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Abstract: Emotion recognition based on physiological signals has been a hot topic and applied
in many areas such as safe driving, health care and social security. In this paper, we present
a comprehensive review on physiological signal-based emotion recognition, including emotion
models, emotion elicitation methods, the published emotional physiological datasets, features,
classifiers, and the whole framework for emotion recognition based on the physiological signals.
A summary and comparation among the recent studies has been conducted, which reveals the current
existing problems and the future work has been discussed.

Keywords: emotion recognition; physiological signals; emotion model; emotion stimulation;
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1. Introduction

Emotions, which affect both human physiological and psychological status, play a very important
role in human life. Positive emotions help improve human health and work efficiency, while negative
emotions may cause health problems. Long term accumulations of negative emotions are predisposing
factors for depression, which might lead to suicide in the worst cases. Compared to the mood which is
a conscious state of mind or predominant emotion in a time, the emotion often refers to a mental state
that arises spontaneously rather than through conscious effort and is often accompanied by physical
and physiological changes that are relevant to the human organs and tissues such as brain, heart,
skin, blood flow, muscle, facial expressions, voice, etc. Due to the complexity of mutual interaction
of physiology and psychology in emotions, recognizing human emotions precisely and timely is still
limited to our knowledge and remains the target of relevant scientific research and industry, although
a large number of efforts have been made by researchers in different interdisciplinary fields.

Emotion recognition has been applied in many areas such as safe driving [1], health care especially
mental health monitoring [2], social security [3], and so on. In general, emotion recognition methods
could be classified into two major categories. One is using human physical signals such as facial
expression [4], speech [5], gesture, posture, etc., which has the advantage of easy collection and have
been studied for years. However, the reliability can’t be guaranteed, as it’s relatively easy for people
to control the physical signals like facial expression or speech to hide their real emotions especially
during social communications. For example, people might smile in a formal social occasion even if
he is in a negative emotion state. The other category is using the internal signals—the physiological
signals, which include the electroencephalogram (EEG), temperature (T), electrocardiogram (ECG),
electromyogram (EMG), galvanic skin response (GSR), respiration (RSP), etc. The nervous system
is divided into two parts: the central and the peripheral nervous systems (CNS and PNS). The PNS
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consists of the autonomic and the somatic nervous systems (ANS and SNS). The ANS is composed
of sensory and motor neurons, which operate between the CNS and various internal organs, such as
the heart, the lungs, the viscera, and the glands. EEG, ECG, RSP, GSR, and EMG change in a certain
way when people face some specific situations. The physiological signals are in response to the
CNS and the ANS of human body, in which emotion changes according to Connon’s theory [6].
One of the major benefits of the latter method is that the CNS and the ANS are largely involuntarily
activated and therefore cannot be easily controlled. There have been a number of studies in the area of
emotion recognition using physiological signals. Attempts have been made to establish a standard
and a fixed relationship between emotion changes and physiological signals in terms of various
types of signals, features, and classifiers. However, it was found that it was relatively difficult
to precisely reflect emotional changes by using a single physiological signal. Therefore, emotion
recognition using multiple physiological signals presents its significance in both research and real
applications. This paper presents a review on emotion recognition using multiple physiological
signals. It is organized as follows: the emotion models are analyzed in Section 2. The features
extracted from physiological signals especially the emotional relevant features are analyzed in Section 3.
The framework of emotion recognition is presented in Section 4, including preprocessing, feature
extraction, feature optimization, feature fusion, classification and model evaluation. In Section 5,
several physiological signal databases under certain emotional stimulation are stated. A comprehensive
summary and comparison was given in Section 6. In Section 7 some drawbacks in current studies are
pointed and a discussion regarding the future work is presented.

2. Emotion Models

For emotion recognition, the emotions should be defined and accessed quantitatively.
The definition of basic emotions was firstly proposed decades ago. However, the precise definition
has never been widely acknowledged by psychologists. Psychologists tend to model emotions
in two different ways. One is to divide emotions into discrete categories. The other is to use
multiple dimensions to label emotions. For emotion elicitation, subjects are given a series of
emotionally-evocative materials to induce a certain emotion. During the past few years, pictures,
music and films stimulations are the most common materials. Furthermore, some novel methods called
situational stimulation are rising in recent years. Computer games or recollection are used to induce
emotion. Among these methods, affective Virtual Reality has attracted more and more attentions.

2.1. Discrete Emotion Models

Ekman [7] regarded emotions as discrete, measurable and physiology-related. He proposed
a number of characteristics towards basic emotions. (1) People are born with emotions which are not
learned; (2) People exhibit the same emotions in the same situation; (3) People express these emotions
in a similar way; (4) People show similar physiological patterns when expressing the same motions.
According to the characteristics, he summarized six basic emotions of happy, sad, anger, fear, surprise,
and disgust, and viewed the other emotions as the production of reactions and combinations of these
basic emotions.

In 1980, Plutchik [8] proposed a wheel model that includes eight basic emotions of joy,
trust, fear, surprise, sadness, disgust, anger and anticipation, as shown in Figure 1. This wheel
model describes emotions according to intensity, the stronger emotions are in the center while the
weaker emotions are at the flower blooms. Just as colors, basic emotions can be mixed to form complex
emotions. Izard [9,10] described that: (1) Basic emotions were formed in the course of human evolution;
(2) Each basic emotion corresponded to a simple brain circuit and there was no complex cognitive
component involved. He then presented ten basic emotions: interest, joy, surprise, sadness, fear,
shyness, guilt, angry, disgust, and contempt.
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The discrete emotion models have utilized word descriptions for emotions instead of 
quantitative analysis. It is therefore difficult to analyze complex emotions, such as some mixed 
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2.2. Multi-Dimensional Emotion Space Model 

With the deepening of research, psychologists found that there was a certain correlation among 
separate emotions, such as hatred and hate, pleasure and liking, which represented a certain degree 
of specific emotional level. On the other hand, the emotions with the same descriptions may have 
different intensities. For example, happy might be described as a little bit happy or very happy. 
Therefore, psychologists have tried to construct multi-dimensional emotion space models. Lang [11] 
investigated that emotions can be categorized in a 2D space by valence and arousal. In his theory, 
valence ranges from unpleasant (negative) to pleasant (positive), and arousal ranges from passive 
(low) to active (high), which indicate how strongly human feels. Different emotions can be plotted in 
the 2D space as shown in Figure 2. For example, anger has negative valence and high arousal while 
sadness has negative valence and low arousal. 

Figure 1. Plutchik’s Wheel of Emotions.

The discrete emotion models have utilized word descriptions for emotions instead of quantitative
analysis. It is therefore difficult to analyze complex emotions, such as some mixed emotions that are
difficult to be precisely expressed in words and need to be studied quantitatively.

2.2. Multi-Dimensional Emotion Space Model

With the deepening of research, psychologists found that there was a certain correlation among
separate emotions, such as hatred and hate, pleasure and liking, which represented a certain degree
of specific emotional level. On the other hand, the emotions with the same descriptions may have
different intensities. For example, happy might be described as a little bit happy or very happy.
Therefore, psychologists have tried to construct multi-dimensional emotion space models. Lang [11]
investigated that emotions can be categorized in a 2D space by valence and arousal. In his theory,
valence ranges from unpleasant (negative) to pleasant (positive), and arousal ranges from passive
(low) to active (high), which indicate how strongly human feels. Different emotions can be plotted in
the 2D space as shown in Figure 2. For example, anger has negative valence and high arousal while
sadness has negative valence and low arousal.



Sensors 2018, 18, 2074 4 of 41

Sensors 2018, 18, x FOR PEER REVIEW  4 of 40 

 

 
Figure 2. 2D emotion space model. 

Although it can easily distinguish positive and negative emotions, it will fail in recognizing 
similar emotions in the 2D emotion space. For example, fear and angry are both inside the zone with 
negative valence and high arousal. Mehrabian [12] extended the emotion model from 2D to 3D (see 
Figure 3). The added dimension axis is named dominance ranging from submissive to dominant, 
which reflects the control ability of the human in a certain emotion. In this dimension, anger and fear 
can be easily identified as anger is in the dominant axis while fear is in the submissive axis.  
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Figure 2. 2D emotion space model.

Although it can easily distinguish positive and negative emotions, it will fail in recognizing
similar emotions in the 2D emotion space. For example, fear and angry are both inside the zone
with negative valence and high arousal. Mehrabian [12] extended the emotion model from 2D to 3D
(see Figure 3). The added dimension axis is named dominance ranging from submissive to dominant,
which reflects the control ability of the human in a certain emotion. In this dimension, anger and fear
can be easily identified as anger is in the dominant axis while fear is in the submissive axis.
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2.3. Emotion Stimulation Tools

National Institute of Mental Health [13] proposed the well-known International Affective Picture
System (IAPS) in 1997, which provided a series of standardized, emotionally-evocative photographs
that can be accessed by everyone. Additionally, in 2005, the Chinese Affective Picture System (CAPS)
was proposed [14], which was an important tool for domestic researchers.

