PeerJ

Experimental lung injury induces cerebral cytokine mRNA production in pigs

Jens Kamuf¹, Andreas Garcia Bardon¹, Alexander Ziebart¹, Katrin Frauenknecht², Konstantin Folkert¹, Johannes Schwab¹, Robert Ruemmler¹, Miriam Renz¹, Denis Cana², Serge C. Thal¹ and Erik K. Hartmann¹

¹ Department of Anesthesiology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany ² Institute of Neuropathology, Medical Centre of the Johannes Gutenberg-University, Mainz, Germany

ABSTRACT

Background. Acute respiratory distress syndrome (ARDS) is an important disease with a high incidence among patients admitted to intensive care units. Over the last decades, the survival of critically ill patients has improved; however, cognitive deficits are among the long-term sequelae. We hypothesize that acute lung injury leads to upregulation of cerebral cytokine synthesis.

Methods. After approval of the institutional and animal care committee, 20 male pigs were randomized to one of three groups: (1) Lung injury by oleic acid injection (OAI), (2) ventilation only (CTR) or (3) untreated. We compared neuronal numbers, proportion of neurons with markers for apoptosis, activation state of Iba-1 stained microglia cells and cerebral mRNA levels of different cytokines between the groups 18 hours after onset of lung injury.

Results. We found an increase in hippocampal TNFalpha (p < 0.05) and IL-6 (p < 0.05) messenger RNA (mRNA) in the OAI compared to untreated group as well as higher hippocampal IL-6 mRNA compared to control (p < 0.05). IL-8 and IL-1beta mRNA showed no differences between the groups. We found histologic markers for beginning apoptosis in OAI compared to untreated (p < 0.05) and more active microglia cells in OAI and CTR compared to untreated (p < 0.001 each).

Conclusion. Hippocampal cytokine transcription increases within 18 hours after the induction of acute lung injury with histological evidence of neuronal damage. It remains to be elucidated if increased cytokine mRNA synthesis plays a role in the cognitive decline observed in survivors of ARDS.

Corresponding author Jens Kamuf, kamuf@uni-mainz.de Subjects Cognitive Disorders, Emergence Keywords Critical care, Acute respirator

Academic editor Susanne Schmid

Submitted 7 April 2020 Accepted 11 November 2020

Published 9 December 2020

Additional Information and Declarations can be found on page 16

DOI 10.7717/peerj.10471

Copyright 2020 Kamuf et al.

Distributed under Creative Commons CC-BY 4.0

OPEN ACCESS

Subjects Cognitive Disorders, Emergency and Critical Care, Neurology, Respiratory Medicine **Keywords** Critical care, Acute respiratory distress syndrome, Cognitive impairment, Cerebral inflammation, Cytokines, Lung injury, Pigs

INTRODUCTION

The management of patients with acute respiratory distress syndrome (ARDS) has substantially improved over the years (*Rezoagli, Fumagalli & Bellani, 2017*). However, the late effects of critical care as well as health-related quality of life issues are emerging as a significant challenge for ARDS survivors (*Herridge, 2017*). These patients demonstrate an impaired quality of live and a decline in cognitive function even one year after hospital discharge (*Hopkins et al., 2005; Mikkelsen et al., 2012*). The cognitive impairment encompasses global cognition and executive function (*Pandharipande et al., 2013*),

How to cite this article Kamuf J, Garcia Bardon A, Ziebart A, Frauenknecht K, Folkert K, Schwab J, Ruemmler R, Renz M, Cana D, Thal SC, Hartmann EK. 2020. Experimental lung injury induces cerebral cytokine mRNA production in pigs. *PeerJ* 8:e10471 http://doi.org/10.7717/peerj.10471

approaching cognition scores similar to those seen in patients with moderate traumatic brain injury or Alzheimer's disease (*Herridge et al., 2016*).

The underlying pathophysiological mechanisms are poorly understood, but are likely complex and multifactorial. Global hypoxia (*Kandikattu et al., 2017*), inflammation (*Dantzer et al., 2008*), oxidative stress (*Popa-Wagner et al., 2013*), and autonomic nervous system dysregulation (*Gonzalez-Lopez et al., 2013*) constitute proposed mechanisms. Of note, even mechanical ventilation alone leads to hippocampal apoptosis and could contribute to the cognitive decline (*Gonzalez-Lopez et al., 2013*).

In an earlier study, we examined neuronal injury and inflammation six hours after onset of ARDS in a porcine model (*Kamuf et al., 2018a*). We found an increase in cerebral cytokine expression in mechanically ventilated pigs that was independent of additional lung injury compared to untreated animals. We concluded that six hours of ventilation may not be enough time for a profound cerebral effect, so we aimed to extend the duration of ARDS. We hypothesize that acute lung injury leads to an upregulation of cerebral cytokine production and neuronal degeneration despite lung protective ventilation and that this effect is partly transferred via serum cytokines. The present study therefore compares cerebral mRNA concentrations of different cytokines to neuronal numbers at 18 h after onset of ARDS in a porcine model.

MATERIALS & METHODS

The institutional and state animal care committee approved this prospective randomized animal study (Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany; approval number G14-1-077), which was conducted in accordance with international guidelines for the care and use of laboratory animals. The animals used in this study were also part of another study that has not yet been published (approved under the same approval number), the untreated animals served as untreated control animals in a previously published study (*Kamuf et al., 2018a*). All animals were housed, fed and euthanized equally. This manuscript adheres to EQUATOR guidelines.

