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Abstract: The genes that influence prostate cancer progression remain largely unknown. Since the
carboxylesterase gene family plays a crucial role in xenobiotic metabolism and lipid/cholesterol
homeostasis, we hypothesize that genetic variants in carboxylesterase genes may influence clinical
outcomes for prostate cancer patients. A total of 478 (36 genotyped and 442 imputed) single nucleotide
polymorphisms (SNPs) in five genes of the carboxylesterase family were assessed in terms of their
associations with biochemical recurrence (BCR)-free survival in 643 Taiwanese patients with prostate
cancer who underwent radical prostatectomy. The strongest association signal was shown in CES1
(P = 9.64 × 10−4 for genotyped SNP rs8192935 and P = 8.96 × 10−5 for imputed SNP rs8192950).
After multiple test correction and adjustment for clinical covariates, CES1 rs8192935 (P = 9.67 × 10−4)
and rs8192950 (P = 9.34 × 10−5) remained significant. These SNPs were correlated with CES1
expression levels, which in turn were associated with prostate cancer aggressiveness. Furthermore,
our meta-analysis, including eight studies, indicated that a high CES1 expression predicted better
outcomes among prostate cancer patients (hazard ratio 0.82, 95% confidence interval 0.70–0.97,
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P = 0.02). In conclusion, our findings suggest that CES1 rs8192935 and rs8192950 are associated with
BCR and that CES1 plays a tumor suppressive role in prostate cancer.
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1. Introduction

Prostate cancer is the most commonly diagnosed cancer and the second most common cause
of death among men, with an estimated 191,930 new cases and 33,330 deaths expected worldwide
in 2020 [1]. Standardized clinical management approaches, such as radical prostatectomy (RP),
radiotherapy, and androgen deprivation therapy, have led to improved outcomes in patients with
prostate cancer. However, prognosis remains heterogeneous, suggesting that genetic factors may
contribute to treatment response. Genome-wide association studies (GWASs) have successfully
identified more than 100 prostate cancer susceptibility loci to date [2,3]. Further functional studies
indicate that these risk loci are often located near genes, and regulate genes involved in carcinogenesis,
including cell metabolism (JAZF1 and HNF1B) and DNA repair or cell cycle machinery (MYC, TERT,
ATM, and CDKN1B) [4]. A pathway-based analysis using known prostate cancer susceptibility
loci highlights the antigen presentation pathway and gene network of lipid metabolism, molecular
transport, and small molecule biochemistry, which may contribute to prostate cancer development [5].
However, scanning for an association between genetic variants and the prognosis of prostate cancer
is still difficult due to the need for a large sample size and long-term follow-up [6,7]. Despite a
reasonably large cohort of 24,023 prostate cancer patients with 3513 disease-specific deaths, no evidence
of association was observed between genetic variants and prostate cancer survival [7]. GWASs always
focus on the most significant genetic variants, which may miss the loci that confer true effects but do
not rank at the top. The biological hypothesis-driven approach allows for targeted evaluation and
improves the power to detect significant associations. Several functional variants have been reported
to be associated with prostate cancer survival by using this approach [8,9].

The carboxylesterase (CES) gene family encodes major liver enzymes, which are responsible for
the hydrolysis of various endogenous substrates, including esters, thioesters, amides, carbamates,
and xenobiotics, including toxins and drugs [10]. Five human CESs have been identified, and these
enzymes share 39–46% of amino acid sequence identity [11]. Although CESs are expressed in most
metabolic organs, indicating their protective roles against xenobiotics, they still exhibit different tissue
distribution and substrate specificity. CES1 is mainly expressed in the liver and prefers to hydrolyze
substrates containing a bulky acyl group and a small alcohol group, whereas CES2 is abundantly
expressed in the small intestine and colon and prefers to metabolize esters with a small acyl group and
a relatively large alcohol group [12,13]. CESs also appear to participate in the metabolism of fatty acids
and cholesterol esters and play a role in the blood–brain barrier system [14], suggesting that the enzymes
they encode for serve pivotal physiological functions. Interestingly, CES gene expression has been
reported to be downregulated in certain cancer types as the diseases progress [15,16]. The expression
of CES genes has also been shown to correlate with chemosensitivity in colorectal cancer [17,18].
A genetic analysis indicated a significant association between the single nucleotide polymorphism
(SNP) rs11075646 in the 5' UTR of CES2 and the response rate and time to progression in patients with
cancer treated with capecitabine [19]. Therefore, we hypothesized that CES gene polymorphisms may
also contribute to the differences in prostate cancer outcomes.