Combining visual and auditory senses, movie stimulation has much progress. In the work of [15],
at first, the authors built a Multimodal Affective User Interface (Figure 4a) to help to gather users’
emotion-related data and their emotions. After conducting a pilot panel study with movie scenes to
determine some high-quality films, the authors finally chose 21 movie clips to arouse anger, sadness,
amusement, disgust, fear and surprise. The film names were given in this paper. Music video also
plays an important role in emotion stimulation. In [16], 32 subjects watched 40 one-minute long
music videos. These video clips were selected using a subjective emotion evaluation interface online
from 120 stimuli one-minute videos. The authors used an affective highlighting algorithm to extract
a one-minute highlight clip from each of the 120 original music videos. Half of the videos were chosen
manually, while the other half were selected via affective tags from the website.
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Zhang et al. proposed a novel emotion evocation system called Affective Virtual Reality System
(AVRS, Figure 4b, [17]), which was composed of eight emotive VR scenes (Figure 4c) and their
three-dimensional emotion indexes that were evaluated by 100 subjects using the Self-Assessment
Manikin (SAM). Color, sound and other features were extracted to create affective VR scenes.
These features were selected from standard emotive picture, video and audio materials such as
IADS and so forth. Emotions can be elicited more efficiently and accurately via AVRS according to
this paper. A multiplayer first-person shooter computer game was used to induce emotion in [18].
Participants were required to bring their friends as their teammates. Through this game, subjects
became more immersed in a virtual world and pay less attention to their environment. Moreover,
a recall paradigm and autobiographical memories were used in [19,20] respectively.
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3. Emotional Relevant Features of Physiological Signals

The position of the biosensors used is illustrated in Figure 5.Sensors 2018, 18, x FOR PEER REVIEW  6 of 40 
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channels of frontal EEG signals at Fp1 and Fp2. It took advantages of spatial, frequency and 
asymmetry characteristics of EEG signals (Figure 6a). The experiment using a GBDT (Gradient 
boosting Decision Tree) classifier validated the effectiveness of the method, where the maximum and 
mean classification accuracy were 76.34% and 75.18% respectively.  
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3.1. EEG

In the reference [21], the authors provided a method for emotion recognition using only
two channels of frontal EEG signals at Fp1 and Fp2. It took advantages of spatial, frequency and
asymmetry characteristics of EEG signals (Figure 6a). The experiment using a GBDT (Gradient boosting
Decision Tree) classifier validated the effectiveness of the method, where the maximum and mean
classification accuracy were 76.34% and 75.18% respectively.
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A novel real-time emotion recognition algorithm was proposed [22] based on the most stable
features such as Fractal Dimension (FD), five statistics features (standard deviation, mean of absolute
values of the first differences, mean of absolute values of the first differences of normalized EEG,
mean of absolute values of the second differences, mean of the absolute values of the second differences
of the normalized EEG), 1st order Higher Order Crossings (HOC) and four band power features
(alpha power, theta power, beta power, theta/beta ratio). This algorithm is subject-dependent
which needs just one training for a new subject and it has the accuracy of 49.63% for 4 emotions
classification, 71.75% for two emotions classification, and 73.10% for positive/negative emotions
classification. With the adequate accuracy, the training results can be used in real-time emotion
recognition applications without re-training.

In the work of [23], the author proposed a novel model for multi-subject emotion classification.
The basic idea is to extract the high-level features through the deep learning model and transform
traditional subject-independent recognition tasks into multi-subject recognition tasks. They used the
Convolutional Neural Network (CNN) for feature abstraction, which can automatically abstract the
correlation information between multi-channels to construct more discriminatory abstract features,
namely, high-level features. And the average results accuracy of the 32 subjects was 87.27%.

The features with DWT were used in [24] with varying window widths (1~60 s) and the entropy
was calculated of the detail coefficients corresponding to the alpha, beta, and gamma bands. Using the
SVM classification, the classification accuracy in arousal can be up to 65.33% using a window length
of 3–10 s, while 65.13% in valence using a window length of 3–12 s. The conclusion is that the
information regarding these emotions may be appropriately localized at 3–12 s time segments.
In reference [25], the authors systematically evaluated the performance of six popular features: power
spectral density (PSD), differential entropy (DE), differential asymmetry (DASM), rational asymmetry
(RASM), asymmetry (ASM) and differential caudality (DCAU) features from EEG. Specifically, PSD was
computed using Short Time Fourier Transform (STFT); DE was equivalent to the logarithmic power
spectral density for a fixed length EEG sequence; DASM and RASM features were the differences
and ratios between the DE features of hemispheric asymmetry electrodes; ASM features were the
direct concatenation of DASM and RASM features. The results showed that GELM with DE features
outperforms other methods, which achieved the accuracy of 69.67% in DEAP dataset and 91.07% in
SEED dataset. The average accuracies of GELM using different features obtained from five frequency
bands are given in the Figure 6c. And Figure 6d shows that the spectrogram has different patterns
as different emtions elicited. In [26], the authors employed Hjorth Parameters for feature extraction
which was a statistical method available in time and frequency domain. The Hjorth parameters were
defined as normalized slope descriptors (NSDs) which contained activity, mobility and complexity.
Using SVM and KNN as the classifiers, the highest classification result of four emotions was 61%.
Comparatively, their results showed that the KNN was always better than SVM.

A new framework which consists of a linear EEG mixing model and an emotion timing model was
proposed (Figure 6b) [27]. Specially, the context correlations of the EEG feature sequences were used
to improve the recognition accuracy. The linear EEG mixing model based on SAE (Stack AutoEncoder)
was used for EEG source signals decomposition and for EEG channel correlations extraction, which
reduced the time in feature extraction and improved the emotion recognition performance. The LSTM
(Long-Short-Term-Memory Recurrent Neural Networks) was used to simulate the emotion timing
model, which can also explore the temporal correlations in EEG feature sequences. The results showed
that the mean accuracy of emotion recognition achieved 81.10% in valence and 74.38% in arousal,
and the effectiveness of the SAE + LSTM framework was validated.

The authors of [28–30] introduced the changes of several typical EEG features reflecting emotional
responses. The study indicated that the PSD of alpha wave of happiness and amusement was larger
than that of fear, and PSD of gamma wave of happiness was also greater than that of fear. However,
there was not obvious difference in PSD of beta wave [31,32] among various emotions. As for DE [33],
in positive emotions it was generally higher than in negative ones. The correlations between EEG
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features and emotions are summarized in Table 1. In general, using electroencephalography to
recognize different emotions is a powerful and popular method, as the signals are able to be processed,
and the changes of them are evident. It is advised to put electroencephalography as the major category
in emotion recognition.

Table 1. The relationship between emotions and physiological features *.

Anger Anxiety Embarrassment Fear Amusement Happiness Joy

Cardiovascular

HR ↑ ↑ ↑ ↑ ↑↓ ↑ ↑
HRV ↓ ↓ ↓ ↓ ↑ ↓ ↑
LF ↑ (–) (–)

LF/HF ↑ (–)

PWA ↑
PEP ↓ ↓ ↓ ↑ ↑ ↑↓
SV ↑↓ (–) ↓ (–) ↓
CO ↑↓ ↑ (–) ↑ ↓ (–) (–)

SBP ↑ ↑ ↑ ↑ ↑– ↑ ↑
DBP ↑ ↑ ↑ ↑ ↑– ↑ (–)

MAP ↑ ↑ ↑– ↑
TPR ↑ ↓ ↑ ↑ (–)

FPA ↓ ↓ ↓ ↓ ↑↓
FPTT ↓ ↓ ↓ ↑
EPTT ↓ ↓ ↑

FT ↓ ↓ ↓ (–) ↑
Electrodermal

SCR ↑ ↑ ↑ ↑
nSRR ↑ ↑ ↑ ↑ ↑ ↑
SCL ↑ ↑ ↑ ↑ ↑ ↑– (–)

Respiratory

RR ↑ ↑ ↑ ↑ ↑ ↑
Ti ↓ ↓ ↓– ↓ ↓
Te ↓ ↓ ↓ ↓
Pi ↑ ↑ ↓

Ti/Ttot ↑ ↓
Vt ↑↓ ↓ ↑↓ ↑↓ ↑↓

Vi/Ti ↑
Electroencephalography

PSD (α wave ) ↑ ↑ ↓ ↑ ↑ ↑
PSD (β wave) ↓ ↑
PSD (γ wave) ↓ ↑ ↑ ↑
DE (average) ↑ (–) ↓ ↑ ↑

DASM
(average) (–) ↑ ↓ ↓ ↓

RASM (average) ↑ ↑ ↓
Note.* Arrows indicate increased (↑), decreased (↓), or no change in activation from baseline (−), or both increases
and decreases in different studies (↑↓).
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3.2. ECG

In the work of [34], the authors used a short-time emotion recognition concept (Figure 7a).
They described five linear and eleven nonlinear features. The linear features were the mean and
standard deviation (STD) of the (Inverse Gaussian) IG probability distribution, the power in the low
frequency (LF) (0.04–0.15 Hz) and the high frequency (HF) (0.15–0.4 Hz) band, and the LF/HF ratio.
The nonlinear features included the features from instantaneous bispectral analysis, the mean and
STD of the bispectral invariants, mean magnitude, phase entropy, normalized bispectral entropy,
normalized bispectral squared entropy, sum of logarithmic bispectral amplitudes, and nonlinear
sympatho-vagal interactions. Some HRV indices extracted from a representative subject is shown in
Figure 7b.

Two kinds of feature set were extracted in [35]. One was the standard feature set, including
time domain features and frequency domain features. The other was the nonlinear feature set.
89 standard features and 36 nonlinear features were extracted from the signals. In the reference [36],
the authors extracted the Hilbert instantaneous frequency and local oscillation from Intrinsic Mode
Functions (IMFs) after applying Empirical Mode Decomposition (EMD). The study [37] used three
methods to analyze the heart rate varibility (HRV) including time, frequency domain analysis
methods and statistics analysis methods. The time domain features included mean and STD of
RR intervals, coefficient of variation of RR intervals, STD of the successive differences of the RR
intervals. The frequency domain features included LF power, HF power and the ratio of LF/HF.
The statistic features included kurtosis coefficient, skewness value and the entropy.
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Figure 7. (a) Logical scheme of the overall short-time emotion recognition concept; (b) Instantaneous
tracking of the HR V indices computed from a representative subject using the proposed NARI model
during the passive emotional elicitation (two neutral sessions alternated to a L-M and a M-H arousal
session); (c) Diagram of the proposed method; (d) Experimental results.

In [38], the authors used various feature sets extracted from one-channel ECG signal to detect
negative emotion. The diagram of the method is shown in Figure 7c. They extracted 28 features in
total, including 7 linear-derived features, 10 nonlinear-derived features, 4 time domain features (TD)
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and 6 time-frequency domain features (T-F D). 5 classifiers including SVM, KNN, RF, DT and GBDT
were also compared. Among all these combinations, the best result was achieved by using only 6 T-F
D features with SVM (Figure 7d), which showed the best accuracy rate of 79.51% and the lowest
time cost of 0.13 ms. In the study of [39], the authors collect EMG, EDA, ECG and other signals from
8 participants using the Biosignalplux research kit, which is a wireless real-time bio-signal acquisition
unit with a series of physiological sensors. The positions of the biosensors they used are illustrated
in Figure 8e. Among SVM, KNN, Decision Tree (DT) they used, DT gave the highest accuracy with
the ST, EDA, EMG signals. In [40], based on an interactive virtual reality game, the authors proposed
a novel GT-system, which allows the real-time monitoring and registration of psychological signals.
An electronic platform (R-TIPS4) was designed to capture the ECG signal (Figure 8g). The position of
R-TIPS4 was shown in Figure 8f.Sensors 2018, 18, x FOR PEER REVIEW  10 of 40 
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Figure 8. (a) The Emotion Check device; (b) Diagram describing the components of the Emotion
Check device; (c) Prototype of glove with sensor unit; (d) Body Media Sense Wear Armband;
(e) Left: The physiological measures of EMG and EDA. Middle: The physiological measures of
EEG, BVP and TMP. Right: The physiological measures of physiological sensors in the experiments;
(g) Illustration of R-TIPS. This platform allows wireless monitoring of cardiac signals. It consists of
a transmitter system and three sensors; (f) The transmitter system is placed on the participant’s hip,
and the sensors are placed below right breast, on the right side, and on the back.