Anaesthesia and instrumentation

Twenty healthy male pigs (sus scrofa domesticus, weight: 26–33 kg) were randomized to one of three groups: lung injury by central venous injection of oleic acid (OAI, n = 8), ventilation only (CTR, n = 8), or untreated animals (n = 4). After a local breeder delivered the sedated animals (ketamine 4 mg kg⁻¹, azaperon 8 mg kg⁻¹ intramuscularly), we establishedan intravenous line. Then, anesthesia was induced and maintained by propofol (8-12 mg kg⁻¹ h⁻¹) and fentanyl (0.1–0.2 mg kg⁻¹ h⁻¹). 0.5 mg kg⁻¹ atracurium was administered to facilitate orotracheal intubation. The Respirator (Engström Carestation[®], GE Healthcare, Germany) was started in pressure-controlled mode with the following settings: tidal volume (V_t) of 7 ml kg⁻¹, PEEP of five cmH₂O, fraction of inspired oxygen (FiO₂) of 0.4 and a variable respiratory rate to maintain normocapnia. At this point, the animals of the untreated group were sacrificed in deep anesthesia with a central venous injection of 200 mg propofol and 40 mmol potassium. In all other animals, a balanced electrolyte solution (Sterofundin iso, B. Braun, Germany) was continuously infused at a rate

Table 1	PEEP/FiO ₂ -setting in this experimental study.							
FiO ₂	0.4	0.4	0.5	0.5	0.6	0.7	0.7	0.7
PEEP	5	8	8	10	10	10	12	14
FiO ₂	0.8	0.9	0.9	0.9	1.0	1.0	1.0	1.0
PEEP	14	14	16	18	18	20	22	24

of 5 ml kg⁻¹ h⁻¹. Vascular catheters were placed ultrasound-guided: an arterial line, a pulse contour cardiac output catheter (PiCCO, Pulsion Medical Systems, Germany), a central venous line and a 7.5-French introducer for a pulmonary arterial catheter were inserted via femoral vascular access. Respiratory and extended hemodynamic parameters were recorded continuously (Datex S/5, GE Healthcare, Germany). Further respiratory parameters and measurements were recorded by the respirator. Normothermia was maintained by body surface warming.

Study protocol

Following instrumentation, we set the F_iO_2 to 1.0 and conducted a lung recruitment maneuver (plateau pressure 40 cmH₂O for 10 s). Then, baseline, premorbid parameters were assessed. Lung injury was induced as previously published (*Kamuf et al., 2018b*). 0.1 ml kg⁻¹ of oleic acid (cis-9-octadecenoic acid) was dissolved in 20 ml of a saline/blood mixture and injected every three minutes via the central venous line in fractions of 2 ml. The procedure was repeated with another 0.1 ml kg⁻¹ after 15 min, if the PaO₂/FiO₂ was higher than 200 mmHg. After ARDS criteria were fulfilled, the animals were treated according to a standard protocol, which was closely adapted to human ICU treatment as previously published(*Kamuf et al., 2018b*). Respirator settings are as follows: V_t 7 ml kg⁻¹, FiO₂ and PEEP according to Table 1, with an intended peripheral oxygen saturation of 94–98%. Norepinephrine was administered as needed to maintain stable hemodynamic conditions during the experiments (mean arterial pressure > 65 mmHg). 18 h after manifestation of the lung injury, the animals were killed by injecting 200 mg propofol and 40 mmol potassium.

Post-mortem analysis

For post-mortem analysis we removed the brain and lungs of the animals after they died. The brain was sectioned in the midsagittal plane, one half was fixed in 4% formaldehyde solution for 3 months, a slice of the frontal cortex and hippocampus were removed from the other hemisphere (*Klein et al., 2016*). Both samples were snap frozen (in liquid nitrogen) for molecular biological analysis. Lung was used for wet/dry ratio (*Kamuf et al., 2017*) and histopathology (*Hartmann et al., 2014*).

Initially, the hippocampus was cut in two mm thick slices. Four tissue slices were then sectioned through the entire specimen and embedded in paraffin. Subsequently, additional 4 μ m thick histological sections were prepared. Preparations were stained with hematoxylin/eosin (HE) and examined with light microscopy to assess the number of HE-stained neurons (*Songarj et al., 2015*) (see Figs. S1–Figs. S6 for representative pictures). Furthermore, we quantified the proportion of damaged neurons, whereby eosinophilic degeneration and nuclear pyknosis were defined as markers for early neuronal damage. To distinguish between different activation states of the microglia, slices were stained with an antibody against Iba-1 (WAKO, Japan). Iba-1 positive cell numbers/mm² were counted in one visual field (380 mm²). We further differentiated between microglia without branches, defined as activated, and microglia with three or more branches, defined as resting. Microglia with one or two branches were defined as in-between.

Dependent and non-dependent lung regions were sampled, fixed in formalin for paraffin sectioning and stained with HE. Then we applied a lung injury score according to earlier publications (*Ziebart et al., 2014*). The evaluation included seven different parameters: overdistension, epithelial destruction, inflammatory infiltration, alveolar edema, hemorrhage, interstitial edema, and microatelectasis. Per region, each parameter received a severity grade from zero to five points in four non-overlapping fields of view. In a second step, the extent of each parameter was assessed in a global overview of the entire region. This approach results in an overall score of 175 maximum points per region.

To determine cerebral messenger RNA (mRNA) expression of TNFalpha, IL-6, IL-8 and IL-1beta, we used real-time polymerase chain reaction (RT-PCR, Lightcycler 480 PCR System, Roche Applied Science, Germany) (*Hartmann et al., 2015*). mRNA expression data were normalized against peptidylprolyl isomerase A (PPIA) as control gene.