To date, no study has investigated whether CESs could mediate prostate cancer progression. In the
present study, we analyzed SNP genotyping data and imputed unobserved SNPs in CES genes to
comprehensively assess their impact on disease recurrence in prostate cancer patients who received RP.
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2. Materials and Methods

2.1. Patient Recruitment and Data Collection

This study included 643 Taiwanese patients who underwent RP for localized prostate
cancer at three medical centers in Taiwan: Kaohsiung Medical University Hospital, Kaohsiung
Veterans General Hospital, and National Taiwan University Hospital, as described previously [20].
The clinicopathological data were obtained from the patients’ medical records. Biochemical recurrence
(BCR) was defined as two consecutive prostate-specific antigen (PSA) elevation events of 0.2 ng/mL or
more [21–24]. The protocol was approved by the institutional review board of Kaohsiung Medical
University Hospital (KMUHIRB-2013132), and each participant provided written informed consent,
in accordance with the ethical guidelines.

2.2. SNP Selection and Genotyping

We selected 36 haplotype tagging SNPs within the five CES genes and their 10 kb flanking regions
with a threshold of a minor allele frequency (MAF) of >0.03, based on the 1000 Genomes data for
Han Chinese in Beijing, China and Southern Han Chinese [25]. Genomic DNA was extracted from
peripheral blood, and genotyping was conducted using Affymetrix Axiom Genotyping Arrays at
the National Centre for Genome Medicine, Taiwan, as described previously [26]. The prediction of
the untyped SNPs was performed using Minimac4 with 1000 Genomes Project Phase 3 East Asian
reference panels [27,28]. SNPs were filtered by a MAF >0.03 and a Hardy–Weinberg equilibrium
>0.001, resulting in 36 SNPs being genotyped and an additional 442 SNPs being imputed.

2.3. Bioinformatics Analysis

The functional prediction for the identified SNPs was performed with HaploReg v4.1
(https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php) [29]. The expression quantitative
trait loci (eQTL) analysis was determined using data from the Genotype–Tissue Expression (GTEx)
project [30]. The associations between gene expression levels and prostate cancer survival were
assessed using multiple data sources: GSE10645 [31], GSE116918 [32], GSE16560 [33], GSE21032 [34],
GSE54460 [35], GSE70768 [36], GSE70769 [36], and The Cancer Genome Atlas (TCGA) [37] projects.

2.4. Statistical Analysis

Analyses were performed using Statistical Package for the Social Sciences software version 19.0.0
(IBM, Armonk, NY, USA). A two-sided P < 0.05 indicated statistical significance; q values were
calculated for multiple test correction to report the false discovery rate [38].

3. Results

This analysis included 643 patients who underwent RP for localized prostate cancer. Their clinical
characteristics were presented in Table 1. Two hundred and twenty-eight (35.5%) patients experienced
BCR with a median follow-up time of 51 months. Univariate Cox regression indicated that PSA,
Gleason score, stage, and surgical margin were significantly associated with BCR (P < 0.001).

We performed a single-locus Cox regression analysis to assess the associations of 36 genotyped
SNPs in the five CES genes with BCR. Three SNPs were found to be associated with BCR (P < 0.05,
Table S1), of which CES1 rs8192935 remained noteworthy after multiple test correction (q = 0.036).
We sought to identify the SNPs better correlated with BCR through imputation, referencing the 1000
Genomes Project (East Asian population). Of the additional 442 SNPs that passed imputation quality
control, six SNPs showed superior associations with BCR compared to rs8192935. The strongest signal
was shown by rs8192950, which is in linkage disequilibrium with rs8192935 (r2 = 0.753). The risk of
BCR was significantly increased with the number of CES1 rs8192935 G and rs8192950 G alleles (P =

9.64 × 10−4 and 8.96 × 10−5, respectively, Table 2 and Figure 1). Additionally, these two SNPs remained

https://pubs.broadinstitute.org/mammals/haploreg/haploreg.php
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independently and significantly associated with BCR after adjustment for age, PSA, Gleason score,
cancer stage, and surgical margin (hazard ratio (HR) 1.43, 95% confidence interval (CI) 1.16–1.76, P =

9.67 × 10−4 for rs8192935, and HR 1.50, 95% CI 1.24–1.90, P = 9.34 × 10-5 for rs8192950, Table 2).