The authors of [41] explored the changes of several main cardiovascular features in emotional
responses. The response to anger induced increased heart rate (HR), increased diastolic blood pressure
(DBP), and systolic blood pressure (SBP), and increased total peripheral resistance (TPR) [42]. Other
studies also found increased DBP, SBP, and TPR in the same condition [43], as well as increased HR,
DBP, SBP, and unchanged TPR [42]. As for happiness, it could be linked with increased HR [44]
or unchanged HR [45], decreased heart rate variability (HRV) [46], and so on. Concerning fear,
kinds of studies reported increased HR, decreased finger temperature (FT) [47], decreased finger
pulse amplitude (FPA), decreased finger pulse transit time (FPTT) [48], decreased ear–pulse transit
time (EPTT), and increased SBP and DBP [47]. Concerning amusement, it could be characterized by
increased HRV, unchanged low frequency/high frequency ratio (LF/HF) [49], increased pre-ejection
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period (PEP), and decreased cardiac output (CO) [50]. Decreased FPA, FPTT, EPTT, and FT [51],
increased TPR [50], decreased FPA, and unchanged FT [46] have also been reported. The relationship
between cardiovascular feature changes and emotions are summarized in the Table 1. In conclusion,
although some features might have different changes in the same emotion, to some extent, putting all
features in overall consideration can eliminate the difference. The typical features in cardiovascular
system can describe different emotions in a more objective and visual way, since they provide a few
features that are able to be measured and analyzed.

3.3. HR

A novel and robust system was proposed which can collect emotion-related physiological data
over a long period of time [52]. Using wireless transmission technology, this system will not restrict
users’ behavior and can extract ideal physiological data in accord with the real environment. It can
extract users’ skin temperature (ST), skin conductivity (SC), environmental temperature (ET) and their
heart rate (HR). The ST, SC ET sensors were integrated into a glove (Figure 8c) while the HR sensor used
was a conventional chest belt. In the study of [53], subjects were required to watch a 45-min slide show
while their galvanic skin response (GSR), heart rate (HR), and temperature were measured using Body
Media Sense Wear Armband (Figure 8d). These physiological data were normalized and four features
including minimum, maximum, mean, and variance of them were extracted. The three algorithms,
KNN, DFA, and MBP they chose could recognize emotions with the accuracy of 72.3%, 75.0% and
84.1% respectively. The researchers had built the Emotion Check [54], which is a wearable device that
can detect users’ heart rate and regulate their anxiety via false heart rate feedback. Figure 8a,b show
this device and its components respectively.

3.4. GSR

In the work of [55], the authors used galvanic skin response (GSR), fingertip blood oxygen
saturation (OXY) and heart rate (HR) as input signals to recognize five emotions by random forests.
They calculated 12 conventional GSR features, including the mean and STD of GSR, the average and
root mean square of 1st differences deviation of GSR, the number, average amplitude, average duration
and maximum amplitude of skin conductance response (SCR), the mean of the absolute values of
1st differences of the raw GSR, the mean of the GSR filtered by a Hanning window and the mean of
the absolute values of 1st and 2nd differences of the normalized GSR. The noisy fluctuations were
eliminated by using a Hanning window filter. Also, the fluctuations of GSR and first deviation of GSR
(FD_GSR) in different time scales were applied as affective features, which was called LSD. Finally,
a total 43 GSR and FD_GSR features were obtained and yielded an overall accuracy rate of 74%. In the
work of [56], the authors chose GSR, HR and RSP as input signals to classify negative emotions from
neutral by Fuzzy-Adaptive Resonance Theory and yielded a total accuracy rate of 94%. The GSR-dif
extracted from GSR was defined as: GSR-dif = (GSR-max) − (GSR-base).

Six emotions were recognized from GSR signals by Fisher classifier [57]. 30 statistical features
were extracted such as range, maximum and minimum of the GSR. Then immune hybrid Particle
Swarm Optimization (IH-PSO) was used to reduce the features. The average verifying recognition
rates of surprise, fear, disgust, grief, happy and angry respectively reached 78.72%, 73.37%, 70.48%,
62.65%, 62.52% and 44.93%. In [58], the author combined ECG and GSR signals to recognize emotions
among happy, sad and neutral. The PSD features of ECG and GSR were extracted. The performance of
the emotional state classification for happy-sad, sad-neutral and happy-neutral emotions was 93.32%,
91.42% and 90.12% respectively.

A novel solution [59] was presented to enable comfortable long-term assessment of EDA
(the same as GSR) in the form of a wearable and fully integrated EDA sensor (Figure 8e,f). The novelty
of their work consists of the use of the dorsal forearms as recording sites which performed better
than the traditional palmar recording sites, as well as the investigation of how the choice of electrode
material affects performance by comparing the use of conductive fabric electrodes to standard Ag/AgCl
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electrodes. Finally, they presented a one-week recording of EDA during daily activity, which is the
first demonstration of long-term, continuous EDA assessment outside a laboratory setting. In [60],
the author used the wearable EDA sensor suitable for long-term monitoring to monitor sympathetic
nervous system activity during epileptic seizures. It was based on the fact that epileptic seizures
induce a surge in EDA. They found that the change in EDA amplitude (Figure 9) was significantly
higher after generalized tonic-clonic seizures (GTCS) seizures compared to CPS.

The author of [41] introduced changes in several main electrodermal features when reflecting
emotional responses. In anger responses, this included increased SCR [61]; increased, non-specific skin
conductance response rate (nSRR); and increased SCL [62]. As for happiness, it can be characterized
by increased SCL [63] and increased nSRR [64]. Some studies also reported unchanged SCL [65] or
decreased SCL [66]. Concerning fear, some studies reported increased SCR [67] ,increased nSRR [68]
and increased SCL [69]. Concerning amusement, it can be characterized by increased SCR [70],
increased nSRR, and increased SCL [71]. The electrodermal feature changes under emotions are
summarized in Table 1. In short, according to these findings, the features in Electrodermal System
almost have an identical trend for different emotions. There can be an auxiliary mean when using
other physiological features to recognize the emotion.Sensors 2018, 18, x FOR PEER REVIEW  12 of 40 
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3.5. RSP

Researchers of [72] used particle swarm optimization (PSO) of synergetic neural classifier for
emotion recognition with signals of EMG, ECG, SC, RSP. The breathing rate, amplitude and other
typical statistical features as mean and STD are extracted from the RSP. The total classification rate was
86% of four signals for four emotions. In [73], the authors extracted features from ECG and RSP to
recognize emotions. The followings are features extracted from respiration and the respiratory sinus
arrhythmia (RSA): the respiratory instantaneous frequency and amplitude, the amplitude ratio of the
RSA to the respiratory oscillation, the difference between the RSA and the respiratory frequencies,
the phase difference of the RSA and the respiration, the slope of this phase difference and its STD.
His experiment showed that using the feature of the slope of the phase difference of the RSA and the
respiration got the best correct classification rate of 74% for valence, 74% for arousal and 76% for liking.

A new methodology [35] was reported using ECG, EDR and RSP. He extracted both the standard
and nonlinear features. The standard features included maximum and minimum respiration rate,
spectral power and mean and standard deviation of the first and second derivative, High Order
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Statistics (HOS) as the third order statistics, the fourth order statistics and the standard error of the mean
(SEM). Recurrence Quantification Analysis (RQA), Deterministic Chaos (DC), Detrended Fluctuation
Analysis (DFA) were used to extract the nonlinear features. The experiment got a recognition rate
of 90% for arousal and 92% for valence by using nonlinear features. Another new methodology [74]
named Respiration quasi-Homogeneity Segmentation (RHS) was used to extract Emotion Elicited
Segments (EESs) where the emotion state could be reliably determined. The new method yielded
a classification rate of 88% for five emotions.

In the reference [41], the author introduced the changes of several main respiratory features in
reflecting emotional responses. In anger responses, it included unchanged [44] or increased respiration
rate (RR), increased functional residual capacity (FRC) [75], shortened inspiratory time (Ti) and
expiratory time (Te), increased post-inspiratory pause time (Pi) [76], decreased inspiratory/expiratory
ratio (I/E-ratio) [77]. As for happiness, it could be characterized by increased RR [78] or unchanged
RR [46], decreased Ti and Te, decreased post-expiratory pause time (Pe) [78], increased Pi and FRC [44].
Concerning fear, various of studies reported increased RR, and either both decreased Ti and Te [79],
or primarily increased Pi, decreased Te and unchanged Ti [44]. About amusement, it could be
characterized by increased RR [51], decreased Ti and tidal volume (Vt) [76]. The respiratory feature
changes versus emotions are shown in Table 1. Using respiratory features to recognize different
emotions is also a powerful method since the change of features is apparent and the measures of
each features is accessible. It is advised to add the respiratory features to enhance the accuracy of
the recognition.

3.6. EMG

In the work of [80], the authors adopted EMG, RSP, skin temperature (SKT), heart rate (HR),
skin conductance (SKC) and blood volume pulse (BVP) as input signals to classify the emotions.
The features extracted from the EMG are temporal and frequency parameters. Temporal parameters
are mean, STD, mean of the absolute values of the first and the second difference (MAFD, MASD),
distance, etc. The frequency parameters are the mean and the STD of the spectral coherence function.
It attained a recognition rate of 85% for different emotions. Reference work [81] used ECG, EMG, SGR as
signals to classify eight emotions. A 21-feature set was extracted from facial EMG, including mean,
median, STD, maxima, minima, the first and the second derivatives of the preprocessed signal and
the transformation.