After ARDS-induction, 6, 12 and 18 h later, blood samples were taken via the cental venous catheter and snap frozen for determination of cytokine levels (IL-6 and TNFalpha) using ELISA kits (Porcine IL-6 Quantikine ELISA, Porcine TNFalpha Quantikine ELISA, R&D Systems, Wiesbaden, Germany) according to the instructions of the manufacturer.

Statistics

Statistical analyses were performed by One-way ANOVA with post-hoc tests for multiple testing (SNK-Test), except for the analyses of the physiologic data. These were analyzed by Two-way Repeated Measures ANOVA with post-hoc correction (SNK-Test). The results were analyzed and graphed using Sigmaplot[®] 12.5. A p < 0.05 was considered significant.

RESULTS

Induction of lung injury led to a significant decrease in oxygenation ratio and an increase in peak pressure (P_{peak}) at all measured time points compared to control animals (CTR). Furthermore, in animals with lung injury induced by central venous injection of oleic acid (OAI), positive end-expiratory pressure (PEEP), inspiratory fraction of O2 (FiO₂) and extravascular lungwater index (EVLWI) were significantly higher at selected timepoints compared to CTR. Tidal volume (V_T), end-expiratory CO₂ and wet-to-dry ratio showed no difference between the groups.

Heart rate and mean pulmonary arterial pressure (MPAP) were significantly increased in OAI compared to CTR at all measured time points after induction of lung injury. Central venous pressure (CVP), pulmonary capillary wedge pressure (PCWP), cardiac index and norepinephrine dose differed at some time points. Mean arterial pressure (MAP) showed no difference between the groups. Cardiopulmonary characteristics of the animals are provided in Tables 2 and 3 and in Tables S1 and S2.

	L			
		CTR	OAI	<i>p</i> -value
PEEP	BLH	4 ± 0	4 ± 0	n.s.
$(cm H_2O)$	0 h	4 ± 0	6 ± 2	0.043
	6 h	4 ± 0	9 ± 2	< 0.001
	12 h	4 ± 0	7 ± 3	< 0.001
	18 h	4 ± 0	7 ± 3	0.002
P _{peak}	BLH	15 ± 2	16 ± 3	n.s.
$(cm H_2O)$	0 h	14 ± 1	28 ± 6	< 0.001
	6 h	15 ± 2	28 ± 3	< 0.001
	12 h	16 ± 2	28 ± 6	< 0.001
	18 h	17 ± 2	30 ± 5	< 0.001
VT	BLH	6 ± 0	6 ± 1	n.s.
(ml/kg)	0 h	6 ± 0	7 ± 1	n.s.
	6 h	6 ± 0	7 ± 1	n.s.
	12 h	6 ± 0	6 ± 1	n.s.
	18 h	6 ± 0	6 ± 1	n.s.
etCO ₂	BLH	39 ± 3	38 ± 4	n.s.
(mmHg)	0 h	36 ± 2	37 ± 4	n.s.
	6 h	37 ± 4	39 ± 3	n.s.
	12 h	37 ± 2	39 ± 3	n.s.
	18 h	36 ± 2	39 ± 4	n.s.
FiO ₂	BLH	40 ± 0	40 ± 0	n.s.
(%)	0 h	100 ± 0	100 ± 0	n.s.
	6 h	40 ± 0	55 ± 10	< 0.001
	12 h	39 ± 4	48 ± 10	0.005
	18 h	40 ± 0	45 ± 10	n.s.
EVLWI	BLH	11 ± 1	10 ± 2	n.s.
(ml/kg)	0 h	12 ± 1	19 ± 4	0.003
-	6 h	12 ± 2	21 ± 7	< 0.001
	12 h	14 ± 2	17 ± 6	n.s.
	18 h	14 ± 3	17 ± 5	n.s.
Oxygenation	BLH	503 ± 65	496 ± 58	n.s.
Ratio	0 h	544 ± 66	101 ± 28	< 0.001
(mmHg)	6 h	452 ± 55	188 ± 70	< 0.001
Č.	12 h	453 ± 73	221 ± 48	< 0.001
	18 h	400 ± 59	216 ± 50	< 0.001
Wet-to-dry		5 ± 0	6 ± 1	0.08
Ratio				

 Table 2
 Pulmonal parameters. Data shown as mean values and standard deviation.

Notes.

Abbreviations: $etCO_2$, $endtidal CO_2$; EVLWI, extravascular lung water index; FiO_2 , inspiratory fraction of CO_2 ; PEEP, positive endexpiratory pressure; P_{Peak} , peak pressure; V_T , tidal volume.