Table 1. Clinicopathologic characteristics of the study population.

Characteristics n BCR, n (%) HR (95% CI) P

Age at diagnosis, years
Median (IQR) 66.0 (62.0–70.0)
≤66 331 115 (34.7) 1.00
>66 312 113 (36.2) 1.08 (0.83–1.40) 0.552

PSA at diagnosis, ng/mLa

Median (IQR) 10.9 (7.02–18.41)
≤10 292 74 (25.3) 1.00
>10 330 145 (43.9) 2.23 (1.68–2.95) <0.001

Gleason score
2–7 531 164 (30.9) 1.00
8–10 112 64 (57.1) 2.81 (2.10–3.76) <0.001

Stage a

T1/T2 363 88 (24.2) 1.00
T3/T4/N1 275 136 (49.5) 2.79 (2.13–3.65) <0.001

Surgical margin
Negative 459 139 (30.3) 1.00
Positive 184 89 (48.4) 2.02 (1.55–2.65) <0.001

Total 643 228 (35.5)

Abbreviations: BCR, biochemical recurrence; HR, hazard ratio; CI, confidence interval; IQR, interquartile range;
PSA, prostate-specific antigen. a Some subtotals do not sum to 643 due to missing data.

Table 2. SNPs associated with BCR in prostate cancer patients receiving RP.

Gene
SNP Position Genotype Frequency BCR HR

(95% CI) P HR
(95% CI) a P a

CES1 rs8192935 b 55861794 AA/AG/GG 326/270/47 100/106/22 1.41
(1.15–1.72) 9.64 × 10−4 1.43

(1.16–1.76) 9.67 × 10−4

CES1 rs8192950 55842404 TT/TG/GG 373/239/31 114/95/19 1.53
(1.24–1.89) 8.96 × 10−5 1.50

(1.24–1.90) 9.34 × 10−5

Abbreviations: SNP, single nucleotide polymorphism; BCR, biochemical recurrence; RP, radical prostatectomy; HR,
hazard ratio; CI, confidence interval. a Adjustment for age, PSA at diagnosis, Gleason score, stage, and surgical
margin. b Genotyped SNP.
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Figure 1. Association of CES1 rs8192935 and rs8192950 with biochemical recurrence (BCR)-free survival.
(A) Schematic genomic structure of CES1 and the locations of rs8192935 and rs8192950. Kaplan–Meier
curves of BCR-free survival for rs8192935 (B) and rs8192950 (C) genotypes. Values in brackets denote
the number of patients. RP, radical prostatectomy.
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To identify the possible effects of these SNPs, functional annotations were extracted from the
HaploReg v4.1. Both rs8192935 and rs8192950 have effects on enhancer histone marks and motif
alterations and are eQTL SNPs for CES1 (Table S2). The rs8192935 G and rs8192950 G alleles were
associated with lower expression levels of CES1 in 322 testis tissues from the GTEx Project (Figure 2A).
However, the SNPs are not correlated with expression in prostate tissues, possibly due to the small
sample size (Figure S1). These results indicated that lower CES1 expression would correlate with a
poor prognosis in prostate cancer. According to two prostate cancer studies from Taylor and TCGA,
lower expression levels of CES1 were associated with prostate cancer, a higher Gleason score, a more
advanced stage, and worse survival in patients (Figure 2B,C). A meta-analysis of eight cohorts of
2064 prostate cancer patients was performed to further evaluate the prognostic significance of CES1.
The results showed that higher CES1 expression was significantly related to better prostate cancer
prognosis under a random effects model (HR 0.82, 95% CI 0.70–0.97, P = 0.02, Figure 2D).Cancers 2020, 12, x 6 of 10 
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Figure 2. Association of CES1 polymorphisms with prostate cancer progression. (A) The correlation of
rs8192935 (left) and rs8192950 (right) genotypes with CES1 mRNA expression levels in testis tissues
from the Genotype–Tissue Expression database. NES, normalized effect size. Lower expression of
CES1 correlates with prostate cancer, a higher Gleason score and stage, and poorer patient prognosis in
the Taylor cohort (B), as well as in The Cancer Genome Atlas (TCGA) cohort (C). BCR, biochemical
recurrence. RP, radical prostatectomy. rho, Spearman's rank correlation coefficient. (D) Meta-analysis of
eight studies evaluating the hazard ratio of high compared with low levels of CES1 mRNA expression
for prostate cancer prognosis. SE, standard error. IV, inverse variance.
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4. Discussion