Facial EMG can be used to recognized emotions [82]. The extracted features were higher order
statistics (HOS) and six independent statistical parameters. The HOS feature included Skewness
(degree of asymmetry of the distribution of its mean) and Kurtosis (the relative heaviness of the tail
of the distribution about the normal distribution). The statistical features included the normalized
signals, STD of the raw signal, mean of absolute value of the first and the second difference of raw
and normalized signals. A total recognition rate of 69.5% was reached for six different emotions.
Surface EMG was used as signals to classify four emotions [83]. The authors decomposed signals
by discrete wavelet transform (DWT) to select maxima and minima of the wavelet coefficients and
got a total recognition rate of 75% by BP neural network with mere EMG. Study [84] used the same
features to classify four emotions and got a recognition rate of 85% by support vector machine (SVM).
Another study [7] for emotion recognition is proposed based on the EMG. The following are features
used in the study: mean, median, STD, minimum, maximum, minimum rate, maximum rate of the
preprocessed signals. The same features are extracted from the first and the second difference of the
signals. The study got a total recognition rate of 78.1% for six emotions classification. The study [85]
decomposed EMG by DWT under four frequency ranges. The statistical features were extracted from
above wavelet coefficients. The proposed method yielded a recognition rate of 88%.
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4. Methodology

This section mainly focuses on the methodology of physiological signal-based emotion recognition,
which can be divided into two major categories. One is using the traditional machine learning methods,
which are also considered as model specific methods. They require carefully designed hand-crafted
features and feature optimization. The other is using the deep learning methods, which are model
free methods. They can learn the inherent principle of the data and extract features automatically.
The whole emotion recognition framework is shown in Figure 10. Signal preprocessing, which is
included both in traditional methods and deep learning methods, is adopted to eliminate the noise
effects caused by the crosstalk, measuring instruments, electromagnetic interferences, etc. For the
traditional machine learning methods, it is very necessary to explore the emotion-specific characteristics
from the original signals and select the most important features to enhance the recognition model
performance. After feature optimization and fusion, classifiers which are capable of classifying the
selected features are utilized. Unlike the traditional methods, deep learning methods no longer require
manual features, which eliminate challenging feature engineering stages of the traditional methods.Sensors 2018, 18, x FOR PEER REVIEW  14 of 40 
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4.1. Preprocessing

It is extremely necessary to eliminate the noise effects at the very early stage of emotion recognition
by preprocessing, due to the complex and subjective nature of raw physiological signals and the
sensitivity to noises from crosstalk, measuring instruments, electromagnetic interferences, and the
movement artifacts.

Filtering: The low-pass FIR filter is commonly used in removing noises. In the work of [82],
the signal crosstalk was removed by means of a notch filter, after which a smooth process was taken to
avoid the influence of the signal crosstalk by 128-point moving average filter (MAF). The same filter
was used in [35] to minimize the baseline and artifact errors from RSP. High pass filters were adopted
in [10] with cut-off frequencies of 0.1 Hz and 4 Hz in processing RSP and ECG respectively to eliminate
the baseline wander.

DWT: In the studies of [86,87], DWT was used to reduce noises of the physiological signals. As the
orthogonal WT of a white noise is a white noise, according to the different propagation characteristics
of the signals and the noises at each scale of the wavelet transform, the modulus maximum point
generated by the noise can be removed, and the modulus maximum point corresponding to the signals
can be retained, then the wavelet coefficients can be reconstructed by the residual modulus maxima to
restore the signals.

ICA: Independent component analysis (ICA) was used to extract and remove respiration sinus
arrhythmias (RSA) from ECG [35], where it decomposed the raw signals into statistically independent
components, and the artifact components can be removed by observing with eyes, which required
some expertise. When there were limited signals, some cortical activities might be considered as artifact
component. An artifacts removal method based on hybrid ICA-WT (wavelet transform) was proposed
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for EEG to solve the problem [88], which could significantly improve the recognition performance
compared to the regular ICA algorithm. In [89], the authors compared three denoising algorithms,
namely principal component analysis (PCA), ICA and multiscale principal component analysis
(MSPCA), where the overall accuracies were 78.5%, 84.72%, 99.94% for PCA, ICA, MSPCA respectively.

EMD: Empirical mode decomposition (EMD) can be used to remove the eye-blink form EEG.
The EEG signals mixed with eye-blink was decomposed into a series of intrinsic mode functions (IMFs)
by EMD [90], where some IMFs represented the eye-blink. A cross-correlation algorithm was then
proposed with a suitable template extracted from the contaminated segment of EEG, which caused
less distortion to the brain signals and efficiently suppressed the eye-blink artifacts.

In general, for the obvious abnormal signals, such as the exfoliation of electrodes in the collection of
signals, or the loss of signals caused by unintentional extrusion of the subjects, the artifact components
can be removed through visual observation, which requires some expertise. For the interference signals
contained in the normal original signals, different methods (filtering, DWT, ICA, EMD) are needed to
reduce the noise according to the characteristics of the time domain and frequency domain of different
physiological signals and different sources of interferences.

In particular, for filters, different types of low-pass filters such as Elliptic filters, Adaptive filters,
Butterworth filters etc., are used to preprocess the ECG and EMG signals. Smoothing filters are often
used to pre-process the raw GSR signals.

4.2. Traditional Machine Laerning Methods (Model-Specific Methods)

In the traditional machine learning methods, there are processes including feature extraction,
optimization, fusion and classification.

4.2.1. Feature Extraction

Feature extraction plays a very important role in the emotion recognition model. Here several
major feature extraction methods have been surveyed, like DWT, ICA, E MD, FFT, autoencoder, etc.

FFT and STFT

It’s important to extract the most prominent statistical features for emotion recognition.
The physiological signals like EEG are complex and non-stationary, under which conditions some
statistical features like power spectral density (PSD) and spectral entropy (SE) are widely-known
applicable features in emotion recognition. Therefore, FFT was adopted to calculate the spectrogram
of the EEG channels [91,92]. Due to the shortcoming that the FFT can’t deal with the non-stationary
signal, STFT was proposed: By decomposing the entire signals into numerous equal-length pieces,
each small piece can be approximately stationary, hence FFT can be applicable. In the work of [29,93],
a 512-point STFT was presented to extract spectrogram from 30 channels of the EEG.

WT

For non-stationary signals, a small window suits high frequency and a large window suits low
frequency. While the window of the STFT is fixed, which limits its application. Wavelet transform
provides an unfixed ‘time-frequency’ window and is able to analyze the time-space frequency locally,
therefore is suitable for decomposing the physiological signals into various time and frequency scales.
The basis functions WT(a, b) are described as below:

WT(a, b) =
1√
a

∫ +∞

−∞
f (t) ∗ ϕ(

t− b
a

)dt a, b ∈ R, a > 0 (1)

where a is the scale parameter, b refers to the translation parameter and the ϕ is the mother wavelet.
The performance of the WT is affected mostly by the mother wavelet. The low scale is in accordance
with the high frequency of the signal and the high scale is in accordance with the low frequency of the
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signal. There are several common mother wavelets, such as Haar, Daubechies, Coif, Bior wavelets, etc.
The coefficients after the WT can be used to reproduce the original signal. Db-4 wavelet was applied to
conduct continuous WT (CWT) for the EEG signal [94]. In the work of [95], CWT with Db-4, Morlet,
Symlet2, Haar were used for EMG, ECG, RSP, SC respectively. DWT with Db-5 wavelet was applied
to analyze the high frequency coefficients at each level of five EEG frequency bands which included
delta, theta, alpha, beta and gamma [96]. DWT with Db-5 wavelet for six levels was used for analyzing
EMG [97]. The reference work [98] decomposed the EEG signal with Db-4 wavelet into five levels.
Several mother wavelets were tested and the Symlets6 outperformed others for 4 levels [99].

EMD

EMD is a powerful tool that decomposes the signals according to time scale characteristics of
the signal itself without any pre-set base functions. The EMD method can be applied in theory to
the decomposition of any type of signal, and thus has a very obvious advantage in dealing with
non-stationary and nonlinear signals with high signal-to-noise ratio. Hilbert-Huang transform method
(HHT) based on the EMD was tried, where each signal was decomposed into IMFs components using
EMD (see Figure 11a) [100]. Four features were extracted from each IMF and were combined together
from different number of IMFs. EEMD was proposed to solve the signal aliasing problem when
applying EMD, which added the white Gaussian noise to the input signals and produce the average
weight after a couple of EMD decomposition [87]. It’s still different between the IMFs decomposed from
signals with and without high-frequency noises even if the signals look similar, due to decomposition
of uncertainty. A method named the bivariate extension of EMD (BEMD) was proposed in [36] for
ECG based emotion recognition, who compounded an ECG synthesis signal with the input ECG signal.
The synthetic signals which were without noise and can be used as a decomposition guide.
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Autoencoder

Autoencoder is an unsupervised algorithm based on the BP algorithm, which contains an input
layer, one or more hidden layers and an output layer (as can be seen in Figure 11b). The dimension of
the input layer is equal to that of the output layer, so that it was called ‘encoder network’ (EN) from
input layer to the hidden layer and ‘decoder network’ (DN) from hidden network to output layer.
The autoencoder works as below: At first the weights of the EN and the DN are initiated. Then the
autoencoder is trained according to the principle that minimizes the error between the original data and
the reconstructed data. It is easy to get the desired gradient value by passing the chaining method of the
DN and passing the CN using the backward propagation error derivation and adjusting the weighted
value of the autoencoder to the optimal one. The high level of the feature extraction of the bimodal
deep autoencoder (BDAE, as can be seen in Figure 11c) is effective for affective recognition [101],
where two restricted Boltzmann machine (RBM) of EEG and eye movements were built. The shared
features extracted from the BDAE were then sent to the SVM.

Many physiological signals are non-stationary and chaotic. To extract information from
non-stationarity in physiological signals and reduce the impact of non-stationary characteristics
on subsequent processing, FFT and STFT are adopted to obtain the features in frequency domain.
The time window length and type of STFT exhibit significant influences on the transformation result,
which are specific to different signals and different methods.

In addition to the above-mentioned methods in frequency domain and time domain, the signal
decomposition algorithm in spatial domain is also popularly applied in EEG signal processing.
The feature based on spatial domain is usually used to separate EEG signals from different brain regions.
Studies approve that combined features of time domain, frequency domain, and time-frequency
domain could be closer to the ground truth when emotions change.