	-			
		CTR	OAI	<i>p</i> -value
HR	BLH	77 ± 10	77 ± 15	n.s.
(\min^{-1})	0 h	72 ± 9	124 ± 32	< 0.001
	6 h	76 ± 15	119 ± 40	0.004
	12 h	75 ± 18	117 ± 39	0.005
	18 h	68 ± 8	112 ± 44	0.003
MAP	BLH	72 ± 5	75 ± 11	n.s.
(mmHg)	0 h	76 ± 8	73 ± 6	n.s.
	6 h	74 ± 8	67 ± 8	n.s.
	12 h	71 ± 12	69 ± 6	n.s.
	18 h	68 ± 8	67 ± 7	n.s.
MPAP	BLH	13 ± 4	16 ± 3	n.s.
(mmHg)	0 h	12 ± 3	38 ± 4	< 0.001
	6 h	14 ± 4	30 ± 5	< 0.001
	12 h	16 ± 2	27 ± 4	< 0.001
	18 h	15 ± 2	27 ± 2	< 0.001
CVP	BLH	6 ± 2	6 ± 3	n.s.
(mmHg)	0h	6 ± 3	7 ± 4	n.s.
	6 h	8 ± 4	8 ± 3	n.s.
	12 h	6 ± 2	9 ± 3	n.s.
	18 h	6 ± 1	10 ± 3	n.s.
PCWP	BLH	7 ± 1	8 ± 1	n.s.
(mmHg)	0 h	7 ± 2	9 ± 2	n.s.
	6 h	7 ± 1	8 ± 2	n.s.
	12 h	7 ± 2	9 ± 2	n.s.
	18 h	7 ± 2	10 ± 1	n.s.
CI	BLH	3.41 ± 0.43	3.34 ± 0.85	n.s.
$(l/min/m^2)$	0 h	3.26 ± 0.43	3.87 ± 0.75	n.s.
	6 h	3.40 ± 0.68	3.87 ± 0.92	n.s.
	12 h	3.61 ± 0.61	4.44 ± 1.41	n.s.
	18 h	3.28 ± 0.34	4.83 ± 1.39	0.002
Norepinephrine	BLH	0.04 ± 0.11	0.00 ± 0	n.s.
(µg/kg/min)	0 h	0.00 ± 0	0.55 ± 0.61	n.s.
	6 h	0.01 ± 0.04	0.58 ± 1.13	n.s.
	12 h	0.03 ± 0.05	0.66 ± 1.02	n.s.
	18 h	0.01 ± 0.04	1.09 ± 1.44	0.007

 Table 3
 Cardiovascular parameters. Data shown as mean values and standard deviation.

Notes.

Abbreviations: CI, cardiac index; CVP, central venous pressure; HR, heart rate; MAP, mean arterial pressure; MPAP, mean pulmonary arterial pressure; PCWP, pulmonary capillary wedge pressure.

There was no difference in the number of neurons (p = 0.69; Fig. 1) in the hippocampus (pooled data of Gyrus Dentatus, CA1, CA2, CA3 and CA4) between the groups. Histologic evaluation of neuronal damage showed a significantly higher proportion of damaged neurons in the hippocampus of OAI animals compared with untreated animals (p = 0.02;

Full-size DOI: 10.7717/peerj.10471/fig-1

pooled data of Gyrus Dentatus, CA1, CA3 and CA4). However, there was no difference between OAI and CTR (p = 0.11) or between CTR and untreated (p = 0.16; Fig. 1).

The number of Iba-1 stained microglia cells in the hippocampus didn't differ between the groups (p = 0.71; Fig. 2), but evaluation of their activation state by counting the number of branches revealed significantly more active microglia cells in OAI and CTR compared to untreated (p < 0.001 each), while there was no significant difference between OAI and CTR (p = 0.12; Fig. 2). Comparison of resting microglia cells, defined as microglia cells

Iba-1 stained microglia

Full-size DOI: 10.7717/peerj.10471/fig-2

with three or more branches, showed significantly fewer resting microglia cells in OAI compared to untreated (p = 0.006) and in CTR compared to untreated (p = 0.007). There was no difference between OAI and CTR (p = 0.53).

Lung injury was pronounced in the OAI group (p = 0.01 versus CTR, p < 0.001 versus untreated). The lungs of the CTR animals showed a significant higher damage score than the untreated group (p = 0.04; Fig. 3).

Figure 3 Lung injury score. In HE-stained lung slices seven different parameters (overdistension, epithelial destruction, inflammatory infiltration, alveolar edema, hemorrhage, interstitial edema, and microatelectasis) were evaluated with a maximum score of 175 points.

Full-size 🖾 DOI: 10.7717/peerj.10471/fig-3

We found no difference in mRNA concentrations of TNFalpha (p = 0.31; Fig. 4), IL-6 (p = 0.062; Fig. 5), IL-8 (p = 0.68; Fig. 6) or IL-1beta (p = 0.43; Fig. 7) in the cortex samples. The hippocampus showed a significant increase of TNFalpha mRNA in OAI (p = 0.005) and CTR (p = 0.004) animals compared to untreated animals. There was no difference between the CTR and OAI group (p = 0.67; Fig. 4). IL-6 mRNA was significantly increased in the hippocampus of the animals of the OAI group compared to CTR (p = 0.02) and untreated (p = 0.049). There was no significant difference between CTR and untreated (p = 0.62; Fig. 5). Hippocampal IL-8 (p = 0.18; Fig. 6) and IL-1beta (p = 0.58; Fig. 7) mRNA copies showed no differences between the groups.

Plasma IL-6 levels in OAI animals were significantly higher after 18 h compared to 12 h (p = 0.03) and compared to 6 h (p = 0.03; Fig. 8). Plasma IL-6 levels in CTR animals showed no significant difference over time (p = 0.35). Plasma TNFalpha levels were significantly higher after ARDS-induction in OAI animals compared to 6 h (p = 0.02), 12 h (p = 0.02) and 18 h (p = 0.01; Fig. 8). There was no significant change in Plasma TNFalpha in CTR animals over time (p = 0.68).

DISCUSSION

In this study, we found an increase in cerebral cytokine mRNA without histological evidence of neuronal damage after OAI-induced lung injury, already within 24 h.