In the present study, we genotyped haplotype-tagging SNPs in CES family genes, following
imputation, to fine-map additional SNPs that may be relevant and comprehensively analyze their
association with prostate cancer progression. We found that CES1 rs8192935 and rs8192950 might be
a prognostic factor for BCR-free survival in patients with prostate cancer. Furthermore, functional
studies revealed that these SNPs are in eQTL affecting the expression of CES1 and are subsequently
correlated with tumor aggressiveness and prostate cancer prognosis.

CES enzymes are primarily localized within the endoplasmic reticulum in many tissues and play
key roles in both endobiotic metabolism and the activation/detoxification of xenobiotics [10]. CES1,
also known as serine esterase 1 or monocyte esterase and cholesterol ester hydrolase, is abundantly
produced in the epithelia of metabolic organs including the liver, lungs, and bladder, indicating its
protective role against xenobiotics [39]. Interestingly, the inhibition of CES1 in monocytes was shown to
diminish their ability to lyse tumor cells [40]. The increased frequency of deficient CES1 enzyme activity
has also been reported in non-Hodgkin lymphoma and B-cell chronic lymphocytic leukemia [41,42].
These findings suggest a possible tumor-cell-killing or surveillance function of CES1. Furthermore,
CES1 is also a transcriptional target gene of pregnane X receptor (PXR) [43], a key sensor of the body’s
defense mechanism against xenobiotics. The activation of PXR was found to markedly lower the
concentration of circulating androgens, suppress prostate regeneration, and inhibit the growth of
human prostate cancer cells [44]. The role of PXR in the homeostasis of androgens may provide clues
to the mechanism underlying the observed association between CES1 and prostate cancer progression.
In the present study, we found that carriers of the CES1 rs8192935 and rs8192950 G variants had a
worse BCR-free survival. Since CES1 is the major enzyme responsible for the hydrolysis of many
clinical drugs, CES1 rs8192935 and rs8192950 have been recognized as important pharmacogenetic
regulators of treatment outcomes [45,46]. According to the annotation of HaploReg, these two variants
may be functional, as they are located at the enhancer region and eQTL of CES1, and are likely to
disrupt transcription factor binding motifs in various cells. Consistently, we found that rs8192935 and
rs8192950 G alleles were associated with a decrease in the mRNA expression levels of CES1, and lower
CES1 expression showed a poorer prognosis for prostate cancer patients. However, these SNPs did
not affect CES1 expression in prostate tissue, probably because of the limited prostate samples in the
GTEx database. Therefore, further experimental characterization is required to elucidate the function
of these SNPs/CES1 in prostate cancer.

This study has several inherent limitations. All the participants in our cohort are Taiwanese,
and the findings may not be generalizable to other ethnic groups. Although multiple test correction
was performed, the current results still have to be interpreted with caution. In addition, this is a
retrospective study with a moderate sample size, and large studies with prospective designs are needed
to validate our findings. Finally, no direct biological experiments were conducted to investigate the
exact mechanism of action of CES1 rs8192935 and rs8192950 on prostate cancer progression, which
should be explored in the future.

5. Conclusions

Our results suggest that rs8192935 and rs8192950 may reduce the expression of CES1, resulting in
a poor prognosis, and could be potential biomarkers of clinical outcome in prostate cancer patients.
However, validation in a larger population and further functional studies are needed to identify the
tumor suppressive role of CES1 underlying prostate cancer progression.

Supplementary Materials: Supplementary materials can be found at http://www.mdpi.com/2072-6694/12/5/1346/s1.
Table S1: Genotyped SNPs and the P values of their association with BCR after RP. Table S2: Regulatory annotation
of CES1 rs8192935 and rs8192950. Figure S1: The correlation of rs8192935 and rs8192950 genotypes with CES1
mRNA expression levels in prostate tissues from the GTEx database.
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