
reports [219,220,225]. The preventive and healing effect of A. vera against pressure ulcers
was demonstrated by Hekmatpou and co-workers, where they carried out a randomised
triple-blind clinical trial, and it was observed that A. vera was capable of preventing or
fostering the healing of pressure ulcers by modulating the wound’s temperature, non-
blanchable redness, swelling, and pain [220]. Numerous studies have demonstrated the
efficacy of A. vera in the modulation of proinflammatory cytokine gene expression, a known
promoter of IL-6, NO, causing persistent inflammation [219,220,225]. This inhibition has
been attributed to reduced inflammatory reaction and rapid wound healing [219,220].
Moreover, A. vera has been shown to possess tissue regeneration disposition by fostering
fibroblast proliferation with collagen biosynthesis [220].

3.8. Cinnamaldehyde

Cinnamaldehyde (CME, Figure 12) is a phenylpropanoid molecule obtained from
the bark of cinnamon trees with proven therapeutic action, including antimicrobial, anti-
inflammatory, and wound healing efficacy [38,226–228].
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It has been found to be useful in the beverage, cosmetic, and agrochemical indus-
tries [38,229,230]. CME has exhibited activity in the inhibition or elimination of pathogenic
fungi, including Candida albicans and Aspergillus flavus [227,228]. Moreover, this compound
has been shown to repel insects, kill or inhibit certain bacterial growth, and prevent biofilm
formation [29,230]. Several studies have demonstrated the antimicrobial properties of
cinnamaldehyde, including pathogenic Gram-positive and Gram-negative bacteria, such
as P. aeruginosa, E. coli, and S. aureus [29,231]. According to Ramasamy and co-workers,
the efficacy of CME against P. aeruginosa, E. coli, and S. aureus is limited at concentrations
ranging from 0.0005% to 0.025%; however, on incorporation with nanoparticles, the MIC
and MBC were greatly improved, inferring the synergistic disposition between CME and
other molecules. In addition, in a study conducted by Topa et al., it was reported that CME
with MIC (0.16%) was found to elicit bacteriostatic action against P. aeruginosa [29]. Another
study by Utchariyakiat and co-workers showed that the MIC of CME against P. aeruginosa
ranged from 0.0562% to 0.225% [232]. A recent study by Pereira and co-workers showed
that CME is potent against E. coli at a MIC of 0.078% [233]. In a similar study, it was
established that CME was well tolerated by human epithelial cells [233]. The antimicrobial
action of CME may be by disrupting the cellular homeostasis of the bacterial cell mem-
brane, thereby impeding its growth [233]. Moreover, CME has been shown to possess
an anti-inflammatory disposition, which is essential for wound management [234]. The
antibacterial and anti-inflammatory dispositions of CME are useful in the management of
wounds due to its capacity to eliminate or prevent bacterial biofilms (P. aeruginosa) and its
reduction of the inflammatory reaction by inhibiting high-influx of inflammatory infiltrates.
Moreover, numerous reports have demonstrated that CME is capable of accelerating colla-
gen production and the induction of mammalian endothelial cell growth, which is crucial
for wound healing [226,235,236]. This was demonstrated in a study by Ferro et al. where
CME was tested against P. aeruginosa-infected mice skin wounds, and it was observed
that the bacterium metabolic rate and its ability to cause biofilm formation was reduced
at sub-inhibitory concentrations of CME. Furthermore, routine topical administration of
CME was reported to have lowered the bacterium bioburden of the mice’s skin wounds
with rapid wound contraction and healing. Further analysis showed that the CME-treated
wound samples had lower interleukin-17, vascular endothelial growth factor, and nitric
oxide levels compared to the untreated wound samples [236]. The modulation of these
inflammatory infiltrates by CME may have contributed to its wound healing action.

4. Benefits and Limitations of Antibiotics-Free Compounds for Chronic Wounds

Antibiotics-free compounds are capable of accelerating chronic wound healing when
administered at low concentrations. They not only offer antibacterial efficacy, but also
influence each stage of the cellular and morphological events of the wounds, including the
regulation of the inflammatory, proliferative, and tissue-remodelling phases. The many
benefits and potential limitations associated with the discussed compounds are stated
in Table 3. The pharmacological and physiological activities of these compounds are
influenced by their concentration, temperature, formulation, presence of organic matter,
and contact time [9].
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Table 3. The advantages, disadvantages, and challenges of each compound in treating chronic wounds.