4.2.2. Feature Optimization

There might be a quantity of features after the feature extraction process, some of which might
be irrelevant, and there are probably correlations between the features. It may easily lead to the
following consequences when there are a number of redundant features: (1) it would take a long time
to analyze the features and train the model; (2) it is easy to cause overfitting problems and a poor
ability of generalization which leads a low recognition rate; (3) it is easy to encounter the problem of
sparse features, also known as ‘curse of dimensionality’, which results in the decrease of the model
performance. Therefore, it is very necessary to conduct feature optimization.

ReliefF algorithm was used due to its effectiveness and simplicity of computation [102]. The key
point of RelifF is to evaluate the ability of features to distinguish from examples which are near to each
other. In the work of [103], the authors used maximum relevance minimum redundancy (mRMR) to
further select features. The next feature to choose was calculated by the following formula:

Max
xj∈X−Sk

[
I(xj; y)− 1

k ∑
xi∈Sk

I(xj; xi)

]
(2)

where I(xj; y) is the mutual information between the feature and the specific label, 1
k ∑xi∈Sk

I(xj; xi) is
the average mutual information between two features. Sk denotes the chosen set of k features. Due to
the uncertainty of the results of using the mRMR, the authors applied the algorithm for each feature
from one to the last dimension.

Sequential backward selection (SBS) and sequential forward selection (SFS) were applied to select
features [72]. SBS starts with a full set of features and iteratively removes the useless features, while SFS
starts with an empty set and adds the feature to the feature set which improves the performance of the
classifier. After applying the feature selection algorithm, the recognition rate increased almost 10%
from 71% to above 80%. The SBS and tabu search (TS) were used in the study to select features [86],
where it reduced almost half of the features when using TS only and got an average recognition rate of
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75.8%. While using both TS and SBS, it again reduced lots of features and got a higher recognition rate
of 78.1%. TS was applied to reduce the features from 193 to only 4 [104], and it still got a recognition
rate of 82% for 4 affective states.

In [35], the authors used PCA to reduce features, which could project the high dimensional
data to a low dimensional space with a minimal loss of information. Combined with the Quadratic
Discriminant Classifier (QDC), it got a recognition rate of 90.36%, 92.29% for valence and arousal of five
classes respectively. The kernel PCA quantity was conducted to extract features to form the spectral
powers of the EEG [105], that can compute higher order statistics among more than two spectral
powers compared with the common PCA. The genetic algorithm (GA) was used to select IMFs after
EMD process, where the selected IMFs were used either to reconstruct the new input signal or to
provide separate features that represented the oscillation coexisting in the original signals, which was
named as hybrid adaptive filtering (HAF) by the authors [106].

There are several feature selection algorithms except these mentioned above. In general,
some algorithms reduce the dimensionality by taking out some redundant or irrelevant features
(ReliefF, SFS, SBS, TS), and other algorthms transform the original one into a new set of features
(PCA, ICA). The performance of the feature selection algorithms depends on the classifier and the
dataset, and the universal feature selection algorithms do not exist.

4.2.3. Feature Fusion

The techniques of feature fusion can be divided into three categories: early, intermediate and late
fusion. In the early fusion (feature level fusion), the features selected from the signals are combined
together in a single set before sending them to the classifier. The intermediate fusion can cope with the
imperfect data reliably. Late fusion, which is also called decision level fusion, represents that the final
result is voted by the results generated by several classifiers. The early fusion and the late fusion are
most widely used in integrating signals.

Early Fusion

When different features are integrated into a single feature set before classifying process, the fusion
is called as early fusion. In the early fusion, the single level recognition process in some specific modes
affects the course of the remaining pattern of the recognition process. Ultimately, this fusion is found
to be more suitable for highly timely synchronized in the input mode. Audio-visual integration might
be the most suitable example of the early fusion in which audio and visual feature vectors are simply
connected to obtain a combined audio-visual vector.

The early fusion was employed in the study of [96], whose framework of information fusion
can be seen in Figure 12a. The author proposed a multimodal method to fuse the energy-based
features extracted from the 32-channel EEG signals and then the combined feature vector was trained
by the SVM and got a recognition rate of 81.45% for thirteen emotions classification (Figure 12b).
In reference [107], the authors applied the HHT on ECG to recognize human emotions, where the
features were extracted through the process of fission and fusion. The features extracted from IMFs
were combined into a feature vector. From fission process, the raw signals were decomposed into
several IMFs, then the instantaneous amplitude and instantaneous frequency were calculated from
IMFs. The fusion process merged features extracted from the fission process. In the study of [108],
the authors proposed an asynchronous feature level fusion method to create a unified mixed feature
space (Figure 12c). The target space can be used for clustering or classification of multimedia
content. They used the proposed method to identify the basic emotional state of verbal rhythms
and facial expressions.
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Figure 12. (a) Typical framework of multimodal information fusion; (b) SVM results for different
emotions with EEG frequency band; (c) Demo of the proposed feature level fusion. A feature vector
created at any time step is valid for the next two steps.

Intermediate Fusion

The shortcoming of early fusion is its inability to cope with imperfect data as well as the
asynchrony problem. The intermediate fusion can deal with these problems. One way to overcome
these problems is to consider the characteristics of the corresponding flow in various time instances.
Thus, by comparing the previously observed instances with the current data of some observing
channels, some statistical predictions of certain probable probabilities for erroneous instances can be
made. Models like hidden Markov model (HMM), Bayesian network (BN) are useful to deal with
the situation mentioned before. A BN was built to fuse the features from EEG and ECG to recognize
emotions [109].

Late Fusion

The late fusion typically uses separate classifiers that can be trained separately. The final
classification decision is made by combining the outputs of each single classifier. The identification
of the correspondence between the channels is performed only in the integration step. Since the
input signals can be recognized separately, there is not so much necessary to put them together at the
same time. The authors of reference [110] used a hierarchical classifier to recognize emotions in the
outdoor from video and audio. They extracted SIFT, LBP-TOP, PHOG, LPQ-TOP and audio features
and then trained in several SVMs. Finally, they combined the results from the SVMs. The method
yielded a recognition rate of 47.17% and was better than the baseline recognition rate. In [111],
the authors put forward a framework for emotion recognition based on the weighted fusion of the
basic classifiers. They developed three basic SVMs for power spectrum, high fractal dimension and
Lempel-ziv complexity respectively. The results of the basic SVMs were integrated by weighted fusion
which was based on the classifier confidence estimation for each class.

4.2.4. Classification

In emotion recognition, the major task is to assign the input signals to one of the given class
sets. And there exists several classification models suitable for emotion recognition, including
Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis (QDA), K-nearest neighbor
(KNN), Random Forest (RF), particle swarm optimization (PSO), SVM, Probabilistic neural network
(PNN), Deep Learning (DL), and Long-Short Term Memory (LSTM). Figure 13 shows 7 mainly used
classification models.
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SVM is a useful classifier for binary classification. Some data might not be correctly classified in
low dimension space due to its non-linearity, and the sample space is mapped onto a high-dimensional
space with kernel functions, in which the sample can be linearly separable. Kernel function can reduce
the computational complexity brought by the dimension increasing [112]. As a lazy learning algorithm,
KNN algorithm is a classifying method based on weights [113] and is relatively easy to understand
and implement. However, KNN needs to store all training sets, which causes high complexities in time
and space. The nonlinear classifiers, such as kernel SVM and KNN, calculate the decision boundary
accurately, which may occur over fitting and affect the generalization ability. Compared with them,
the generalization ability of LDA is better. As a linear classifier, LDA decides class membership by
projecting the feature values to a new subspace [114]. For high-dimension data, the classification
performance of RF and neural network algorithm is generally better. The main that difficulty lies in
decision tree is overfitting; therefore, the classification result of RF [115] is usually decided by multiple
decision trees to avoid the problem. CNN is an improvement to the traditional neural network,
in which the weight sharing and the local connection can help to reduce the complexity of the network.

Various studies choose various physiological signals, feature sets, and stimulus sources, meaning
that optimal classifier algorithms exist under various conditions. We can only discuss the optimal
classifier under certain conditions. A more detailed discussion is made in the following section.

SVM

SVM is most widely used in physiological signal base emotion recognition. A framework called
HAF-HOC was proposed [106]: Firstly, the EEG signal was input to the HAF section, where IMFs
decomposed by the EMD were extracted and certain IMFs were selected by the Genetic Algorithm
(GA), which could reconstruct the signals of EEG. This output of HAF was then used as input to the
HOC section, where HOC-based analysis was performed resulting in the efficient extraction of the
feature vectors which were finally sent to the SVM with a total recognition rate of 85%.

In the work of [58], the authors extracted the Welch’s PSD of ECG and Galvanic Skin response
(GSR) signals and got a recognition rate of 91.62% by suing SVM. While in [101], features of EEG and
eye signals were extracted by autoencoder. A linear SVM was then used which realized an average
recognition rate of 91.49% for three emotion states. A model using Gaussian process latent variable
models (GP-LVM) was proposed in [116], where a SVM was involved to train the latent space features
and got a recognition rate of 88.33% and 90.56% for three levels of valence and arousal respectively.
Nonlinear Autoregressive Integrative (NARI) was studied in [34] to extract features from HRV that
yielded overall accuracy of 79.29% for four emotional states by SVM.

However, the regular SVM doesn’t work in the imbalanced dataset owing the same punishment
weights for two classes and the optimal separating hyperplane (OSH) may tend to be the minority
class. In the study of [105], an imbalanced support vector machine was used as the classifier to solve



Sensors 2018, 18, 2074 21 of 41

the imbalanced dataset problem, which increased the punishment weight to the minority class and
decreased the punishment weight to the majority class. Never the less quasicon formal kernel for SVM
was used to enhance the generalization ability of the classifier.

LDA

The LDA needs no additional parameters in the classification process. A limitation of the LDA
is that the scattering matrices of the objective functions should be nonsingular, Pseudoinverse LDA
(pLDA) was used to address the limitation, where the correct classification ratio using SBS+ pLDA
achieved 95.5% for four emotional states of three subjects [117].