Central venous injection of oleic acid is an established animal model of acute lung injury, which is characterized by alveolar hemorrhage, intravascular thrombosis, infiltration of polymorphonuclear leukocytes, and increased pulmonary microvascular permeability. These changes lead to severe ventilation/perfusion mismatch and increased shunt resulting in hypoxemia and increased mean airway pressures. Furthermore, pulmonary edema

develops, which is characterized by elevation of extravascular lung water and leakage of protein-rich fluid into the airspace and interstitium. Commonly observed hemodynamic effects encompass myocardial depression, early systemic hypotension, and pulmonary hypertension (*Matute-Bello, Frevert & Martin, 2008*), which have been reliably reproduced in our porcine model. In our study, gas exchange and pulmonary arterial hypertension resolved over time in contrast to Derks et al., who reported a maximum effect after 12 h (*Derks & Jacobovitz-Derks, 1977*). This discrepancy may be attributable to continuous lung protective ventilation, which may minimize alveolar stress as well as cyclic recruitment

and derecruitment (*Nieman, Gatto & Habashi, 2015*), thereby impeding the inflammatory response.

IL-6 and TNFalpha are important mediators in the development of ARDS (*Goncalves-de Albuquerque et al., 2015*). An increase in serum IL-6 is associated with the development of ARDS (*Aisiku et al., 2016*) and elevated intracranial pressure (*Hergenroeder et al., 2010*) in patients with traumatic brain injury. An increase in these cytokines is also associated with postoperative delirium and cognitive dysfunction (*Wang, Chen & Wu, 2015*). Therefore, we examined systemic levels of IL-6 in the OAI animals immediately after ARDS-induction and found a significant increase, which diminished over time. In OAI animals, only a

trend towards higher levels of TNFalpha was observed. This finding is concordant with an animal study on acid aspiration induced lung injury over 5 days, which reported a similar TNFalpha temporal evolution with a tendency to an increase in serum IL-6 (*Bickenbach et al., 2011*).

Circulating TNFalpha can compromise the blood brain barrier (*Tsao et al., 2001*) and activate microglia cells. Importantly, circulating IL-6 is thought to impair the blood brain barrier likewise (*Rochfort & Cummins, 2015*). Furthermore, TNFalpha can activate microglia cells through receptors within the cerebral blood vessels (*Thibeault, Laflamme &*

Figure 7 Cerebral levels of IL-1beta mRNA. (A) Number of IL-1beta mRNA-copies normalized to PPIA in the cortex. (B) Number of IL-1beta mRNA-copies normalized to PPIA in the hippocampus. Full-size DOI: 10.7717/peerj.10471/fig-7

Rivest, 2001). To examine a potential activation of microglia, we assessed the number of iba-1 stained microglia cells, but found no difference between the groups. However, the homogenous distribution of microglia in our present study does not necessarily rule out microglia activation since microglia with similar appearance can exhibit different functional phenotypes, dependent on their microenvironment (*Wes et al., 2016*). Hence, we examined different activation states of microglia cells by counting their branch numbers. Significantly more active microglia cells in OAI and CTR compared to untreated (p < 0.001 each) was

Figure 8 Time course of plasma cytokines after induction of ARDS. (A) Plasma levels of TNFalpha over time. (B) Plasma levels of IL-6 over time.

Full-size DOI: 10.7717/peerj.10471/fig-8

paralleled by significantly fewer resting cells in OAI and CTR compared to untreated (OAI vs. untreated p = 0.006; CTR vs. untreated p = 0.007). In septic mice an activation of microglia is usually found after 8–48 h (*Hoogland et al., 2015*). Sepsis leads to rapid breakdown of the blood brain barrier causing cerebral inflammation (*Danielski et al., 2018*), but Cytokine release in ARDS is not as pronounced as in sepsis (*Ziebart et al., 2014*). Accordingly, the breakdown—or potential breakdown—of the blood brain barrier may

take longer, which could explain our results. Furthermore, activation of microglial cells is not necessarily accompanied by an increase in numbers. Additional evidence of microglial activation is the cerebral production of TNFalpha or IL-6 mRNA, since these cytokines are mainly released by microglia cells (*Hoogland et al., 2015*) and a hippocampal increase in these cytokines is associated with postoperative cognitive decline (*Chen et al., 2015*). In animals of the OAI group hippocampal IL-6 mRNA was significantly increased compared to untreated and CTR animals. This confirms the results of Bellaver et al., who examined cerebral cytokine production in animals with cecal ligation and perforation. They found an increase in hippocampal IL-6 production (*Bellaver et al., 2018*). Hippocampal TNFalpha mRNA showed a non-significant tendency towards higher level in OAI compared to untreated, but not between OAI and CTR. This finding differs from the results reported by Ruiz-Valdepenas et al., who found a significant increase in cerebral TNFalpha mRNA after lipopoylsaccharide-induced sepsis (*Ruiz-Valdepenas et al., 2011*).

In the next step, cerebral injury was assessed by evaluating neuronal counts in the hippocampus. However, we found no difference between the groups. In contrast, Gonzales-Lopez et al. described initial signs of neuronal apoptosis in mechanically ventilated mice after only 90 min of non-protective ventilation (Gonzalez-Lopez et al., 2013). Heuer et al. reported a non-significant tendency towards more severe hippocampal injury within four hours in pigs with acid-aspiration induced lung damage (*Heuer et al.*, 2012). In another porcine two-hit model of acid-aspiration and non-protective ventilation, no signs for hippocampal apoptosis were found (*Bickenbach et al.*, 2011). These discrepancies could be explained by the fact, that we counted HE-stained neurons, without differentiation in the morphology of the cells, whereas Heuer et al. evaluated nuclear pyknosis and eosinophilic degeneration of the cytoplasm as markers of neuronal cell damage. Bickenbach et al. used similar criteria, whereas Gonzales-Lopes considered PARP-1 positive neurons as evidence of injury. Hence, we evaluated the proportion of neurons with nuclear pyknosis or hypereosinophilia as markers for acute neuronal damage. We found significantly more eosinophilic and pyknotic neurons in the hippocampus of OAI animals compared to untreated animals whereas the overall number of neurons in the hippocampus remained unchanged.