Compounds Benefits Limitations

Curcumin
- Antibacterial and wound-healing agent [42,56,70]
- Modulation of cellular and molecular pathways, including

the regulation of inflammation and tissue regeneration [70]

- Sparing to low aqueous solubility [64]
- Low stability due to photo- and pH

sensitivity [65]

Polyhexanide

- Efficacious antibacterial and wound-healing agents [84,85].
- Potent and well tolerated in wounds at low concentrations

(0.02–0.5%) with potential to induce
re-epithelialisation [89,237,238]

- Carcinogenic at high concentrations [43,89,93].
- Its antibacterial activity may be influenced by

pH [239].

Retinol,
Retinaldehyde,
Retinoic acid

- Antibacterial and tissue regeneration
agents [96,106,107,111]

- Limited antibacterial activities [106,107]
- Sparing to low aqueous solubility [111]
- Toxic at high concentrations [240]

Ascorbic acid
- Antibacterial and tissue regeneration agent
- High aqueous solubility [141,147] - Low photostability

Tocochromanols

- Antibacterial and tissue regeneration agent
- Excellent amphiphilic characteristics when

modified (TPGS)
- Penetration enhancer [TPGS] making it a suitable drug

carrier and delivery agent [161,181]

- Limited antibacterial activities
- Sparing to low aqueous solubility when present

in its pristine form [181]

Chitosan
- Ideal antibacterial and tissue regeneration agent
- Excellent drug delivery agent for wound

healing [7,201–206]

- Sparing to low aqueous solubility when present
in its pristine form [7]

- Toxic at high concentrations [204]

Aloe vera - Antibacterial and wound healing efficacy [220–223] - May cause contact dermatitis with mild redness
and itching [241]

Cinnamaldehyde - Potent antibacterial and tissue regeneration agent [29,233] - Carcinogenic at high concentrations.
- Sparing to low aqueous solubility [233,242]

5. Challenges for Drug Delivery to Chronic Wounds

The current treatment modalities for chronic wounds are hampered by the wound
microenvironment having polymicrobial growth and biofilm formation, making the de-
livery of therapeutic doses of antibiotics at the target site difficult. This limitation may
account for the persistent inflammation and delayed wound healing often reported in
infectious wounds. Bacterial biofilms have been shown to afford a protective shield to bac-
teria through their EPS, making them evasive to both antibiotics and host immunity [9,10].
Some of the conventional approaches that have been explored in the management of CWs
include debridement to remove necrotic cells, therapeutic cleansing using a biocide to
reduce microbial bioburden, wound dressing, and antibiotics to eliminate bacterial loads.
However, these methods are not always helpful in the management of CWs, and this is
complicated by the poor blood circulation in most CWs, making the systemic delivery of
antibiotics at infectious wound sites difficult. Furthermore, the use of wound dressings
impregnated with antiseptic agents could potentially increase the application duration,
but they neither control the release nor improve the penetrability of antibacterial agents.
Recently, more advanced carriers have been proposed for the delivery of antimicrobial
compounds, including fibres, microneedles, particulates, and vesicular carriers [10]. The
use of fibres impregnated with antibiotics having sizes ranging from nm to µm, usually
obtained by electrospinning, have been explored. Fibres impregnated with antibiotics have
been demonstrated to circumvent CW barriers due to their fibrous morphology ability,
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which mimics the human extracellular matrix, fostering cell adhesion with subsequent
gas exchange, the inhibition of microbial infiltrates, and modulation of a moist environ-
ment [10,243,244]. Chitosan has been seen as an ideal polymeric material for incorporation
with antibiotics, and this may be attributed to its desirable physicochemical and antibacte-
rial properties [202,244]. Microneedles incorporated with films coated with antibacterial
agents have been demonstrated as a potential approach for CW treatment. This is due
to their pain-free penetration of the outer layers of the skin because of their miniature
size [10,245]. The size dynamics of nanomaterials is an attractive feature compelling their
utilisation for the treatment of infectious wounds. Nanoparticles with sizes ranging from 1
to 100 nm have been proven to circumvent the barriers often posed by bacterial biofilms
due to their small size, making them suitable candidates for carrying antimicrobial agents
with improved antibacterial actions [59,67,246]. Vesicles, such as TPGS and liposomes, with
hydrophilic and lipophilic phases have been explored as potential drug carriers. They
may be incorporated with hydrophobic or water-soluble drug molecules due to their am-
phiphilic properties improving their versatility. Moreover, they are a good penetration
enhancer and are capable of disrupting bacterial biofilms. This is often achieved due to their
ability to potentially fuse with biological membranes, resulting in improved intracellular
drug delivery with enhanced therapeutic efficacy [10,181,247]. These advanced modalities
may be capable of circumventing the CW barrier, including bacterial biofilms. However,
further investigation of their applicability, needs to be conducted, including their short and
long-term safety.