KNN

The authors of reference [104] used KNN (K = 4) to classify four emotions with the four
features extracted from ECG, EMG, SC and RSP and yielded an average recognition rate of 82%.
While in reference [118], by watching three sets of 10-min film clips eliciting fear, sadness, and neutral
respectively, 14 features of 34 participants were extracted. Analyses used sequential backward selection
and sequential forward selection to choose different feature sets for 5 classifiers (QDA, MLP, RBNF,
KNN, and LDA). The models were assessed by four different cross-validation types. Among all
these combinations, the KNN (K = 17) model achieved the best accuracy for both subject- and
stimulus-dependent and subject- and stimulus-independent classification.

RF

In the work of [55], the authors used RF to classify five emotional states with features extracted
from blood oxygen saturation (OXY), GSR and HR and yielded an overall correct classification rate of
74%.

4.3. Deep Learning Methods (Model-Free Methods)

CNN

Convolutional Neural Networks (CNNs), a class of deep, feed-forward artificial neural networks
based on their shared-weights architecture and translation invariance characteristics, have achieved
great success in image domain. They have been introduced to process physiological signals, such as
EEG, EMG and ECG in recent years. Martinez et al. trained an efficient deep convolution neural
network (CNN) to classify four cognitive states (relaxation, anxiety, excitement and fun) using skin
conductance and blood volume pulse signals [119]. As mentioned in EEG, the authors of [23] used
the Convolutional Neural Network (CNN) for feature abstraction (Figure 14b). In the work of [120],
several statistical features were extracted and sent to the CNN and DNN, where the achieved accuracy
of 85.83% surpassed those achieved in other papers using DEAP. In the work of [121], dynamical
graph convolutional neural networks (DGCNN) was proposed, which could dynamically learn the
intrinsic relationship between different EEG channels represented by an adjacency matrix, so as to
facilitate more differentiated feature extraction and the recognition accuracy of 90.4% was achieved on
the SEED database.
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DBN

The DBN is a complicated model which consists of a set of simpler RBM models. In this way,
DBN can gradually extract the deep features of the input data. That is, DBN learns a deep input feature
through pre-training. Wei-Long Zheng et al. introduced a recent advanced deep belief network (DBN)
with differential entropy features to classify two emotional categories (positive and negative) from
EEG data, where a hidden markov model (HMM) was integrated to accurately capture a more reliable
emotional stage switching, and the average accuracies of DBN-HMM was 87.62%[122]. In the work
of [123], DE features were extracted and DBN was applied in mapping the extracted feature to the
higher-level characteristics space, where the highest accuracy of 94.92% for multi-classification was
achieved. In the work of [124], instead of the manual feature extraction, the raw EEG, EMG, EOG
and GSR signals were directly input to the DBN, where the high-level features according to the data
distribution could be extracted. The recognition accuracies of 78.28% and 70.33% were achieved for
valence and arousal on the DEAP database respectively.

PNN

PNN is a feed forward neural network based on the Bayesian strategy. PNN has the advantages
of simple structure and fast learning ability, which leads to a more accurate classification with higher
tolerance to the errors and noises. PNN was applied in the EEG emotion recognition with the sub band
power features, but the correct classification rate of the PNN was slightly lower than that of the SVM
(81.21% vs. 82.26% for valence; 81.76% vs. 82% for arousal). While the channels needed to achieve the
best performance using PNN were much less than that of using SVM (9 vs. 14 for arousal; 9 vs. 19 for
valence) [102].

LSTM

LSTM can deal with the vanishing gradient problem of RNN and can utilize the sequence of
long-term dependencies and contextual information. In the reference [94], CNN was utilized to extract
features from EEG and then LSTM was applied to train the classifier (Figure 14a), where the classifier
performance was relevant to the output of LSTM in each time step. In the study by the authors of [27],
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RASM was extracted and then was sent to the LSTM to explore the timing correlation relation of
signal, and an accuracy rate of 76.67% was achieved. In the work of [125], an end-to-end structure
was proposed, in which the raw EEG signals in 5s-long segments were sent to the LSTM networks,
in which autonomously learned features and an average accuracy of 85.65%, 85.45%, and 87.99% for
arousal, valence, and liking were achieved, respectively. In the work of [126], the author proposed
a model with two attention mechanisms based on multi-layer LSTM for the video and EEG signals,
which combined temporal and band attentions. An average recognition accuracy of 73.1% and 74.5 for
arousal and valence was achieved, respectively.

4.4. Model Assessment and Selection

4.4.1. Evaluation Method

The generalization error of the classifier can be evaluated by experiments, where a testing set
should be used to test the ability of the classifier to classify the new samples, and the testing error on
the testing set could be viewed approximately as the generalization error.

Hold-Out Method

The dataset D is divided into two mutually exclusive sets. One is the training set S and the other is
the testing set T. It’s necessary to maintain the consistency of the data distribution as much as possible.
The experiments generally need to repeat several times with random division and then calculate the
average value as the evaluation result. The 2/3~4/5 percent of the dataset are usually used for training
and the remaining samples are used for testing.

Crossing-Validation Method

There are two kinds of crossing-validation methods which are usually used. One is k-fold
crossing-validation. The other is leave-one-out. For k-fold cross-validation, the initial sampling is
divided into K sub-samples. One sub-sample is used as the testing set, and the other K-1 samples are
used for training. Cross-validation is repeated K times. Each sub-sample is validated once, and the
average result of K times is used as the final result. 10-fold cross-validation is the most common
method. Leave-one-out (LOO) uses one of the original samples as a testing set while the rest is left as
training set. Although the results of LOO are more accurate, the time of training is too long when the
dataset is large.

4.4.2. Performance Evaluation Parameters

Accuracy

The accuracy rate and error rate are most commonly used in classification. The accurate rate
means the proportion of samples that are correctly classified to the total samples. The error rate means
the proportion of misclassified samples to the total samples.

Precision Rate and Recall Rate

The precision and recall rate can be defined using the following equations and Table 2.

Table 2. The confusion matrix of classification.

True Situation
Prediction

Positive Negative

Positive true positive (TP) false negative (FN)
Negative false positive (FP) true negative (TN)
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Precision− rate(P) =
TP

TP + FP
(3)

recall − rate(R) =
TP

TP + FN
(4)

There is an opposite interdependency between recall and precision. If the recall rate of the output
increases, its accuracy rate will reduce and vice versa.

F1

F1 is defined as the harmonic mean of the precision rate and the recall rate.

F1 =
2 ∗ P ∗ R

P + R
(5)

Receiver Operating Characteristic Curve (ROC)

The horizontal axis of ROC is false positive rate, the vertical axis of ROC is true positive rate.

f alse− positive− rate(FPR) =
FP

TN + FP
(6)

true− positive− rate(TPR) =
TP

TP + FN
(7)

It is easy to select the best threshold of the classifier with the ROC. The closer to the upper left
corner the ROC is, the higher accuracy rate the test will be. It can be used to compare the classification
ability of different classifiers. The ROC of the different classifiers can be plotted in the same coordinates
to identify the pros and cons. The ROC which is closer to the upper left corner indicates that the
classifier works better. It is also possible to compare the area under the ROC (AUC) and the classifier
with the AUC. Likewise, the bigger AUC works better. The ROC is showed in Figure 15.Sensors 2018, 18, x FOR PEER REVIEW  24 of 40 
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5. Database

5.1. Database for Emotion Analysis Using Physiological Signals (DEAP)

DEAP is a database for human emotion analysis [16]. It comprises the 32-channel EEG and 12
other peripheral physiological signals, including 4 EMG, 1 RSP, 1 GSR, 4 EOG, 1 Plethysmograph and
1T. The data was collected at a sample rate of 512 Hz, and some preprocessing processes were done.
The signals were down sampled to128 Hz. EEG channels were applied a bandpass frequency filter from
4–45 Hz, and the EOG artifacts were removed from EEG. There were 32 participants in the database.
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Each of them watched 40 music videos with different emotional contents, each of which lasted one
minute. Participants rated the videos with arousal, valence, dominance, liking after each trial. Arousal,
valence and dominance were measured by the self-assessment manikins (SAM). The liking showed
how much the video the subject liked with thumbs-up and thumbs-down.

DEAP has been widely used in emotion recognition as it contains multiple physiological signals
with reliable labels and exists for years. The mean recognition accuracies of the relevant studies on
DEAP were plotted in Figure 16a. Different feature-extraction methods were adopted. Reference [116]
achieved the highest mean accuracy 89.45% for three levels of valence and arousal due to the use of
Gaussian process latent variable models (GP-LVM), through which latent points were extracted as
dynamical features to train the SVM. In dynamic affective modeling, latent space features can describe
emotional behaviors with less data. Bimodal Deep AutoEncoder network was used to generate high
level features in [101], where the extracted features were then imported into a linear SVM and the
highest accuracy rate of 85.2% was achieved. SVM was also used in [127]. Unlike [101], the statistical
features such as mean, standard deviation, mean value of first order difference and so on were extracted
from five bands of EEG signals to recognize four classes. The work of [128] divided the datasets into
two parts: low familiarity and high familiarity. The best performance was achieved with unfamiliar
songs, fractal dimension (FD) or power spectral density (PSD) features and SVM with a mean accuracy
of 72.9%. Reference [129] segmented the last 40 s of each recording into 4 s, while [102] divided each
60 s trial into 14 segments with 8 s length and 50% overlapping. Reference [129] shows better accuracy
using one-way ANOVA and semi-supervised deep learning approaches SDAE and DBN. The major
classifier applied in the 6 references on DEAP was SVM.Sensors 2018, 18, x FOR PEER REVIEW  25 of 40 
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5.2. MAHNOB Database

In order to facilitate the study of multimedia labels in new areas, a database of the responses of
participants to the multimedia content was constructed [130]. 30 participants were recruited and were
showed movies and pictures in the experiment. It comprises 32 channels EEG, RSP amplitude and
skin T. The participants were asked to rate the stimulus on a scale of valence and arousal.