There are several limitations of our study. Lung injury induced by injection of oleic acid is a well-established model for acute ARDS characterized by a profound change in oxygenation due to microvascular thrombosis, leucocyte infiltration, necrosis and leakage of protein-rich fluid into the airspace with extravascular lung water accumulation (*Goncalves-de Albuquerque et al., 2015*). Our model showed oxygenation impairment and extravascular lung water accumulation, which improved during the course of the study. The wet-to-dry ratio, as a marker for pulmonary edema did not differ between the lung injury group and the control group. This indicates an improvement of the lung injury, possibly due to the lung-protective ventilator setting. Gonzales-Lopez et al. found significant apoptosis in the hippocampus of mice that were non-protectively ventilated, even without ARDS (*Gonzalez-Lopez et al., 2013*). They showed that this hippocampal damage was mediated by the vagal nerve, which is activated by stretch sensors in the lungs (*Gourine et al., 2008*). Our

by reducing distension on the lungs. Furthermore, the observed improvement of lung injury markers could correspond to reduced lung inflammation. This could lead to an attenuated cytokine release in the blood with less pronounced systemic inflammatory response and accordingly reduced cerebral inflammation and apoptosis, compared to septic conditions, which lead to hippocampal damage (*Semmler et al., 2005*) and long-term memory deficits (*Semmler et al., 2007*). Another limitation is the duration of our experiment. Usually patients with ARDS require mechanical ventilation for several days (*Bellani et al., 2016*), whereas our experiment was limited to 18 h. This may be too short to induce a profound cerebral response that is not mediated by the nervous system itself, but by the circulatory system. The systemic immune response usually lacks some days after localized infection. Finally, we only examined mRNA of the cerebral cytokines, not proteins. The increase of mRNA is not necessarily followed by an increase in protein concentration. Accordingly, our results should be interpreted with caution.

CONCLUSIONS

Hippocampal cytokine mRNA increases within 18 h after induction of acute lung injury without histological evidence of neuronal loss. Furthermore, we found an increase in serum cytokines after induction of lung injury. Although we did not evaluate cognitive function after acute lung injury, prior studies have documented that an increase in hippocampal IL-6 and TNFalpha result in cognitive dysfunction. Therefore, it is plausible that an increase in cytokine mRNA may contribute to cognitive decline in the setting of ARDS, especially if it is followed by an increase in cerebral cytokine synthesis. Further studies should investigate the temporal evolution of cytokine elevation and its influence on cognitive dysfunction.

ACKNOWLEDGEMENTS

We thank Dagmar Dirvonskis and Dana Pieter for excellent technical support. The authors are grateful to Prof. Elisabeth Jane Rushing (University Hospital Zurich, Switzerland) for critically reading the manuscript. This work contains parts of the medical thesis of KoFo and JS.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests

The authors declare there are no competing interests.

Author Contributions

• Jens Kamuf conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

- Andreas Garcia Bardon, Alexander Ziebart, Konstantin Folkert, Johannes Schwab, Robert Ruemmler, Miriam Renz and Denis Cana performed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
- Katrin Frauenknecht performed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.
- Serge C. Thal conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.
- Erik K. Hartmann conceived and designed the experiments, analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.

Animal Ethics

The following information was supplied relating to ethical approvals (i.e., approving body and any reference numbers):

Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany (the institutional and state animal care committee which is responsible for ethical evaluation and surveillance of animal studies) approved this research (G14-1-077).

Data Availability

The following information was supplied regarding data availability: The raw data are available in the Supplementary Files.

Supplemental Information

Supplemental information for this article can be found online at http://dx.doi.org/10.7717/ peerj.10471#supplemental-information.

REFERENCES

- Aisiku IP, Yamal JM, Doshi P, Benoit JS, Gopinath S, Goodman JC, Robertson CS.
 2016. Plasma cytokines IL-6, IL-8, and IL-10 are associated with the development of acute respiratory distress syndrome in patients with severe traumatic brain injury. *Critical Care* 20:288 DOI 10.1186/s13054-016-1470-7.
- Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, Gattinoni L, Van Haren F, Larsson A, McAuley DF, Ranieri M, Rubenfeld G, Thompson BT, Wrigge H, Slutsky AS, Pesenti A, Investigators LS, Group ET. 2016. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. *JAMA* 315:788–800 DOI 10.1001/jama.2016.0291.
- Bellaver B, Dos Santos JP, Leffa DT, Bobermin LD, Roppa PHA, da Silva Torres IL, Goncalves CA, Souza DO, Quincozes-Santos A. 2018. Systemic inflammation as a driver of brain injury: the astrocyte as an emerging player. *Molecular Neurobiology* 55:2685–2695 DOI 10.1007/s12035-017-0526-2.
- Bickenbach J, Biener I, Czaplik M, Nolte K, Dembinski R, Marx G, Rossaint R, Fries M. 2011. Neurological outcome after experimental lung injury. *Respiration Physiology & Neurobiology* 179:174–180 DOI 10.1016/j.resp.2011.08.003.