6. Conclusions

Several antibiotics-free compounds, including curcumin, Aloe vera, polyhexanide,
cinnamaldehyde, retinoids, ascorbate, tocochromanols, and chitosan, when alone or in
formulation with other molecules (antibiotics) have pharmacological and physiological
roles in wound healing. Vitamin A (retinoids), vitamin C (ascorbic acid), and vitamin E
(tocochromanol) are low-molecular-weight compounds with potent dermatological, phar-
macological, and physiological activities. These vitamins are known for their synergistic
disposition when combined in formulations. For instance, retinoids and ascorbic acid have
shown increased production of collagen, which is pivotal for wound healing and tissue
regeneration. Moreover, ascorbic acid (AA) has been proven to be capable of regenerat-
ing tocochromanol (tocopherol) from its radical form (tocopheryl), thereby enabling AA
to inhibit lipid peroxidation [125]. Their low molecular weight is also advantageous, as
their ease of skin penetration can be effectively utilised for topical dermatological applica-
tions. The biological activity of these compounds have been attributed to their antioxidant,
antibacterial, anti-inflammatory, and wound healing efficacy, which has been proven to
modulate the processes involved in wound healing, including inflammation, proliferation
(neo-angiogenesis, granulation, and re-epithelialisation), debridement, and maturation.
Some of these molecules have been shown to have activity against antimicrobial-resistant
microbes and biofilms. Moreover, the combination of lipophilic and hydrophilic vitamins
has been proven to have synergistic antimicrobial and dermatological properties. Interest-
ingly, retinol and its natural derivatives have the potential for eliciting therapeutic action
at every stage of wound healing with retinaldehyde, capable of exhibiting antibacterial
activity against certain bacteria and retinoic acid, fostering the modulation of proinflam-
matory cytokines, and retinol, regulating growth factor expression necessary for tissue
regeneration. Additionally, curcumin and its degradation products have biological activity
that might be useful for chronic wound management. In general, a number of the con-
sidered compounds have a similar mechanism of action (MOA) in their management of
wound healing. Chronic wound microenvironments exist in a cascade involving microbial
infection, persistent inflammation, and impaired tissue. These infections are recalcitrant
to antibiotics by the shield afforded to them by bacterial biofilms with the pH change of
the CW microenvironment from slightly acidic to alkaline, which is known to promote
polymicrobial colonisation and proliferation. This then fosters the persistent inflammation
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of CWs by promoting high influx of inflammatory infiltrates and the impairment of the
tissue around the wound’s site. The wound healing action of these compounds relies on
interfering with each phase of the CWs. For instance, it is postulated that the phenolic
components in some of the antibiotic-free compounds are responsible for their antimicrobial
activity [38,41,96]. It has been proposed that the bacteriostatic or bactericidal actions of
these compounds act by altering the bacterial cell structure, preventing cell division, mem-
brane porins, motility, and the formation of the bacterial biofilm [38,41]. In addition, they
inhibit the inflammatory reaction at the homeostasis phase of the wounds by decreasing
the excessive influx of inflammatory infiltrates (tumour necrosis factor (TNF), interleukin-6
or 17, and nitric oxide (NO)), causing persistent inflammation [2,38,109]. Moreover, these
compounds elicit collagen biosynthesis, which is necessary for tissue regeneration.

Antibiotics-free compounds are advantageous in the management of chronic wounds
as they are capable of regulating every stage of CWs, as opposed to antibiotics, which reduce
the bacteria load with minimal interference concerning tissue remodelling. Moreover, some
of these compounds can be employed as prophylactic agent in the prevention of bacterial
biofilms or used in synergy with antibiotics in the elimination of bacteria. Overall, these
compounds are suitable at a certain permissible limit, as any concentration above the
standard threshold can result in adverse reactions, including proinflammation, cytotoxicity,
and delayed wound healing.
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