The mean recognition accuracies of the relevant studies on MAHNOB are plotted in Figure 16b.
The model in reference [126] achieved the highest mean recognition accuracy of 73.8%, which
was a novel multi-layer LSTM-RNN-based model with a band attention and a temporal attention
mechanism to utilize EEG signals effectively and improve the model efficiency. Multi-modal fusion
was applied in effect recognition by the authors of [131]. In decision-level classification fusion,
regression-estimated weights fusion (W-REG) combined with recursive feature elimination (RFE)
obtained the best results of 73% for valence and 72.5% for arousal. In [132], Neighborhood Components
Analysis was applied to improve the KNN performance, achieving the highest classification accuracies
of 66.1% for arousal and 64.1% for valence with ECG signal. In reference [133], 169 statistical features
were inputted to the SVM using the RBF kernel, and a mean accuracy of 68.13% was obtained.
The classification step was actualized on the Raspberry Pi III model B. Narrow-band (1–2 Hz) spectral
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power was applied, and ANOVA was used in feature selection followed by the SVM classifier, which
reached an accuracy rate of 64.74% for arousal and 62.75% for valence, respectively [134].

5.3. SJTU Emotion EEG Dataset (SEED)

The SEED database [135] contains EEG and eye movement of three different emotions (positive,
neutral and negative). There were 15 participants (7 males, 8 females, mean: 23.27, STD: 2.37) in the
experiment. 15 film clips, each of which lasted 4 min, were selected as stimuli. There were 15 trials
for each experiment and totally 45 experiments in the dataset. The EEG signals was recorded from
62 channels at a sampling rate of 1000 Hz. Some preprocessing processes were done for the EEG data.
The EEG data was down sampled at 200 Hz and was applied a bandpass frequency filter from 0–75 Hz.

The classification results on SEED database are relatively better than others, as can be seen in
Figure 16c. SEED was generally used in emotion recognition based on EEG. The Differential Entropy
(DE) of five frequency bands are the most commonly used features in the SEED relevant references.
In reference [136], the authors extracted features using Pearson Correlation Coefficient Matrix (PCCM)
following the Differential Entropy (DE) and achieved the highest classification accuracy of 98.59%
among these references. The authors of [137] proposes novel dynamical graph convolutional neural
networks (DGCNN) and obtained the highest recognition accuracy of 90.4% for subject-dependent,
as well as 79.95% for subject-independent experiments. Similarly, the authors of [123] obtained 5 s of
DE in the beta frequency band, which was named emotional patches as feature sets, in which a DBN
model stacked by three layers of RBM was proposed, and the highest accuracy rate of 92.87% was
reached. In the work of [138], the authors found that with an accuracy rate of 82.56%, gamma band was
more relative to emotional reaction compared with other single bands. A stacked autoencoder deep
learning network was used for classification. The highest rate was achieved when DE in all frequency
bands were inputted. A novel group sparse canonical correlation analysis (GSCCA) method was
applied in [139] to select EEG channels and classify emotions. GSCCA model reached an accuracy rate
of 82.45% with only 20 EEG channels, while the SVM needed to use 63 channels to get a similar result.

5.4. BioVid Emo DB

The BioVid Emo DB [140] is a multimodal database. It comprises 3 physiological signals of SC,
ECG, EMG. 86 participants were recruited and watched film clips to elicit five discrete basic emotions
(amusement, sadness, anger, disgust and fear). They had to rate it for valence, arousal, amusement,
sadness, anger, disgust and fear on nine points’ scales. In the study of [38], the authors extracted
statistical features based on the wavelet transform from ECG signal and got a highest classification
accuracy of 79.51%.

6. Summary

Table 3 summarized the previous studies in physiological signal-based emotion recognition,
which lists the relevant information of: what kinds of stimuli were used, how many subjects were
included, what emotions were recognized, what kinds of features and what kinds of classifier was
chosen, as well as the recognition rate. Figure 17 shows the comparation among the previous research.
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Table 3. Summary of previous research.

No. Author Stimulus Subjects Subject
Dependency Emotions Signals Features Classifiers Recognition Rates

1 Petrantonakis P C, et al. [106] IAPS 16 (9 males,
7 females) No happiness, surprise, anger,

fear, disgust, sadness EEG FD, HOC KNN, QDA,
MD, SVM 85.17%

2 Samara A, et al. [141] videos 32 Yes arousal, valence EEG statistical features,
PSD, HOC SVM Bipartition: 79.83%

Tripartition: 60.43%

3 Jianhai Zhang et al. [102] videos 32 Yes arousal, valence EEG power PNN, SVM 81.76% for PNN
82.00% for SVM

4 Ping Gong et al. [87] music - Yes joy, anger, sadness,
pleasure ECG, EMG, RSP, SC

statistical features
Wavelet, EEMD,

nonlinear
c4.5 decision tree 92%

5 Gyanendra Kumar Verma et al. [96] videos 32 Yes

terrible, love, hate,
sentimental, lovely, happy,

fun, shock, cheerful,
depressing, exciting,
melancholy, mellow

EEG+8
peripheral signals

different Powers, STD and
SE of detail and

approximation coefficients.

SVM, MLP,
KNN, MMC

EEG only:81%
mixed with peripheral

signals: 78%

6 Vitaliy Kolodyazhniy et al. [118] film clips 34 (25 males,
19 females) Both fear, sadness, neutral ECG, GSR, RSP, T,

EMG, Capnography

HR, RSA, PEP, SBP, SCL,
SRR, RR, Vt, pCO2, FT, ACT,

SM, CS, ZM

KNN, MLP, QDA,
LDA, RBNF

subject dependent:81.90%
subject independent:78.9%

7 Dongmin Shin et al. [109] videos 30 Yes amusement, fear, sadness,
joy, anger, and disgust EEG, ECG relative power, LF/HF BN 98.06%

8 Foteini Agrafioti et al. [36] IAPS and
video game 44 No valence, arousal ECG BEMD:Instantaneous

Frequency, Local Oscillation LDA

arousal:
Bipartition76.19%

C.36%
valence:

from 52% to 89%

9 Wanhui Wen et al. [55] videos - No amusement, grief, anger,
fear, baseline OXY, GSR, ECG

155 HR features and
43 GSR and first deviation

GSR features
RF 74%,(leave-one-out) LOO

10 Jonghwa Kim et al. [117] music 3 Both valence, arousal ECG, EMG, RSP, SC 110 features. pLDA subject dependent:95%
subject independent:77%

11 Cong Zong et al. [100] music - Yes joy, anger, sadness
and pleasure ECG, EMG, SC, RSP

HHT:instantaneous
frequency, weighted mean
instantaneous frequency

SVM 76%

12 Gaetano Valenza et al. [35] IAPS 35 No 5 level valence
5 level arousal ECG, EDR, RSP 89 standard features,

36 nonlinear methods QDA >90%

13 Wee Ming Wong et al. [72] music - Yes joy, anger,
sadness, pleasure ECG, EMG, SC, RSP

32 features: mean, STD,
breathing rateand amplitude,

heartbeat, etc.

PSO of synergetic
neural classifer

(PSO-SNC)

SBS:86%
SFS:86%

ANOVA:81%

14 Leila Mirmohamadsadeghi et, al. [73] videos 32 Yes valence, arousal EMG, RSP
slope of the phase difference

of the RSA and
the respiration

SVM 74% for valence, 74% for
arousal and 76% for liking.

15 Chi-Keng Wu et al. [74] flims clips 33 Yes love, sadness, joy,
anger, fear RSP EES KNN5 88%
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Table 3. Cont.

No. Author Stimulus Subjects Subject
Dependency Emotions Signals Features Classifiers Recognition Rates

16 Xiang Li et al. [94] videos 32 Yes valence, arousal EEG CWT, CNN LSTM 72.06% for valence,
74.12 for arousal

17 Zied Guendil et al. [95] music - Yes joy, anger,
sadness, pleasure EMG, RESP, ECG, SC CWT SVM 95%

18 Yuan-Pin Lin et al. [29] music 26 (16 males,
10 females) No joy, anger,

sadness, pleasure EEG DASM, PSD, RASM MLP, SVM 82.29%

19 Gaetano Valenza et al. [34] IAPS - No valence, arousal ECG spectral, HOS SVM 79.15% for valence,
83.55% for arousal

20 Bo Cheng et al. [83] - - Yes joy, anger, sadnes, pleasure EMG DWT BP 75%

21 Saikat Basu et al. [142] IAPS 30 Yes
valence, arousal

(HVHA, HVLA, LVHA,
LVLA)

GSR, HR, RSP, SKT mean, covariance matrix LDA, QDA

98% for HVHA,
96% for HVLA,
93% for LVHA,
97% for LVLA

22 ingxin Liu et al. [103] videos 32 Yes valence, arousal EEG
statistical features,

PSD, HOC, Hjorth, FD, NSI,
DWT, DA, DS, MSCE

KNN5, RF 69.9% for valence,
71.2% for arousal

23 Hernan F. Garcia et al. [116] videos 32 Yes valence, arousal EEG, EMG, EOG,
GSR, RSP, T, BVP

Gaussian process latent
variable models SVM 88.33% for 3 level valence,

90.56% for 3 level arousal

24 Han-Wen Guo et al. [37] movie clips 25 Yes positive, negative ECG
Mean RRI, CVRR, SDRR,

SDSD, LF, HF, LF/HF,
Kurtosis, Kurtosis, entropy

SVM 71.40%

25 Mahdis Monajati et al. [56] - 13 (6 males,
7 females) Yes negative, neutral GSR, HR, RSP

GSR-dif = (GSR-max) −
(GSR-base),

mean-HR, mean-RR

Fuzzy Adaptive
Resonance Theory 94%

26 Lan Z et al. [22] IADS 5 Yes positive, negative EEG FD, five statistical features,
HOC, power SVM 73.10%

27 Zheng W L et al. [25] videos 47 Yes
valence, arousal

(HAHV HALV LAHV
LALV)

EEG PSD, DE, DASM,
DASR, DCAU

G extreme
Learning Machine

69.67% in DEAP
91.07% in SEED
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There are methods for emotions elicitation, such as images, games, music and films. As we can
see from Table 3, the films are most commonly used, which require more cognitive participation and
can induce the strong emotional feeling [143]. Compared to the films, the emerging VR scenes could
be more vivid and immersive, thus might become a trend in emotional stimulation. The lengths of the
stimuli response measures often last from 10 s to 120 s.

As for the trails and the involved participants, the number ranged from a few to dozens in the
literatures, where the commonly used DEAP consisted of 32 participants and each contained 40 trials.
Of course, more subjects and trials would help to improve the generalization ability of the model.

Since the physiological signals are non-stationary, the FFT is no longer applicable for physiological
signals analysis, which targets for stationary signals. To deal with the problem, several feature
extracting methods like STFT, DWT and EMD or robust features like HOC and FD have been proposed.