- Chen C, Zhang Z, Chen T, Peng M, Xu X, Wang Y. 2015. Prolonged mechanical ventilation-induced neuroinflammation affects postoperative memory dysfunction in surgical mice. *Critical Care* 19:159 DOI 10.1186/s13054-015-0882-0.
- Danielski LG, Giustina AD, Badawy M, Barichello T, Quevedo J, Dal-Pizzol F, Petronilho F. 2018. Brain barrier breakdown as a cause and consequence of neuroinflammation in sepsis. *Molecular Neurobiology* 55:1045–1053 DOI 10.1007/s12035-016-0356-7.
- Dantzer R, O'Connor JC, Freund GG, Johnson RW, Kelley KW. 2008. From inflammation to sickness and depression: when the immune system subjugates the brain. *Nature Reviews Neuroscience* 9:46–56 DOI 10.1038/nrn2297.
- **Derks CM, Jacobovitz-Derks D. 1977.** Embolic pneumopathy induced by oleic acid. A systematic morphologic study. *American Journal of Pathology* **87**:143–158.
- Goncalves-de Albuquerque CF, Silva AR, Burth P, Castro-Faria MV, Castro-Faria-Neto HC. 2015. Acute respiratory distress syndrome: role of oleic acidtriggered lung injury and inflammation. *Mediators of Inflammation* 2015:260465 DOI 10.1155/2015/260465.
- Gonzalez-Lopez A, Lopez-Alonso I, Aguirre A, Amado-Rodriguez L, Batalla-Solis E, Astudillo A, Tomas-Zapico C, Fueyo A, Dos Santos CC, Talbot K, Albaiceta GM. 2013. Mechanical ventilation triggers hippocampal apoptosis by vagal and dopaminergic pathways. *American Journal of Respiratory and Critical Care Medicine* 188:693–702 DOI 10.1164/rccm.201304-0691OC.
- Gourine AV, Dale N, Korsak A, Llaudet E, Tian F, Huckstepp R, Spyer KM. 2008. Release of ATP and glutamate in the nucleus tractus solitarii mediate pulmonary stretch receptor (Breuer-Hering) reflex pathway. *Journal de Physiologie* **586**:3963–3978 DOI 10.1113/jphysiol.2008.154567.
- Hartmann EK, Thomas R, Liu T, Stefaniak J, Ziebart A, Duenges B, Eckle D, Markstaller K, David M. 2014. TIP peptide inhalation in experimental acute lung injury: effect of repetitive dosage and different synthetic variants. *BMC Anesthesiology* 14:42 DOI 10.1186/1471-2253-14-42.
- Hartmann EK, Ziebart A, Thomas R, Liu T, Schad A, Tews M, Moosmann B, Kamuf J, Duenges B, Thal SC, David M. 2015. Inhalation therapy with the synthetic TIP-like peptide AP318 attenuates pulmonary inflammation in a porcine sepsis model. *BMC Pulmonary Medicine* 15:7 DOI 10.1186/s12890-015-0002-6.
- Herridge MS. 2017. Fifty years of research in ARDS. Long-term follow-up after acute respiratory distress syndrome. Insights for managing medical complexity after critical illness. *American Journal of Respiratory and Critical Care Medicine* 196:1380–1384 DOI 10.1164/rccm.201704-0815ED.
- Herridge MS, Moss M, Hough CL, Hopkins RO, Rice TW, Bienvenu OJ, Azoulay
 E. 2016. Recovery and outcomes after the acute respiratory distress syndrome (ARDS) in patients and their family caregivers. *Intensive Care Medicine* 42:725–738 DOI 10.1007/s00134-016-4321-8.
- Heuer JF, Sauter P, Pelosi P, Herrmann P, Bruck W, Perske C, Schondube F, Crozier TA, Bleckmann A, Beissbarth T, Quintel M. 2012. Effects of pulmonary acid

aspiration on the lungs and extra-pulmonary organs: a randomized study in pigs. *Critical Care* **16**:R35 DOI 10.1186/cc11214.

- **Hoogland IC, Houbolt C, Van Westerloo DJ, Van Gool WA, Van de Beek D. 2015.** Systemic inflammation and microglial activation: systematic review of animal experiments. *Journal of Neuroinflammation* **12**:114 DOI 10.1186/s12974-015-0332-6.
- Hopkins RO, Weaver LK, Collingridge D, Parkinson RB, Chan KJ, Orme Jr JF. 2005. Two-year cognitive, emotional, and quality-of-life outcomes in acute respiratory distress syndrome. *American Journal of Respiratory and Critical Care Medicine* 171:340–347 DOI 10.1164/rccm.200406-763OC.
- Hergenroeder GW, Moore AN, McCoy Jr JP, Samsel L, Ward 3rd NH, Clifton GL, Dash PK. 2010. Serum IL-6: a candidate biomarker for intracranial pressure elevation following isolated traumatic brain injury. *Journal of Neuroinflammation* 7:19 DOI 10.1186/1742-2094-7-19.
- Kamuf J, Garcia-Bardon A, Duenges B, Liu T, Jahn-Eimermacher A, Heid F, David M, Hartmann EK. 2017. Endexpiratory lung volume measurement correlates with the ventilation/perfusion mismatch in lung injured pigs. *Respiratory Research* 18:101 DOI 10.1186/s12931-017-0585-y.
- Kamuf J, Garcia-Bardon A, Ziebart A, Thomas R, Folkert K, Frauenknecht K, Thal SC, Hartmann EK. 2018a. Lung injury does not aggravate mechanical ventilationinduced early cerebral inflammation or apoptosis in an animal model. *PLOS ONE* 13:e0202131 DOI 10.1371/journal.pone.0202131.
- Kamuf J, Garcia-Bardon A, Ziebart A, Thomas R, Rummler R, Mollmann C, Hartmann EK. 2018b. Oleic acid-injection in pigs as a model for acute respiratory distress syndrome. *Journal of Visualized Experiments* 140:57783 DOI 10.3791/57783.
- Kandikattu HK, Deep SN, Razack S, Amruta N, Prasad D, Khanum F. 2017. Hypoxia induced cognitive impairment modulating activity of Cyperus rotundus. *Physiology and Behavior* 175:56–65 DOI 10.1016/j.physbeh.2017.03.035.
- Klein KU, Johannes A, Bruckner M, Thomas R, Matthews S, Frauenknecht K, Leukel P, Mazur J, Poplawski A, Muellenbach R, Sommer CJ, Thal SC, Engelhard K. 2016. Systemic PaO2 oscillations cause mild brain injury in a pig model. *Critical Care Medicine* 44:e253-e263 DOI 10.1097/CCM.00000000001399.
- Matute-Bello G, Frevert CW, Martin TR. 2008. Animal models of acute lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology 295:L379–L399 DOI 10.1152/ajplung.00010.2008.
- Mikkelsen ME, Christie JD, Lanken PN, Biester RC, Thompson BT, Bellamy SL, Localio AR, Demissie E, Hopkins RO, Angus DC. 2012. The adult respiratory distress syndrome cognitive outcomes study: long-term neuropsychological function in survivors of acute lung injury. *American Journal of Respiratory and Critical Care Medicine* 185:1307–1315 DOI 10.1164/rccm.201111-2025OC.
- Nieman GF, Gatto LA, Habashi NM. 2015. Impact of mechanical ventilation on the pathophysiology of progressive acute lung injury. *Journal of Applied Physiology* 119:1245–1261 DOI 10.1152/japplphysiol.00659.2015.

- Pandharipande PP, Girard TD, Jackson JC, Morandi A, Thompson JL, Pun BT, Brummel NE, Hughes CG, Vasilevskis EE, Shintani AK, Moons KG, Geevarghese SK, Canonico A, Hopkins RO, Bernard GR, Dittus RS, Ely EW, Investigators B-IS. 2013. Long-term cognitive impairment after critical illness. *New England Journal of Medicine* 369:1306–1316 DOI 10.1056/NEJMoa1301372.
- Popa-Wagner A, Mitran S, Sivanesan S, Chang E, Buga AM. 2013. ROS and brain diseases: the good, the bad, and the ugly. Oxidative Medicine and Cellular Longevity 2013:963520 DOI 10.1155/2013/963520.
- **Rezoagli E, Fumagalli R, Bellani G. 2017.** Definition and epidemiology of acute respiratory distress syndrome. *Annals of Translational Medicine* **5**:282 DOI 10.21037/atm.2017.06.62.
- **Rochfort KD, Cummins PM. 2015.** The blood–brain barrier endothelium: a target for pro-inflammatory cytokines. *Biochemical Society Transactions* **43**:702–706 DOI 10.1042/BST20140319.
- Ruiz-Valdepenas L, Martinez-Orgado JA, Benito C, Millan A, Tolon RM, Romero J. 2011. Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study. *Journal of Neuroinflammation* 8:5 DOI 10.1186/1742-2094-8-5.
- Semmler A, Frisch C, Debeir T, Ramanathan M, Okulla T, Klockgether T, Heneka MT. 2007. Long-term cognitive impairment, neuronal loss and reduced cortical cholinergic innervation after recovery from sepsis in a rodent model. *Experimental Neurology* 204:733–740 DOI 10.1016/j.expneurol.2007.01.003.
- Semmler A, Okulla T, Sastre M, Dumitrescu-Ozimek L, Heneka MT. 2005. Systemic inflammation induces apoptosis with variable vulnerability of different brain regions. *Journal of Chemical Neuroanatomy* **30**:144–157 DOI 10.1016/j.jchemneu.2005.07.003.
- Songarj P, Luh C, Staib-Lasarzik I, Engelhard K, Moosmann B, Thal SC. 2015. The antioxidative, non-psychoactive tricyclic phenothiazine reduces brain damage after experimental traumatic brain injury in mice. *Neuroscience Letters* 584:253–258 DOI 10.1016/j.neulet.2014.10.037.
- Thibeault I, Laflamme N, Rivest S. 2001. Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to circulating LPS and proinflammatory cytokines. *Journal of Comparative Neurology* 434:461–477 DOI 10.1002/cne.1187.
- **Tsao N, Hsu HP, Wu CM, Liu CC, Lei HY. 2001.** Tumour necrosis factor-alpha causes an increase in blood–brain barrier permeability during sepsis. *Journal of Medical Microbiology* **50**:812–821 DOI 10.1099/0022-1317-50-9-812.
- Wang R, Chen J, Wu G. 2015. Variable lung protective mechanical ventilation decreases incidence of postoperative delirium and cognitive dysfunction during open abdominal surgery. *International Journal of Clinical and Experimental Medicine* 8:21208–21214.
- Wes PD, Sayed FA, Bard F, Gan L. 2016. Targeting microglia for the treatment of Alzheimer's disease. *Glia* 64:1710–1732 DOI 10.1002/glia.22988.

Ziebart A, Hartmann EK, Thomas R, Liu T, Duenges B, Schad A, Bodenstein M, Thal SC, David M. 2014. Low tidal volume pressure support versus controlled ventilation in early experimental sepsis in pigs. *Respiratory Research* 15:101 DOI 10.1186/s12931-014-0101-6.