As for classifiers, the nonlinear classifiers (SVM with kernel, CNN, LSTM, Tree Models, BP, etc.)
are more commonly used than the linear classifiers (LR, Perceptron, LDA, etc.). Compared to valence,
identification rate of arousal is higher.

Figure 18 is an intuitive representation of Table 3 on the comparison of subject-dependent
and subject-independent. Comparing subject-dependent and subject-independent settings,
in subject-dependent training, N-fold cross-validation over each subject’s data is performed, and then
the results over all the subjects are averaged. In subject-independent training, this processing was done
by leave-one-subject-out cross-validation. The session of a particular subject was removed, and the
algorithm was trained on the remaining trials of the other subjects and then applied to this subject’s
data. It can be observed in the Figure 18 that it is hard to obtain high accuracy in the subject-dependent
case. The leave-one-out setting is the conventional approach, but it is not very applicable to real-world
applications, because it does not provide estimates of classification accuracy with unknown subjects.
In order to find out the factors that affect recognition accuracy under different modality, we compare
two aspects, respectively: (1) internal comparison and (2) comparison between two modes.
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(1) Internal Comparison

The work of [37,102,103,141] all have ordinary performance respectively. This calls for
improvement in applying an objective method for selecting a minimal or optimal feature subset, rather
than ad hoc selected features. In the study of [141] (Ref No. 2 in Figure 18), the authors investigated
feature vector generation from EEG signals, where only statistical features were considered through
exhaustive test. Therefore, Feature vectors for the SVM classifier utilized a range of statistics-based
measures, and the accuracy was about 79.83% for bipartition. A ReliefF-based channel selection
algorithm was proposed [102] (Ref No. 3 in Figure 18) to reduce the number of used channels for
convenience in practical usage. Similarly, power density was the one and the only feature that extracted
from frequency domain. Although ReliefF was a widely used feature selection method in classification
problems due to its effectiveness and simplicity of computation, the size of feature subset still limited
the accuracy of classification. Ref [103] (No. 22 in Figure 18) and [37] (No. 24 in Figure 18) exhibited
the recognition accuracy of 70.5% and 71.40% respectively.

Feature selection is a difficult optimization problem (NP-hard problem) for which there is no
classical solving methods. In some cases, the feature vector comprised individual values, whereas
in other cases the feature vector comprised a concatenation of values. So, some feature selection
algorithms are adopted to propose new feature subsets, along with an evaluation measure which
scores the different feature subsets. Some researchers used simple sequential feature selection
algorithms (SFS and SBS) to improve the recognition rate. Another noteworthy data is from Ref [72]
(No. 7 in Figure 18), where six emotions corresponding to joy, fear, sadness, pleasure, anger,
and disgust were classified with an average accuracy of 98.06% using biological signals. The authors
used a novel method of correcting the individual differences for each user when feeling the emotion,
where the data associated with specific user were preprocessed to classify the emotion. Therefore,
the weight of user-related specific channel was assigned to improve the classification accuracy.

(2) Comparison between two modes

In contrast to many other studies, the authors of [117] (Ref No. 10 in Figure 18) and [118]
(Ref No. 6 in Figure 18) paid special attention to evaluating performances in different test settings
of both subject independence and subject dependence, in which they all exhibited satisfactory
performances. To explore the reason lying behind this, we carried out a comparison to find the
common practice. First of all, the same method in feature selection was used in these two papers
(automated feature selection), which helped them achieve improved classification accuracy with
a reduced feature subset. Sequential feature selection algorithms SFS and SBS were used. Secondly,
they both chose LDA. It should also be noted that analyses in [118] showed only small improvements
of the non-linear classifiers (QDA, MLP, RBNF, and KNN) over the linear classifier (LDA). Another
noteworthy point was observed in [118]. There is relatively small decrease in classification accuracy
from subject- and stimulus-dependent cross-validation over subject-independent cross-validation
and stimulus-independent cross-validation to subject and stimulus-independent cross-validation.
It demonstrated that three emotional states (fearful, sad, and neutral) can be successfully discriminated
based on a remarkably small number of psychophysiological variables, by most classifiers,
and independently of the stimulus material or of a particular person.

The authors of [29] (Ref No. 18 in Figure 18) demonstrated a high recognition rate with an averaged
classification accuracy of 82.29%. Support vector machine was employed to classify four music-induced
emotional states (joy, anger, sadness, and pleasure). In Table 3, studies using music-induced emotions
generally exhibited higher accuracy than others. This might provide a different view point and new
insights into music listening and emotion responses. We expect that further understanding the different
stages of how the brain processes music information will make an impact on the realization of novel
EEG-inspired multimedia applications. One the other hand, the problem of stimulus-dependent and
stimulus-independent about the music pieces should be taken into account.
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7. Problems and Future Work

This paper describes the whole framework of emotion recognition. A lot of efforts have been made
in revealing the relationships between explicit physiological signals and implicit psychological feelings.
However, there are still several challenges in emotion recognition based on physiological signals.

Firstly, obtaining high quality physiological data for affecting analysis requires a well-designed
experimental setup. There are two common ways to elicit emotions: The most common setup is
the standard lab setting in which subjects with earphones sit fairly motionless in front of a visible
screen where the emotion stimuli materials are played. The lab environments are fixed, so that the
data are noiseless and stable. On the other hand, the issue of obtaining genuine emotions which is
dependent heavily on the emotion-stimulated materials is hard to deal with. So, more work should be
done aiming at affective data generation. Special attentions need to be paid in how to choose some
proper methods like VR equipment to induce direct and accurate targeted emotions that are close to
real-world feeling. Another natural setup for gathering genuine emotions is in the real-world situations
using the sensors of wearable devices. These devices are light-weight and hidden-recording with the
capability of detecting the signals of skin conductivity, skin temperature, heart rate and some other
emotion-related physiological parameters in a long period. But most studies focused on the short-time
emotion recognition from seconds to minutes. It only classifies the instantaneous emotion state rather
than a long-time emotion monitoring which may last for hours or days or even months. The main
reason might be that it is difficult to accurately record the label of emotions of subjects continuously in
the long period. It is so crucial for emotion classification in supervised learning because the labels of
emotions are indispensable. There is still a long way to go in long-time emotional data collection and
emotion recognition in the real world.

Secondly, as the stimulus materials are artificially selected, the labels of the materials are manually
set, while human emotions vary from each other for the same thing, the ratings of the materials may
have a large deviation. There are lots of factors effecting the emotions in the materials. In [144],
the author showed that different induction modalities led to different physiological responses. There is
no clear experimental paradigm that have been tested and verified to obtain high quality physiological
data for affect analysis. It still requires much effort to form an experimental paradigm and build a huge
open source database which should be included in the milestone for emotion recognition.

Thirdly, many researchers endeavor to find the most emotion-related features from physiological
signals. There are time domain features like the statistical features, fractal dimension (FD), frequency
domain features like PSD, PE and higher order spectra and time-frequency domain features extracted
from the EMD and the WT. Though many features have been tried, there is still no clear evidence
that what feature combinations of what physiological signal combinations are the most significantly
relevant to emotion changes. Some of the work might depend on the research progress of human brain,
especially the perspective of emotion generation mechanisms.

Fourthly, for most studies, the number of subjects is usually small, ranging from two or three up
to thirty at most. Due to limited samples, the performance of the classifier with subjects who have
not been trained would be poor. There are two approaches to solve this problem. One is to include
more subjects from different ages and backgrounds. The other is to train the specific classifier for
each user when there are few users because the classifier shows good performance when a subject has
been trained.

Fifthly, emotion perception and experience lead to strong individual differences.
The corresponding physiological signals thus alter to some extent. Current subject-independent
recognition models are not yet advanced enough to be workable in realistic and real-time applications,
which need further in-depth studies. Many studies relied on group analyses attempt to characterize
common features across subjects using algorithms like ReliefF, SFS, SBS, TS, which usually regard
variance among individuals as statistical noise.

The above approaches are to improve generalization by selecting robust features and filters, but the
average identification accuracy is still far below user-dependent ones. More detailed investigation of
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such individual differences is still at a very early stage, although some are trying to minimize their
effects. Individual differences are mainly reflected in the differences of signal baselines and emotional
physiologies by different subjects. In order to make the emotional physiological data of different
people comparable, the individual differences caused signal baseline variations should be normalized.

Sixth, the reliability of facial expressions cannot be guaranteed sometimes. However,
when subjects are watching movie clips or stimulus fragments of people’s facial expressions,
a phenomenon called ‘facial mimicry’ [145], which means a spontaneous and rapid facial EMG
response in the same muscles involved in expressing the same positive or negative emotions induced
by negative or positive emotional facial expressions, will appear. Research shows facial mimicry can
facilitate empathy and emotional reciprocity [146]. According to this, even if subjects suppressed their
facial expressions deliberately, facial EMG will still be useful. Physical responses to emotions such as
facial mimicry and RSA (Respiratory Sinus Arrhythmia) can be modulated by different factors like
childhood traumatic experiences [147,148], psychiatric diseases [149,150], and ingroup or outgroup
membership [145]. The research on this aspect is helpful, because the best feature sets of emotion
recognition can be selected for different groups according to the specific study purpose such as the
psychological treatment of autistic patients and people who suffer from childhood trauma, which may
require long-term and real-time monitoring of patient’s emotions. In order to improve the accuracy
and reliability of existing emotion recognition methods, interdisciplinary research is necessary.

Seventh, there are several factors in the preprocessing and analytical procedures for choosing the
classifiers. If the number of samples is small, only the linear classifiers are applicable. Additionally,
it is necessary to split the data into smaller segments to obtain more training samples. Besides, it is
reasonable to extract a relatively small number of features when the sample number is small. Regarding
the emotion-classification framework, the preprocessing steps, as well as the analytical procedures
between model-free vs. model-specific perspective, should be considered.

Finally, most emotion recognition systems are used to classify the specific emotion states, such as
happiness, sadness. Studies on the evolution process of the emotion state are limited, which is not
conducive to learning a person’s emotion changing process. We expect that the combinations of
physiological signals, including EEG, ECG, GSR, RSP, EMG, HR, will lead to significant improvements
in emotion recognition in the coming decade, and that this recognition will be critical to impart
machines the intelligence to improve people’s life.
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